
A web service based on RESTful API and JSON Schema/JSON Meta Schema to
construct knowledge graphs

Adam Agocs
CERN

CH-1211 Geneva 23
Switzerland

Email: adam.agocs@cern.ch

Jean-Marie Le Goff
CERN

CH-1211 Geneva 23
Switzerland

Email: jean-marie.le.goff@cern.ch

Abstract—Data visualisation assists domain experts in under-
standing their data and helps them make critical decisions.
Enhancing their cognitive insight essentially relies on the
capability of combining domain-specific semantic informa-
tion with concepts extracted out of the data and visualizing
the resulting networks. Data scientists have the challenge of
providing tools able to handle the overall network lifecycle.
In this paper, we present how the combination of two
powerful technologies namely the REST architecture style
and JSON Schema/JSON Meta Schema enable data scientists
to use a RESTful web service that permits the construction
of knowledge graphs, one of the preferred representations
of large and semantically rich networks.

Index Terms—Computer architecture, RESTful API, JSON,
JSON Schema, Data validation.

1. Introduction

Collaboration Spotting (CS) [1][2] is a platform de-
signed to support visual analytics of multivariate knowl-
edge graphs built out of data from heterogeneous sources.
It offers a novel approach to handle semantic and struc-
tural complexity at the interactive visualisation level
by enabling users to generate different perspectives of
domain-related knowledge graphs, navigate between these
perspectives and execute different graph algorithms within
them.

Since 2012, CS has been deployed on many pilot
projects in various domain-related analysis to demonstrate
its capability of enhancing the cognitive insight of humans
into the understanding of their data. In particular, CS has
been used

• to analyse publications and patents for dental science
[3] and for the detection of technology and innovation
developments [4],

• for a security-threat analysis [5],
• for a university ranking project in collaboration with

the MTA-PE Budapest Ranking Research Group [6]
and

• for a neuroscience project in collaboration with the
Complex Systems and Computational Neuroscience
Group [7] at Wigner RCP.

CS capability of enhancing cognitive insight strongly
depends on the construction of domain-independent and
semantically rich knowledge graphs. In essence, construct-
ing such graphs calls for an API that enables users to:

1) use descriptors to specify data elements with minimal
restrictions,

2) structure data elements in an ontology-like hierarchy,

3) set up data-related control parameters to satisfy the
data-driven approach of the platform,

4) validate descriptors by using pre-defined node and
edge descriptors,

5) validate data with their descriptors and
6) upload data and descriptors by using well-known and

widespread technologies.
To these, one must add requirements that are specific to
the interactive visualization and navigation aspects of the
CS platform:

7) Use of a graph database (which is a natural choice in
support of visual analytics on graphs) such as Neo4j
[8] for storing a) users’ data as knowledge graphs
i.e. a 4-element tuples (G = (V,E,L, α)) where both
vertices and edges are labelled and b) the knowledge
graph’s schema called as reachability graph (please,
see [9] for further details).

8) Use of Django [10] as a web framework implemented
in Python.

9) Use of JSON [11][12] as a data exchange format
between the different layers of the platform.

A REST architecture like web service combined with
JSON Schema/JSON Meta Schema [13][14] and Py2neo
Python package [15] provides an adequate tool for con-
structing knowledge graphs in compliance with the above-
mentioned requirements.

After the related work emphasising JSON format and
enabling technologies, Section 3 presents the architecture
of the RESTful web service of the Collaboration Spotting
platforms showing how the selected technologies satisfy
the requirements and how an extension of the JSON
Schema specifications can support an ontology-like hier-
archy for the descriptors. Section 4 gives a use-case and
some experimental results on the scalability of the API
and some comparisons between the single mode and the
bulk mode operations. And finally, the paper finishes with
Future Work and Conclusion in Section V and Section VI
respectively.

2. Related Work

In his PhD dissertation, Roy Fielding described the
principled design of the modern web architecture that

ar
X

iv
:1

80
4.

03
88

7v
1

 [
cs

.S
E

]
 1

1
A

pr
 2

01
8

leads to the REST architecture style [16]. Since then,
REST gained in popularity amongst the API (Applica-
tion Programming Interface) developers and became the
most used approach for developing web services [17][18].
According to programmableWeb.com [18], most of these
services have been developed with API using the JSON
(JavaScript Object Notation) format to send and receive
requests and responses over the HTTP protocol. Since its
draft submission, JSON has followed an XML-like path
starting as a data exchange format over the Internet to
become part of an exchange protocol used by various
APIs. The most notable ones being:

• JSON-LD [19] (W3C recommendation [20]), a
JSON-based serialisation for handling Linked Data
[21] extended with contextual explanations,

• JSON API [22] specifies the communication protocol
between clients and servers,

• JSON-RPC [23] a remote procedure calls in JSON,
similar to XML-RPC with XML.

JSON-to-RDF/XML converters provide an indirect
means to valid native JSON documents. To the best of
our knowledge, JSON Schema is the only format that
enables users to define the syntax of a JSON document.
Python supports the fourth draft version of this format,
but a more recent version is available (the seventh one).
Although JSON schema format is still in the process
of standardisation, the number of JSON Schema-based
theoretical and practical results is growing. In particular,
this is the case for the schema’s formal definition [24])
and SDMX-JSON data retrieval of OECD [25] datasets.

The JSON key features that are the validation rules
(JSON Meta Schema) and the code to validate these rules
made it possible to develop node and edge validators
for Collaboration Spotting. Since 2004, OWL [26] has
become a W3C supported standard for query languages
on ontologies. OWL and ontologies for domain-specific
knowledge representations are key technologies in var-
ious research areas such as data retrieval, data mining,
machine learning and data visualisation. The criteria of
Section 1, does not require the creation of an OWL-
equivalent language built upon JSON schema. Applying
the Amann and Fundulakis mathematical definition [27]
of an ontology combined with a graph database supporting
a labelled property graph data model will be sufficient for
the construction of knowledge graphs compliant with the
above requirements. In Amann and Fundulaki’s work, an
ontology is expressed as a triplet, O = (C,R, isa), where
1) C is a set of concepts, 2) R is a set of binary typed roles
between these concepts and 3) isa is a set of inheritance
(”is a”) relationship between them.

3. Architecture

As indicated above, the CS RESTful API is built
upon three main technology elements, namely the Django
REST framework, the Python implementation of JSON
Schema/JSON Meta Schema and Py2neo Python package
for the Neo4j graph database. These technologies address
the user requirements of Section 1 as follows:

1) Descriptors in JSON Schema format can describe
user data,

4) the validation of descriptors in JSON schema requires
modifications of the JSON Meta Schema such that

each descriptor either describes a graph node or a
graph edge in the knowledge graph,

5) JSON documents containing user data are validated
by using descriptors written in the JSON Schema
format,

6) Django REST framework is a powerful and flexible
toolkit for building Web APIs that is compliant with
the REST architecture style,

7) Py2neo is a client library for working with Neo4j,
8) Django REST framework can easily be combined

with Django Web framework and
9) Django REST framework and JSON Schema/JSON

Meta Schema support JSON format.
Essentially all the user requirements are addressed with
the exception of requirements 2 and 3.

3.1. Descriptor

Requirement 2 requires an extension of JSON schema
specifications in the form of additional keywords (see
Table 1) in order to support the correspondence between
descriptors and concepts together with the inheritance
mechanism as requested by Amann and Fundulakis in
their definition of an ontology [27]. More precisely, addi-
tional keywords are needed to specify that:

• a set of concepts (definition of C) corresponds to a
set of descriptors,

• edge descriptors can specify binary-typed roles (defi-
nition of R) between node descriptors (i.e. concepts),
and

• the use of keyword parents in node descriptors char-
acterises the inheritance relationship (definition of
isa), see Example 1.

{
"$schema": "http://localhost:8000/schemas/

validators/node_validator.json#",
"id": "http://localhost:8000/schemas/ranking/

he.json#",
"title" : "HE",
"type" : "object",
"properties" : {
"id": {"$ref": "../basic/basic_definitions.

json# /definitions/id"},
"name" : {"type": "string", "maxLength": 100

0, "minLength": 1}
},
"additionalProperties" : {"$ref": "../basic/

basic_definitions.json#/definitions/
default_property"},

"required": ["id", "name"],
"parents" : ["institute"],
"graph_element" : "node"

}
Example 1. JSON Schema for the ”High Education” node in the Ranking
project [6]

Two restrictions on keyword values apply when writ-
ing descriptors:

• The value of keyword $schema must be either
node validator.json or edge validator.json and

• keyword value required must contain values id and
name.

settings is an additional keyword that is needed to
address Requirement 3. settings is a list of key-value pairs
where each pair makes a connection between a pre-defined
function (key) and its attribute (value).

TABLE 1. EXTRA KEYWORDS FOR DESCRIPTORS

Key Data type Scope Description

graph element ”node” | ”edge” each descriptor Mandatory, defines the role of the descriptor
parents array of references node descriptors Optional, defines ISA connections between node descriptors

direction ”double” | ”single” edge descriptors Mandatory, defines whether the edge descriptor is directed or undirected
source label reference edge descriptors Mandatory, labels the source nodes
target label reference edge descriptors Mandatory, labels the target nodes

3.2. Main processes and modules

Figure 1 shows a simplified architecture model of the
CS RESTful API with its three main processes create
project, upload descriptors and upload data. These pro-
cesses make use of the following supporting modules:

• RESTful Interface uses Django REST Framework.
This module is responsible for handling and parsing
every RESTful message from clients and sending
back response messages,

• Neo4j Interface maps the RESTful calls to Neo4js
Cypher queries.

• JSON Schema/Meta Schema Validator module
validates user descriptors and data in JSON format
according to pre-defined descriptors and JSON Meta
Schema,

• Project module generates a bulk descriptor for each
user-defined ones and handles single and bulk ver-
sions of descriptors. See the High Education descrip-
tor of Example 1 related to the Ranking project and
its bulk version in Example 2. Users can validate and
upload multiple graph elements in one bulk.

• Project Manager module supports project creation
and selection and forwards messages between the
RESTful Interface and a given project.

Figure 2 and 3 show the UML Activity Diagrams for the
upload descriptor and upload data processes respectively.
The source code found in Collaboration Spotting GitHub
repository [28] follows these diagrams.

Data Scientist

Project Manager

Project1

ProjectN

JSON Schema/Meta

Schema Validator

N
e

o
4

j In
te

rfa
c
e

R
E

S
T
fu

l In
te

rfa
c
e

1

2

2

2

3
3

Figure 1. Simplified architecture model of Collaboration Spotting’s API
with the three main processes 1) create projects, 2) upload descriptors
and 3) upload data.

{

"$schema": "http://localhost:8000/schemas/
validators/node_validator.json#",

"id": "http://localhost:8000/schemas/ranking/
bulk_he.json#",

"title" : "Bulk HE",
"definitions" : {
"node" : {"$ref": "./he.json#"}

},
"type" : "array",
"items": {"$ref" : "#/definitions/node"}

}
Example 2. Automatically generated bulk version of descriptor ”High
Education” in the Ranking project.

Activites

Client RESTful Interface Project Manager
JSON Schema/Meta Schema

Validator
Project Neo4j Interface

P
h

a
s
e

Descriptor Handler

Descriptor Validator

Meta Schema Selector

Descriptor to Meta Schema

Validator

Store Descriptor

Store Descriptor/Batch

Descriptor

Project Error

Invalid Descriptor Error

Store Meta Data

Store Meta Data

Created

Graph Interface Error

[Invalid Descriptor]

[Valid Descriptor]

[Descriptor not Stored]

[Descriptor Stored]

[Meta Data Stored]

[Meta Data not Stored]

PUT/<project>/

<descriptor>

HTTP 201

HTTP 500

HTTP 406

HTTP 500

Figure 2. UML Activity Diagram of the upload descriptor process

Activites

Client RESTful Interface Project Manager
JSON Schema/Meta Schema

Validator
Project Neo4j Interface

P
h

a
s
e

Single Node

Select Project

Validate Data

Find Descriptor

Validat Data to

Descriptor

Descriptor Error

Store Data

Store Data

Graph Interface

Error

Created

PUT/single_node

[Data Invalid]

[Data Valid]

[Data not Stored]

[Data Stored]HTTP 201

HTTP 500

HTTP 406

Figure 3. UML Activity Diagram of the upload data process

4. Use-case

The MTA-PE Ranking Research Group provided a
collection of anonymised student travels in the framework
of the European Commissions Erasmus programme during
2008-9 to 2013-14. The Ranking Research Group edited
the data in order to merge different time-intervals and
selected the relevent attributes for their analysis. A small
sample of the results is shown in Table 2. Figure 4 gives
a simplified data model of the knowledge graph result-
ing from uploading in Neo4j the data from the Ranking
Research Group. One can note that the node of Example
1-2 appears in as a node labelled HE with its connecting
relationships in the data model.

The measurements address the performance of the CS
RESTful API when uploading single and bulk inserts.
These measurements have been done on an HP Z440
workstation (Intel Xeon E5-1620 v3, 3,50 GHz processor,
32 GB DDR4 RAM and 512 GB SSD drive), using the
community version of Neo4j 2.3.1 with -Xmx8192m JVM
settings.

Figure 5 shows the uploading time of a single JSON
document, the descriptor being pre-uploaded. The varia-
tions observed depend on the writing time of the JSON
document in the Neo4j database. Time, which is directely
related to the size of the previously uploaded data in the
upload data process as can be seen in the activity diagram
of Figure 3. Fig. 6 plots the uploading time of single and
bulk inserts. It shows that the bulk insert is approximately
163 times faster than the single insert, confirming the clear
advantage of using bulk inserts.

HE

Subject

Country

Student

Student_out

Country_of

Student_in

Subject_of
School

years
School_years_of

City City_of

State

State_of

Figure 4. The simplified database model for the Ranking project. The
parent label of the descriptor in Example 1 has been omitted.

5. Future Work

As mentioned in the introduction, JSON Schema is not
a standard format yet. We will strive to support the new
version of the standard as soon as it becomes available.
The replacement of simple JSON documents with ones
written in JSON-LD could be an alternative solution. It
would enable to combine the expressive power of JSON-
LD with the verification power of JSON Schema. But the
development of the validation code required for JSON-LD

1
5
0
1

1
0
0
1

1
5
0
1

2
0
0
1

2
5
0
1

3
0
0
1

3
5
0
1

4
0
0
1

4
5
0
1

5
0
0
1

5
5
0
1

6
0
0
1

6
5
0
1

7
0
0
1

7
5
0
1

8
0
0
1

8
5
0
1

9
0
0
1

9
5
0
1

1
0
0
0
1

1
0
5
0
1

1
1
0
0
1

1
1
5
0
1

1
2
0
0
1

1
2
5
0
1

1
3
0
0
1

1
3
5
0
1

1
4
0
0
1

1
4
5
0
1

1
5
0
0
1

1
5
5
0
1

1
6
0
0
1

1
6
5
0
1

1
7
0
0
1

1
7
5
0
1

1
8
0
0
1

1
8
5
0
1

1
9
0
0
1

1
9
5
0
1

2
0
0
0
1

2
0
5
0
1

2
1
0
0
1

2
1
5
0
1

2
2
0
0
1

2
2
5
0
1

2
3
0
0
1

2
3
5
0
1

2
4
0
0
1

2
4
5
0
1

2
5
0
0
1

2
5
5
0
1

2
6
0
0
1

2
6
5
0
1

2
7
0
0
1

2
7
5
0
1

2
8
0
0
1

2
8
5
0
1

2
9
0
0
1

2
9
5
0
1

3
0
0
0
1

3
0
5
0
1

3
1
0
0
1

3
1
5
0
1

3
2
0
0
1

3
2
5
0
1

3
3
0
0
1

3
3
5
0
1

3
4
0
0
1

3
4
5
0
1

3
5
0
0
1

3
5
5
0
1

3
6
0
0
1

3
6
5
0
1

3
7
0
0
1

3
7
5
0
1

3
8
0
0
1

3
8
5
0
1

3
9
0
0
1

3
9
5
0
1

4
0
0
0
1

4
0
5
0
1

4
1
0
0
1

4
1
5
0
1

4
2
0
0
1

4
2
5
0
1

4
3
0
0
1

4
3
5
0
1

4
4
0
0
1

4
4
5
0
1

4
5
0
0
1

4
5
5
0
1

4
6
0
0
1

4
6
5
0
1

4
7
0
0
1

4
7
5
0
1

4
8
0
0
1

4
8
5
0
1

4
9
0
0
1

4
9
5
0
1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

U
p
l
o
a
d
i
n
g

t
i
m
e

(
i
n

s
e
c
)

Amount of data

Linear regression on mean of uploading times; Parameters: x:5.215765400349077e-07, const: 0.18410104833289304

Mean of single measurements with standard deviation as error bar

Figure 5. Uploading time of single JSON documents

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

1
1
0
0
0

1
2
0
0
0

1
3
0
0
0

1
4
0
0
0

1
5
0
0
0

1
6
0
0
0

1
7
0
0
0

1
8
0
0
0

1
9
0
0
0

2
0
0
0
0

2
1
0
0
0

2
2
0
0
0

2
3
0
0
0

2
4
0
0
0

2
5
0
0
0

2
6
0
0
0

2
7
0
0
0

2
8
0
0
0

2
9
0
0
0

3
0
0
0
0

3
1
0
0
0

3
2
0
0
0

3
3
0
0
0

3
4
0
0
0

3
5
0
0
0

3
6
0
0
0

3
7
0
0
0

3
8
0
0
0

3
9
0
0
0

4
0
0
0
0

4
1
0
0
0

4
2
0
0
0

4
3
0
0
0

4
4
0
0
0

4
5
0
0
0

4
6
0
0
0

4
7
0
0
0

4
8
0
0
0

4
9
0
0
0

5
0
0
0
0

0

2000

4000

6000

8000

10000

12000

U
p
l
o
a
d
i
n
g

t
i
m
e

(
i
n

s
e
c
)

Amount of data

Linear regression on mean of single measurement; Parameters: x:0.19629044494225162, const: -86.96941386318767

Linear regression on mean of bulk measurement; Parameters: x:0.0012047971642769118, const: 0.26847126984373315

Mean of single measurements with standard deviation as error bar

Mean of bulk measurements with standard deviation as error bar

Figure 6. Comparison of single and bulk inserts

would call for a substantial amount of work in comparison
with the gain in expressiveness. Indeed, the implementa-
tion of the ontology-like hierarchy in the data model is
sufficient to construct the knowledge graphs supported by
Collaboration Spotting.

6. Conclusion

In this paper, we present the architecture of a RESTful
web service based on the combination of the JSON-
based REST architecture style with JSON Schema/JSON
Meta Schema that permits the construction of knowledge
graphs. With this service, users of the Collaboration Spot-
ting platform are able in rather unique way and with
few restrictions, to create the elements of their knowledge
graph(s) and validate the uploaded data togheter with these
elements by using JSON Schema. A small extension of
the JSON Meta Schema, made it possible to extend user-
created descriptors to support ontology concepts together
with an appropriate validation of these descriptors.

Acknowledgment

We would like to thank A. Telcs, Z. T. Kosztyan and
L. Gadar from the MTA-PE Budapest Ranking Group for
providing the data used in the examples used in this paper
and D. Dardanis from the Collaboration Spotting team
for his contribution to the visualization of the Ranking
knowledge graph.

References

[1] A. Agocs, D. Dardanis, R. Forster, J.-M. Le Goff, X. Ouvrard, and
A. Rattinger, “Collaboration Spotting: A Visual Analytics Platform

TABLE 2. ERASMUS STUDENT DATA

from he from he country to he to he country subject year distance direction

D KONSTAN01 DE K BATH01 UK 3 2008-09 907 296,286297877918
D KONSTAN01 DE F PARIS007 FR 4 2008-09 501 283,942344291399

...
...

...
...

...
...

...
...

to Assist Knowledge Discovery,” ERCIM NEWS, vol. 111, pp. 46–
47, Oct 2017.

[2] Collaboration Spotting Developer Team. (2018, March) Collabora-
tion Spotting.

[3] E. Leonardi, A. Agocs, S. Fragkiskos, N. Kasfikis, J.-M. Le Goff,
M. Cristalli, V. Luzzi, and A. Polimeni, “Collaboration Spotting
for dental science,” Minerva Stomatologica, vol. 63, no. 9, pp.
295–306, September 2014.

[4] G. Joanny, A. Agocs, S. Fragkiskos, N. Kasfikis, J.-M. Le Goff,
and O. Eulaerts, “Monitoring of Technological Development - De-
tection of Events in Technology Landscapes through Scientometric
Network Analysis,” in ISSI, 2015.

[5] (2018, February) United Nations Interregional Crime and Justice
Research Institute. [Online]. Available: http://www.unicri.it/

[6] (2018, February) MTA-PE Budapest Ranking Research
Group. [Online]. Available: http://www.gtk.uni-pannon.hu/
mta-pe-budapest-ranking-research-group

[7] (2018, February) Complex Systems and Computational Neuro-
science Group. [Online]. Available: http://cneuro.rmki.kfki.hu/

[8] Neo4j, The Neo4j Manual, November 2015, Release 2.3.2.

[9] A. Agocs, D. Dardanis, J.-M. L. Goff, and D. Proios, “Inter-
active graph query language for multidimensional data in col-
laboration spotting visual analytics framework,” arXiv preprint
arXiv:1712.04202, 2017.

[10] Django Web framework - Reference Manual, Django Software
Foundation, April 2015, release 1.8. [Online]. Available: https:
//docs.djangoproject.com/en/1.8/ref/

[11] The JSON Data Interchange Format, 1st ed. ECMA International,
October 2013. [Online]. Available: http://www.ecma-international.
org/publications/files/ECMA-ST/ECMA-404.pdf

[12] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange
Format,” IETF RFC 7158, Oct. 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7158.txt

[13] (2018, March) JSON Schema. [Online]. Available: http://
json-schema.org/

[14] K. Zyp, G. Court, and F. Galiegue, “JSON Schema: core definitions
and terminology,” Internet Engineering Task Force, Internet-Draft
draft-zyp-json-schema-04, Aug. 2013, work in Progress. [Online].
Available: https://tools.ietf.org/html/draft-zyp-json-schema-04

[15] Nigel Small. (2018, March) The Py2neo 2.0 Handbook. [Online].
Available: http://py2neo.org/2.0/index.html

[16] R. T. Fielding and R. N. Taylor, Architectural styles and the design
of network-based software architectures. University of California,
Irvine Doctoral dissertation, 2000, vol. 7.

[17] T. Vitvar and J. Musser, “ProgrammableWeb.com: Statistics, trends,
and best practices,” in Keynote of the Web APIs and Service
Mashups Workshop at the European Conference on Web Services,
2010.

[18] Wendell Santos. (2017, November) Which API
Types and Architectural Styles are Most Used?
[Online]. Available: https://www.programmableweb.com/
news/which-api-types-and-architectural-styles-are-most-used/
research/2017/11/26

[19] Lanthaler, Markus and Gütl, Christian, “On Using JSON-LD to
Create Evolvable RESTful Services,” in Proceedings of the Third
International Workshop on RESTful Design, ser. WS-REST ’12.
New York, NY, USA: ACM, 2012, pp. 25–32. [Online]. Available:
http://doi.acm.org/10.1145/2307819.2307827

[20] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and
N. Lindström, “A JSON-based Serialization for Linked Data,”
January 2014. [Online]. Available: https://www.w3.org/TR/2014/
REC-json-ld-20140116/

[21] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data-the story
so far,” International journal on semantic web and information
systems, vol. 5, no. 3, pp. 1–22, 2009.

[22] S. Klabnik, Y. Katz, D. Gebhardt, T. Kellen, and E. Resnick.
(2018, March) JSON API. [Online]. Available: http://jsonapi.org/

[23] JSON-RPC Working Group. (2018, March) JSON-RPC. [Online].
Available: http://www.jsonrpc.org/

[24] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč,
“Foundations of JSON Schema,” in Proceedings of the 25th
International Conference on World Wide Web, ser. WWW ’16.
Republic and Canton of Geneva, Switzerland: International World
Wide Web Conferences Steering Committee, 2016, pp. 263–273.
[Online]. Available: https://doi.org/10.1145/2872427.2883029

[25] Statistical Data and Metadata eXchange Community. (2018,
March) API documentation (SDMX-JSON). [Online]. Available:
https://data.oecd.org/api/sdmx-json-documentation/

[26] (2004, February) OWL Web Ontology Language. [Online].
Available: https://www.w3.org/TR/owl-features/

[27] B. Amann and I. Fundulaki, “Integrating ontologies and thesauri
to build rdf schemas,” in International Conference on Theory and
Practice of Digital Libraries. Springer, 1999, pp. 234–253.

[28] Adam Agocs. (2018, March) Collaboration Spotting - RESTful
API Repository. GitHub repository. [Online]. Available: https:
//github.com/AdamAgocs/REST Collspotting

http://www.unicri.it/
http://www.gtk.uni-pannon.hu/mta-pe-budapest-ranking-research-group
http://www.gtk.uni-pannon.hu/mta-pe-budapest-ranking-research-group
http://cneuro.rmki.kfki.hu/
https://docs.djangoproject.com/en/1.8/ref/
https://docs.djangoproject.com/en/1.8/ref/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://rfc-editor.org/rfc/rfc7158.txt
http://json-schema.org/
http://json-schema.org/
https://tools.ietf.org/html/draft-zyp-json-schema-04
http://py2neo.org/2.0/index.html
https://www.programmableweb.com/news/which-api-types-and-architectural-styles-are-most-used/research/2017/11/26
https://www.programmableweb.com/news/which-api-types-and-architectural-styles-are-most-used/research/2017/11/26
https://www.programmableweb.com/news/which-api-types-and-architectural-styles-are-most-used/research/2017/11/26
http://doi.acm.org/10.1145/2307819.2307827
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://www.w3.org/TR/2014/REC-json-ld-20140116/
http://jsonapi.org/
http://www.jsonrpc.org/
https://doi.org/10.1145/2872427.2883029
https://data.oecd.org/api/sdmx-json-documentation/
https://www.w3.org/TR/owl-features/
https://github.com/AdamAgocs/REST_Collspotting
https://github.com/AdamAgocs/REST_Collspotting

	1 Introduction
	2 Related Work
	3 Architecture
	3.1 Descriptor
	3.2 Main processes and modules

	4 Use-case
	5 Future Work
	6 Conclusion
	References

