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Abstract—Operators of data centers are faced with the
challenging goal of hosting applications that meet agreed
service levels, at minimal operating costs. A significant part of
these costs is energy related. Successfully reaching this goal re-
quires optimal task-to-machine assignments. This activity relies
on accurate energy and performance prediction. Widespread
use of multi-core, multi-processor machines complicate past
prediction methods. Therefore, this paper suggests to revisit
task profiling, a method based on observations of actual task
execution. As a first step in this direction, this paper reviews
methods for task profiling, which account for the contention
present in multi-core processors.
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I. TASK PERFORMANCE PREDICTION

This paper is a review of past efforts to predict a task’s
performance, on a multi-core, multi-processor based ma-
chine. A task is a component of a software service, which
performs some meaningful transaction. The tasks of a ser-
vice can be distributed across machines. This increases the
benefits of accurate task performance prediction, by enabling
consolidation, for operators of clusters, data centers, grids
or clouds. However, the approach could also be used for
a single machine, where the various tasks composing the
service run concurrently on different cores.

A. Motivation

Performance prediction contributes to the problem of
efficiently running a software service which demands a
set quality of service (QoS), as defined in a service level
agreement (SLA). The business owners of the service place
constraints on the performance of the service, typically
defining objectives for latency (response time) or throughput.
It is therefore necessary to operate a computer system with
the business objectives in mind. Owners of a computer based
solution care little about the individual performance of the
various technical components.

Successfully addressing this problem is of broad interest.
Given the complexity of operating a data center, more
businesses rely on third parties to host their service. Cloud
computing is the latest instance of this trend, its rapid
adoption highlights the importance of this question. It is of
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interest to such computing providers to satisfy SLA while
minimizing their costs, such as infrastructure and energy.

Although, the focus of this paper is the problem of inde-
pendent task mapping (placing the tasks onto the different
machines, or processors), several key activities involving
distributed systems depend on the accurate prediction of
task performance. These include runtime activities of a
distributed system, such as:

« task scheduling on the available computing resources,
« load balancing on the same infrastructures.

Several design time activities may also benefit from an
accurate prediction model to guide their decision process:

e capacity planning of a distributed infrastructure, such
as data centers, web hosting centers, cloud service
providers,

e programming, because programming for performance
requires a model for task performance.

B. Runtime task profiling approach

To make correct decisions, the mapper in a distributed
system needs to evaluate the different alternatives. This
implies some prediction model of the performance of the
tasks, on the distributed system available.

From the performance predictions of the individual tasks,
the mapper is able to evaluate the overall performance of the
service. This exposes a key difference between operating
system scheduler(s) and the higher level mapper consid-
ered here. The former cannot assess the overall service
performance because their scope is the machine, and more
generally because their objective is resource management (of
hardware), rather than business performance. This limitation
is also present in multi-server (micro-kernel) operating sys-
tems [1]. This can justify the use of such a predictor for
single machines.

This is not a new topic; however the widespread use
of multi-processor, multi-core based machines and their
system programs prompt a review of past models.

Models to predict performance were usually developed
from a detailed understanding of the inner workings of tasks
and machines [2]. However, the growing complexity of these



multi-core based computers do not lend themselves well to
such an approach. These machines although sometimes con-
sidered parallel, actually share several components (memory,
last level caches, I/O interfaces), which lead to contention.
This contention considerably impacts the performance of a
task [3], [4], and [5]. Therefore, the actual performance of
a task depends on the concurrent activity on other cores and
processors.

Operating systems (virtual memory management, time-
sharing) and related tools (power management) further add
to this hardware complexity. For example, paging faults
considerably hurt an expected performance [6]. Tasks are
not simpler. They are often considered defined by the source
code in a high level language, although their behavior
is set by compilers (optimization techniques) and runtime
libraries. Moreover, some tasks can change behavior at exe-
cution time, in order to use a different amount of resource.
For example: a task that relies on the slab allocator [7] can
be requested to reduce its memory footprint. This prevents
accurate prediction of a task’s performance based on past
performance in a different environment (different loads from
different concurrent tasks).

All these components prevent the accurate modeling of
the computation, and the performance prediction of a given
task on a given machine. Even if such an accurate model
was developed, it would only be valid up to the next change
in any of its parts: hardware, operating system, compiler,
runtime library or task source program.

The question then is how to model task performance,
when it depends on so many parts, each difficult to accu-
rately model. Preferably, the prediction model should work
for all possible machines and tasks. A possible approach is
to avoid, as much as possible, a priori knowledge on the
inner workings of the system, but should rather observe the
execution of the tasks on the actual machines (hardware
and related software such as operating system). This is
sometimes called runtime task profiling. The goal is not a
descriptive model, but a predictive one.

The suggested approach is based on a preliminary step to
the mapping activity, which measures the execution time of
the tasks, on the targeted system, but over a limited time
only.

In addition, the task profiling should explore the effects
of contention. This could be achieved by observing the
task’s performance when the machine is under various
resource-specific loads, for a given profile run. Ideally, this
extension should provide more accurate results but it ought
not significantly increase the effort to build the model.

The next section presents a review of previous efforts in
this direction.

II. LITERATURE REVIEW

The past efforts are presented according to the field of
application.

A. Distributed computing

As one of the first field to operate large computer infras-
tructures, high performance computing (HPC) has identified
the need for task performance prediction a long time ago.
However, the original works focused around proprietary
parallel machines, along with dedicated system software.

Since then, large infrastructure shifted to distributed sys-
tems composed of commodity machines (PC), typically
single processor. Recently, multi-processor, multi-core ar-
chitectures, and upcoming many-core machines introduced
a mixture of both.

The scheduling problem is clearly presented in [8],
and [9], they also expose the need for:

« profiling the tasks to execute,
o benchmarking the machines.

However it does not take into account the sources of
contention in recent multi-processor, multi-core computers.

Several works [10], [11], and [12] investigate task
runtime prediction from their past performance, on the
same machines. This approach derives from their context of
application: a shared grid, where tasks controlled elsewhere
are running on the same grid. This is a different problem
from the one presented in this review. Here, the environment
is completely controlled, but the problem is to map tasks in
order to achieve specific results. Although this may seem an
easier problem to solve, the problem of optimally mapping
independent tasks on an heterogeneous system is NP-hard.

Ref. [13] presents a real-time advisor (RTA) to predict
a task’s performance. The RTA is used with a scheduler
(real-time scheduler advisor), to place task on appropriate
machines. The RTA predicts performance based on the
observed runtime of the task when run on a vacant machine,
and on the load of the machine where the task is planned
to run. This formulation is due to the context for the
prediction: how to map tasks on unreserved machines;
which are under some load, outside of the mapper’s control.

Different aspects of the problem are similar to the problem
defined in this paper. Notably, the prediction of a task’s
runtime given a machine’s load addresses the contention of
shared resources. However, there are several differences. The
tasks considered are computation-bound (busy loops), and
therefore the shared resource is the processor. The machines
are also single-core single-processor, so contention related
to multi-core, multi-processor machines are not considered.

Moreover, the predictor relies on the task’s measured
runtime, on the machine available, but only when run
on a vacant machine (loadless). Finally, the scheduling



problem is slightly different, the objective in [13] is to
select the most suitable machine for a task, while the
mapping problem defined in Section I is combinatorial:
it tries to find the optimal mapping of all tasks, onto the
vacant machines.

Ref. [14] designs a prediction model for the grid, but opt
to focus on a specific application in order to improve its
accuracy. Applications run on a grid, where each computing
node is a cluster. This is different from the context of this
paper, where a computing node is a machine. Contention
at the machine level is therefore not included. Their
approach is based on a limited run of the applications:
executing the application against some input data, on
one cluster. Predictions of runtime in other configurations
(different data sets or clusters) are extrapolated from this
initial measurement. Restraining the scope to a specific
application is not part of the problem defined in Section I,
and the service considered is different from scientific or
data mining applications.

Ref. [15] addresses a similar problem and suggest a
similar approach. The host machine used for their study is a
32 processor SMP machine, but their work is applicable to
other configurations. However, the tasks are quite specific.
The execution model is that of work-stealing. A task is
executed by the first available processor. It is not a long-
running service, but rather a job, which is started and ends.
A task can create other tasks. The objective of the study is to
predict performance of the overall application. The tasks are
profiled by monitoring their execution over a limited time.
Memory contention is partially accounted for. The number
of threads used for each task execution is varied, in order
to assess the scalability of each task. A task which does not
scale well reflects some contention (locking, cache conflicts,
etc) within the task.

However, the objective is the task’s scalability, and
not the characterization of each task: how it can cause
contention with any other task.

The problem of application performance prediction is
studied in [16]. The authors propose an exploratory phase,
called the pro-active training phase, which consists of run-
ning the tasks on the machines. They identify the cost of
this training phase as a problem, and develop a method
to minimize this effort. The method suggests to run the
application on all nodes for a subset of the input values,
and on the fastest machine for the full set of inputs. This
formulation assumes a HPC application, which is run over a
range of inputs. The data collected is then used for prediction
of the real application on various machines.

The problem formulation and the HPC setting differ
from the problem defined here, but the approach to rely
on actual executions and their observed runtime is very

similar. The effort to minimize the preliminary phase is
noteworthy, even if the solution is HPC specific. Moreover
the question of contention in multi-core based machines is
not considered.

Ref. [17] predicts the runtime of a task on a machine from
the load of the task in isolation, the characteristic of the
machine and the current load of the machine (due to other
tasks). This prediction also relies on 5 rules that capture the
interaction of tasks.

This recent contribution is interesting because it bases its
prediction on actual task execution, and limits their cost by
only executing tasks in isolation. It also casts the problem
in the context of quality of service, which is the end-user
perspective included in the proposed direction. The literature
review is also noteworthy.

However, there are differences between approaches. The
model used to predict task load does not address contention
in multi-core, but mentions it as an operating system
concern. The tasks considered are essentially CPU-bound,
because this allows the authors to link host load to task
runtime. While this may be true for CPU-bound tasks, it is
most unlikely in memory, network or any other contention
prone situation. The domain of application for the profiling
is HPC. Therefore the tasks are considered long-running
(measurements are based on 5 second sampling), and
directly related to a user id on the machine. The tasks
in the present paper are different from these HPC tasks,
because they are the instructions necessary to process
a request, as part of a daemon or service. The 5 rules
necessary to predict runtimes from exploratory data
are based on an understanding of the machines and the
nature of task execution, which represents a big assumption.

Ref. [18] introduces their performance predictor:
Dimemas. This simulator relies on execution traces of
applications, on some characterized hardware. It can
then predict the runtime of the same application on
different hardware. The CPU burst, and network activity is
considered in the model. The context is different from the
one presented here, because the tasks are MPI-based HPC
applications, and the varying hardware environment is the
network performance. Therefore, a specific model for the
task is defined, which is not the case in the proposed setting.

Ref. [19] classifies execution time prediction into three
groups: code analysis, code profiling/analytic benchmark-
ing, and statistical methods. From such classification, the
authors present a hybrid approach: statistical and analytic
benchmarking. This classification clearly exposes different
approaches to task performance prediction. However, two
hypothesis in this work define a different problem to the one
studied here. First, each task is assumed to have exclusive
use of the machine on which it runs, such that a task’s exe-



cution time does not depend on other tasks. This is clearly
different from the problem defined here, where contention
for shared resource, by concurrently running tasks, is one
key hypothesis. Second, this previous work considers that a
task execution time depends on its input data. This is perhaps
specific to HPC environments. However, there is no such
hypothesis in this paper.

B. Thread scheduling

The method of profiling tasks based on their actual
execution is proposed in [20]. This work looks at the
execution of multiple threads of a process. It aims
to identify data dependencies between threads. Data
dependency occurs when multiple threads access the same
data. Although the method is based on runtime analysis,
compared to static source code analysis, it does not include
machine characteristics, and does not consider contention
beyond the data that threads share.

Ref. [21] characterizes the relation between workload and
a machine’s resource utilization (such as memory, CPU). The
target application is capacity planning. The method relies on
measured execution (called automated profiling). However,
the relation sought does not involve performance estimation,
because of the intended application in capacity planning. It
does not consider contention in multi-core based machines.

C. Scheduling for simultaneous multi-threading architec-
tures

The following papers consider how schedulers can im-
prove the performance of threads when executed on simul-
taneous multi-threading (SMT) architectures. SMT improves
instruction-level parallelism (ILP) by executing different
threads at each cycle. The consequence is that some threads
will achieve greater parallelism when co-scheduled together
than other combinations.

This question bears some similarity with the question
presented here, in Section I. Contention is present in SMT;
however it is possible to minimize it in order to achieve
greater performance. This depends on the nature of the
threads (which are called tasks here). Co-scheduling threads
on an SMT processor is analogous to mapping tasks on the
same multi-core processor (or multi-processor machine).
However, there are differences which prevent a direct
application of the results from this field. The contention in
SMT is limited in scope (processor core), while this paper
places no restriction on the sources of contention within
a machine (hardware and software stack). In addition, this
paper is investigating a predictor for task runtime, while a
SMT scheduler is concerned about processor utilization, a
lower level information. Nevertheless, some methods from
the field of co-scheduling for SMT could be applied to the
question presented here.

Ref. [22], and [23] introduce a SMT scheduler which
minimizes contention on a superscalar processor, to improve
utilization and performance of the threads. Their scheduler
initially co-schedules threads according to fair policy, and
then attempts to discover which threads run well together,
by deliberately changing the co-schedule and observing
the resulting performance. The adaptive nature of the
approach is unsuitable to the problem defined in Section I,
because the unsuccessful co-schedules would impact the
QoS and fail the SLA. Moreover, the combinatorial space
of co-schedules is so large so as to make the above risk
likely (because the scheduling is not limited to a SMT
processor, but to an entire distributed system).

Ref. [24] targets the Simultaneous Multi-Threaded cores
platform, such as Intel’s HyperThreading. The intention of
the study is similar to the approach suggested in Section I.
The objective is thread scheduling to reduce contention.
This scheduling can either be performed at the CPU level,
or at the operating system level. The model is based on
measurements of a real thread execution. However, there are
notable differences. The approach is not exploration based
(it does not require a preparation step which explores the
behavior of tasks), but adaptive. The measurements deal with
resource usage, such as caches and registers. The approach
proposed in Section I measures overall program perfor-
mance, as perceived by the users. Their model is based on
the detail knowledge of the internals of the SMT processor,
and therefore uses of a simulator to obtain results. The
approach presented here tries to avoid both this knowledge
and the use of a simulator.

D. Real-time and embedded system scheduling

Ref. [25] proposes an energy-efficient soft real-time
scheduler. The scheduler relies on runtime predictions,
based on limited task execution, which is the approach
considered in the present review. Soft real-time (meeting a
fraction of all deadlines) expresses the problem of meeting
SLA requirements, because SLA typically allows some
deadlines to be missed, and sets penalties when more
deadlines are missed. The deadlines capture the end-user
view of performance. However, contention is not part of
the model (which focuses on the CPU, for specific tasks).
Also, energy efficiency is a consequence of DVFS control
by the scheduler, which is not necessarily better than the
race-to-idle policy. Finally, this scheduler is the finest grain
operating system scheduler, which operates at a lower level
than this paper selected.

Ref. [26] proposes a real-time scheduler where activities
are subject to resource constraints. The constraint is that
shared resources are accessed sequentially. They mention
both physical resources, such as disks, and logical resources,
such as critical sections guarded by mutexes. Only one



task (according to our definition, not theirs) can access a
shared resource at a time. Tasks are defined with statistical
properties. However, how such properties are obtained is
not described; it is likely that they are derived from actual
executions. However, the task properties do not include
resource contention. Constraints on shared resources are
managed through scheduling access to resources, under a
given model. Although their study does not match this
review’s scope of task profiling, it does address the higher
level question of scheduling tasks under resource contention.

E. Internet Protocol routers

Some closely related works from a different field than data
center computing are presented in [27], [28], and [29]. These
papers present and study programmable internet routers,
based on network processors. One of the main issue with
programmable routers is the mapping of tasks to processors.

Ref. [27] examines the suitability to internet routing of
different machine architectures, They do mention contention
as a critical bottleneck in network processors, but it is not
part of the profiling or mapping study.

Dynamic profiling to support task mapping is proposed
in [28], and [29]. This profiling aims to characterize the
tasks. The dynamic profiling is motivated by the variability
of the input traffic, both in volumes and nature. Contention
is not part of the study, although it is presented in their
previous paper.

III. CONCLUSION AND FUTURE WORK

The problem of accurate performance prediction on multi-
core, multi-processor machines based on a preliminary ob-
servation of a task’s execution, has been little explored
in the past. This is unfortunate because of the impact for
data center operators, notably cloud service providers, which
otherwise need to dedicate machines to run critical services,
in order to avoid failing SLA.

Energy minimization is indirectly part of the scope, be-
cause it is related to number of machines and their load.
However, it deserves to be more directly addressed because
of the growing cost item it represents.

This review highlights the benefits of a mapper of a
higher level than schedulers of operating systems. Indeed,
such schedulers manage contention while preserving the
current programmer’s abstract view of a dedicated machine
(memory, processor, I/0). An alternative, which increases
the difficulty for the programmer is to account for varying
resource availability inside the programs, and install a richer
communication between schedulers and processes.

Future work involves building such a prediction tool,
and evaluating the accuracy and the extra effort the pre-
liminary profiling step implies. The next steps include the
investigation of cloud-scale mappers, which rely on the
aforementioned predictors.
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