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Abstract 
In this thesis a Proactive Risk-Aware Robotic Sensor Network (RSN) is 

proposed for the application of Critical Infrastructure Protection (CIP). Each robotic 

member of the RSN is granted a perception of risk by means of a Risk Management 

Framework (RMF). A fuzzy-risk model is used to extract distress-based risk features 

and potential intrusion-based risk features for CIP. Detected high-risk events invoke 

a fuzzy-auction Multi-Robot Task Allocation (MRTA) algorithm to create a response 

group for each detected risk. Through Evolutionary Multi-Objective (EMO) 

optimization, a Pareto set of optimal robot configurations for a response group will be 

generated using the Non-Dominating Sorting Genetic Algorithm II (NSGA-II). The 

optimization objectives are to maximize sensor coverage of essential spatial regions 

and minimize the amount of energy exerted by the response group. A set of non-

dominated solutions are produced from EMO optimization for a decision maker to 

select a single response. The RSN response group will re-organize based on the 

specifications of the selected response.  
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 Introduction 
Sensor networks have played a large role throughout history as an 

innovative means of collecting data in an environment.  A lot of time and research 

has been allocated into the development of more sophisticated sensor networks. 

If we consider the timeline of sensor networks, one of the first major deployments 

of a sensor network was the SOund SUrveillance System (SOSUS), a sensor 

network of acoustic sensors deployed along the ocean floor for the purpose of 

detecting Soviet submarines [1]. As time has passed, robotic sensor networks 

have emerged. A Robotic Sensor Network (RSN) is capable of dynamically 

monitoring its environment with more sophisticated sensors as well performing 

actions with robotic actuators; transducers that traditional sensor networks are not 

equipped with. Research is consistently focused on utilizing ever increasing 

powerful embedded devices to extend the functionality and intelligence of sensor 

networks. Contemporary embedded devices have mitigated much of the memory 

and processing power concerns of the past. This no longer inhibits the execution 

of complex algorithms, which can allow developers to embed more intelligence into 

smaller form factors. 

 A sensor network is rarely referred to as a “sensor network”, but called by 

one of many specific sensor network types: Wireless Sensor Networks (WSNs), 

Mobile Sensor Networks (MSNs), Robotic Sensor Networks (RSNs), Sensor and 

Actuator Networks (SANs), Wireless Sensor and Actor Networks (WSANs) and 

more. Each type of sensor network represents a certain level of functionality and 

sophistication, which must be considered when choosing one for a specific use 
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case. Typically the most functionality in a sensor network will be found within an 

RSN. A network of robotic nodes will represent many onboard sensing 

instruments, actuators, and processing capabilities. In order to manage large 

sensor data, manage actions performed by actuators, and execute complex 

algorithms to enable autonomy, powerful embedded software are required to be 

integrated within these sensor nodes. A robotic sensor node can be decomposed 

into four primary components: sensing, computation, communication, and 

actuation. 

The sensing component allows for the perception of data and acquisition 

of information about the surrounding environment. Through the use of infrared 

technology, measuring magnetic fields, and more, robots can, for example, sense 

the presence of possible trespassers on private grounds. The computation 

component refers to the set of on-board algorithms and processing elements, 

which can be executed on the sensor node itself. Robotic nodes cam thus become 

more intelligent and can extract features out of the raw data streams (e.g., detected 

vehicle at a specific coordinate) instead of transmitting raw sensor readings to a 

base station.  The communication component allows the robotic node to 

communicate with neighboring nodes and base-stations. Information 

communicated can be context for a task requiring collaboration and notifying a 

base-station of any intruder detections and system states (e.g., battery levels, 

faults, etc). Finally, the actuation component allows the robotic node to interact 

with its environment. This could be simply changing its pose in the environment or 

manipulating objects with robotic actuators. 
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Compared to a conventional sensor network, it is expected that an RSN will 

be more demanding in terms of computational power, memory, and power 

consumption. Despite these draw backs, an RSN can be programmed to process 

the data from its sensors for useful raw data features. Such data features could be 

used to extract risk features and perceive whether a risky situation is occurring. 

More interestingly is that an RSN can be programmed with the ability to react in 

the environment when exposed to a risky situation. An RSN could respond using 

the actuators available to the robotic sensor nodes, such as differential drive 

platforms. This would allow the network topology to change. A change in the 

sensor network or the environment may necessitate a change in topology. This 

ability in a sensor network has proven to be very useful in many applications, 

including those related to Critical Infrastructure Protection (CIP) [2].    

The Canadian National Strategy for Critical Infrastructure [2] defines critical 

infrastructures as: energy and utilities, finance, food, transportation, government, 

information and communication technology, health, water, safety, and 

manufacturing. These items are essential for the operations of the country 

motivating the investments to safe-guard them. The role of sensor networks in CIP 

exists in literature and [3], [4], [5], [6], [7], and [8] are just some examples where 

researchers were able to produce promising results. Defending critical 

infrastructures can be accomplished in many different ways such as deploying 

robotic sensor nodes to monitor the surrounding area perimeter for trespassers 

and suspicious vehicles.   
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The real-world imposes countless risks and the world is inherently full of 

threats producing risk. It is possible for robotic nodes to be able to sense the risk 

in their environment. An example of this may be a robot that is unable to function 

properly or lacks the necessary battery power to remain operational. In the domain 

of CIP, this could mean loss of essential coverage of a region of high-interest and 

potentially be exploited by trespassers. Robotic nodes are not immune to hardware 

glitches, manufacturing mistakes, harsh environmental conditions, or continuous 

wear and tear. A collection of robotic nodes working in collaboration to self-

organize, can provide a means to mitigate risky situations.  

In the following sections, the motivations for this thesis will be discussed 

along with the research objectives.  

1.1. Motivations 

The involvement of robotics in the 21st Century has been revolutionary. 

Starting out as simple machines carrying out intricate programming instructions 

and evolving towards autonomous entities capable of interacting with human 

beings; the term ‘robotics’ is still evolving.  

In the domain of CIP, RSNs can provide an unprecedented advantage 

through the creation of autonomous security perimeters able to adapt to the 

environment. The major motivator to a risk-aware RSN is that there is a lack of 

risk-awareness in current sensing technologies. There is a need to develop risk 

models for RSNs in CIP, which can ingest raw data features and produce useful 

risk features. This can be used to provide an additional layer of information to the 

monitoring and surveillance systems. These risk models can incorporate sensor 
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node state statistics based on internal sensor (proprioceptor) readings such as: 

sensor instrument failures, battery levels, time since last maintenance, time since 

commission, heat sink temperature and much more. External sensor 

(exteroceptor) readings can also provide valuable information regarding the 

environment such as: detection statistics, terrain assessment, weather patterns, 

hostility measures, etc; requiring specific risk models to produce risk features. 

Each robotic node can produce valuable risk features without any external 

assistance. 

With a sophisticated RSN and perhaps a large network (that is difficult to 

manage) there is a need for the capability to identify high-risk sources in the 

network. Only a perfect system in an ideal environment will be risk-free, so it can 

be safely assumed that in actual deployment all nodes in an RSN will be subject 

to some degree of risk. The ability to assess risk through risk features can identify 

high-risk sources. The advantages of knowing risk-sources in a defence system 

provides substantial motivation to pursue this research endeavour. The 

deployment and management of a sensor network can become less dependent on 

a subject-matter expert (SME). In the event of a sensor failure or an increase in 

frequency of intruder activity, an SME must consider communication ranges, 

sensor ranges, and expected lifespan of the sensor nodes to deploy a sensor 

network in the most efficient manner. The topic of self-organizing sensor networks 

is a research topic growing in popularity.  
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1.2. Contributions 

The objectives of this thesis is to extend the work of [9] and [10] in parallel 

with [7] and [11] to develop a Risk Management Framework (RMF) for an RSN, in 

turn, creates a risk-aware RSN capable of assessing and mitigating risk. A 

depiction of the adopted RMF is shown in Figure 1.1 along with a visual mapping 

of this thesis’ contributions applied to the framework. 

 
Figure 1.1: An adopted Risk Management Framework with the contributions of this thesis mapped to the 

appropriate framework modules. 

 Amongst the wide range of applications for a risk-aware RSN, CIP was 

chosen as the application. The RMF’s modular components will be extended to 

include: (1) a risk awareness modules for RSNs in the domain of CIP, (2) a Fuzzy-

Auction Multi-Robot Task Allocation (MRTA) technique for an RSN in the domain 

of CIP, and (3) a response selection technique using Evolutionary Multi-Objective 

(EMO) optimization. The contributions of this work are explicitly defined as: 

6 
 



1. A risk feature extraction module is designed and implemented. Its 

role is to receive raw data features and extract a set of risk features. 

A specialized risk model for an RSN for CIP has been implemented. 

2. An innovative Fuzzy-Auction MRTA technique had been 

implemented for selecting nodes to participate in a risk mitigation 

response. With this scheme, each robotic node will employ an fuzzy-

based bid metric calculation;  

3. A response generation process using the popular Non-Dominated 

Sorting Genetic Algorithm II (NSGA-II) [12] using a unique genetic 

encoding structure to generate optimized robotic node 

configurations. 

The combination of these contributions result in a system that is capable of 

assessing risk over a large spatial region and respond to concurrent risk events 

without the requirement of centralized robot management. 

1.3. Thesis Organization 

This thesis consists of seven chapters. Chapter 2 is a background and 

related work chapter. The following three chapters cover the three main 

components of the thesis including: Risk Assessment (Chapter 3), Fuzzy-Auction 

MRTA (Chapter 4), and Self-Organization (Chapter 5) describing the different 

modules of the proposed risk management framework for RSNs. The sixth chapter 

describes the experimentation along with the results. The final chapter concludes 

the thesis and discusses future research directions related to this topic. Appendix 
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A provides additional explanations on the definition of fuzzy membership function, 

useful in the following sections of this thesis.  
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 Background and Related Work 
In this chapter, a literature survey is conducted on the primary topics of 

interest for this thesis, namely risk modeling and assessment, MRTA, and self-

organizing sensor networks. Initially a state-of-the-art review of risk modeling and 

risk assessment for sensor networks in CIP is presented, followed by a literature 

survey of various task allocation techniques for RSNs. The objective is to 

investigate how researchers have been able to assign a group of robots to conduct 

a single multi-robot task. Lastly, a background survey will be conducted on self-

organization techniques. 

2.1. Risk Modeling and Risk Assessment 

In many problem domains there is a requirement for fault prevention, fault 

detection, and fault mitigation [13]. It is a real requirement shared by many 

applications, as we can observe the existence of many fault tolerant protocols, 

especially in the context of computer networking. In any system lies the possibility 

of events producing undesirable faults, such as the ones commonly experienced 

in wireless communication. The latter is an excellent example of a system exposed 

to a multitude of risk sources. Since wireless communication is an essential 

component in RSNs, it is discussion-worthy.  

A survey of fault management techniques in wireless sensor networks is 

conducted in [13]. This paper investigates the challenges of resource-constrained 

sensor nodes, which depend on wireless technology for all communication with 

neighboring nodes or base stations. An excellent distinction between conventional 
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wireless devices and wireless sensor nodes highlights four unique challenges 

faced by WSNs: 

1. The need to conserve energy as they are not charged regularly; 

2. WSNs are more concerned with reliable event detection than point-

to-point reliability; 

3. Wireless sensor nodes experience faults at a higher rate; and 

4. WSNs using MAC layer protocols must meet the challenges such as 

sleep intervals for nodes, and can only try mitigating packet collisions 

instead of completely handling them. 

Interesting dynamic behaviours and consequences arise when attempting 

to meet two very conflicting objectives: maximum operation time on a single battery 

charge and maintenance of the wireless communications channel. Developing a 

risk model, which is capable of successfully transforming observable states of a 

distributed system into a structured unified format is a challenging task. Such a 

format can be labelled as “risk features” and can allow for a comparison against 

some criteria to identify the risk. Techniques using Hidden Markov Models (HMMs) 

approach this challenge [14] and [15], but require a large amount of a priori 

information.  

 Tan et al. in [14] propose a real-time risk management framework, including 

a risk assessment module as shown in Figure 2.1. 
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Figure 2.1: Real-Time Risk Management Framework. Extracted from [14] 

Their framework consists of a collection of modules: data collection, risk 

analysis, real-time risk evaluation, real-time risk prediction, and security 

countermeasure. In this framework, the authors collect data from the environment 

(data collection module) and can monitor the risk of all assets in the network as 

well as produce countermeasures to guide system managers to improve the 

overall security of the system. Modelling the risk is accomplished by proposing 

three risk elements: confidentiality, integrity, and availability for each asset in the 

network. Each of these risk elements are then divided into six states to represent 

the loss degree of the risk element, as defined by the set: 

𝑆𝑆1 = {𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑠𝑠4, 𝑠𝑠5} 

where s0 indicates safe status and loss degree of 0%; s1 to s4 represents attack 

status and loss degrees of 20%, 40%, 60%, and 80%, respectively; and finally s5 

represents compromised status with loss degree of 100%. Effectively, each risk 

element assumes one of three states: safe, attacking, or compromised. Work 
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conducted in [15] also uses HMMs as part of the risk assessment process, but 

uses a set of states for each asset, S2 as defined below: 

𝑆𝑆2 = {𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶} 

which can be considered a subset of S1. Tan et al use a fully connected Markov 

chain, where an asset in the network can transition from any state in S1 to a 

different state. Cheng and Ni [15] use the Markov chain as illustrated in Figure 2.2. 

 

Figure 2.2: Markov Chain showing the possible transition between states: Good, Attacking, and 
Compromised. Extracted from [15] 

As an example, an asset in the network cannot transition from state good to 

compromised without transitioning the intermediate state attacking. 

 Authors in [9], [10], [16], and [17] all explore fuzzy-based risk modeling 

techniques. However, Falcon and Abielmona [9] proposes an evolving human-

centric risk management framework applied to WSNs. The framework has an 

architecture consisting of: Risk Visualization, Risk Assessment, Risk 

Monitoring, and Risk Forecasting, as shown in Figure 2.3.  The framework is 

accessed through a User Interface module, is fed data live data through a data 

source, and produces risk information for a Security Module.  
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Figure 2.3: Risk Management Framework Architecture. Extracted from [9] 

The framework requires the characterization of a set of n risk features defined by 

set F in Equation (2.1). 

𝑭𝑭 = {𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛} (2.1) 

Live data fed into the framework is segmented into discrete snapshots. The 

discrete snapshots are then subjected to a fuzzy risk model, which can provide an 

overall risk metric for each asset. This is accomplished using Equation (2.2). 

𝜏𝜏 = max
1≤𝑖𝑖≤𝑛𝑛

�𝑤𝑤𝑖𝑖 ⋅ 𝜑𝜑 �𝜇𝜇𝑋𝑋𝐹𝐹𝑖𝑖(𝑥𝑥𝑖𝑖)�� (2.2) 

Let 𝑤𝑤𝑖𝑖 is the weight for the ith asset, 𝜑𝜑 �𝜇𝜇𝑋𝑋𝐹𝐹𝑖𝑖(𝑥𝑥𝑖𝑖)� is a mapping to a fuzzy 

membership function 𝜇𝜇𝑋𝑋𝐹𝐹𝑖𝑖. Each wireless sensor node provides two inputs: the 

battery level and the intrusion distance. The battery input source is fuzzified using 

a triangular membership function defined by A = 0, B = 0, and C = 100, whereas 

the intrusion distance input is fuzzified using a trapezoidal membership function 

defined by A = 0, B = 0, C = 2, and D = 3. The same researchers extended the 

work in [10], applying the framework to the domain of Maritime Search-And-

Rescue. 
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2.2. Multi-Robot Task Allocation Techniques 

Some of the most innovative techniques to risk modeling and risk 

assessment have been reviewed in the previous section. Many of these risk 

management framework processes do not stop after risk assessment, but proceed 

to produce solutions to the identified risky situations. In the case of an RSN, a risky 

sensor node may require replacing, reconfiguration, or maybe assistance from 

other nodes. This section reviews existing literature on Multi-Robot Task Allocation 

(MRTA) problems.   

Gerkey and Matarić in [18] perform a formal analysis and taxonomy of 

MRTA. These authors explore the various types of MRTA and the research applied 

in each group. MRTA problems are typically described by the following criteria: 

• Robots 

o Single-Task (ST): robots capable of a single-task at a time; 

o Multi-Task (MT): robots capable of multiple concurrent tasks. 

• Tasks 

o Single-Robot (SR): A task requiring a single robot to 

accomplish; 

o Multi-Robot (MR): A task requiring multiple robots to 

accomplish. 

• Task Assignment 

o Instantaneous Assignment (IA): Available information, the 

task assignment conducted at a particular time instance; 
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o Time-Extended Assignment (TA): Information regarding 

robots and tasks can be received at a later point in time, 

where they need assignment as they are received.  

Given the above criteria, the authors discuss eight types of MRTA 

problems: ST-SR-IA, ST-SR-TA, ST-MR-IA, ST-MR-TA, MT-SR-IA, MT-SR-TA, 

MT-MR-IA, and MT-MR-TA. This thesis research will consider the case of ST-MR-

IA, which is single-task robots with tasks requiring multiple robots assigned 

instantaneously upon a high-risk event in the network. The robotic nodes can only 

participate in a single optimization run at any given time, hence the ST; optimizing 

the network’s topology will typically require the involvement of more than one robot 

(hence the MR); and robot nodes are assigned tasks shortly after the detection of 

the high-risk event. According to the analysis of [18], ST-MR-IA MRTA problems 

typically become a task of coalition formation. Given a collection of robots in a 

family, F, a partitioned set E is acquired through a combinatorial optimization 

algorithm, to form a task-specific coalition.  

A multi-robot cooperation system is introduced in another paper by the 

same authors [19] called MURDOCH. The MURDOCH multi-robot cooperation 

system best fits the MT-MR-TA classification of MRTA problems. MURDOCH 

pursues intentional and emergent cooperation, such that each robot does not work 

explicitly with one another, but cooperate for the purpose of task allocation. 

MURDOCH is developed as a general task allocation system based on a 

publish/subscribe communication model and is considered a variant of the 

Contract Net Protocol (CNP) [20] where simple auctions are used to allocate tasks 
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among the family of robots. Main discussion points of MURDOCH are the 

publish/subscribe messaging and auction protocol. 

The developers of MURDOCH use anonymous messages, which are 

addressed by content rather than message destination. The sender publishes a 

message with content and the type of content in the subject of the message. 

Subject namespaces are also used in MURDOCH, where subjects of messages 

can pertain to specific namespaces. Messages can be then directed to a particular 

group of robots listening for certain namespaces only.  

 The primary components of the MURDOCH task allocation system is based 

on the underlying distributed negotiation protocol. The tasks are allocated after a 

first-price and single-round auction session. When a task becomes available, 

MURDOCH will communicate this with the family of robots using a task 

announcement message. This is conducted by the auctioneer who then will await 

bids from the robot population. Before a robot member of the population can submit 

a bid, they must execute a metric evaluation, which is a utility metric quantifying 

their fitness of the announced task. Post metric evaluation, a robot member can 

execute bid submission – a response (bid) message is sent to the auctioneer. 

The auctioneer will wait for a sufficient amount of time to process each received 

bid. Once a winner is determined by the auctioneer it will broadcast a close of 

auction message to the robot population. In MURDOCH only a single winner is 

chosen among the received bids. The selected winner has now acquired a contract 

to complete the task initially announced. The auctioneer will monitor the progress 

of the winning individual and renew the contract as appropriate. It is through this 
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procedure that if the robot carrying out the allocated task is doing so insufficiently, 

it can be reassigned through an independent auction session.  

Authors Mezei et al. in [21] pursue efforts to improve upon existing MRTA-

auction based techniques such as [22], [19], and [23]. Five new protocols are 

introduced: k-SAP, SAAP, k-SAAP, k-AAP, and RFT. Each of these new protocols 

introduces a unique characteristic, which can improve upon a Simple Auction 

Protocol (SAP). A simple auction protocol resorts to simple flooding of auction 

messages throughout the entire network, which can congest the communication 

network and increase latency in the task allocation process. The work in [21] 

proposes to restrict robot selection to a subset of the total robot population. This 

subset would be a collection of robots localized around the task requiring 

allocation. This is accomplished through permitting only k hops from the 

auctioneer. For large robotic networks, this can greatly increase the response time 

of MRTA and reduce the network congestions inflicted by auction sessions. 

Another improvement made is the use of auction aggregation protocol (AAP).  In 

AAP the bidding process spread outwards to k-hop neighboring nodes until no 

robots with better fitness can be envisioned. Additional nodes that are assessed 

for their fitness potential on the task are “invited” to the auction, otherwise the 

process stops. 

2.3. Self-Organization of Robotic Sensor Nodes 

The development of self-organization techniques for the various types of 

sensor networks has been pivotal. The concept of a sensor network self-deploying 
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and correcting deployments automatically is a mutual goal among many 

researchers. State-of-the-art techniques in this research domain will be discussed.  

The authors of [24] propose a new dynamic model for managing the mobility 

of a mobile sensor network (MSN). A Parallel and Distributed Network Dynamics 

(PDND) algorithm is proposed, which can execute on each robot individually. The 

PDND uses a mathematical model to define the laws of motion for each robot 

formulated using the steepest descent method in optimization. With a MSN in a 

non-optimal configuration, the system is said to have potential energy. The PDND 

algorithm executes to reduce this potential energy, allowing the network to “settle” 

into an optimized state. The authors propose that an MSN could be attracted to a 

region of interest or even a moving target; through the execution of the PDND 

algorithm, the robots will establish a new topology based on the defined network 

dynamics. Opposite (i.e., repulsive) forces can also exist, repelling a member of 

the MSN away from a region or specific object. These attraction and repellent 

forces are the result of specific potential functions. A potential function essentially 

measures the amount of resistance of a mobile unit move change positions.  

Jin et al. in [25] use a Multi-Objective Differential Evolution Algorithm 

(MOEA) to satisfy a set of objective functions. These objective functions are 

defined as:  

1. Area coverage rate; 

2. Network redundant coverage area; and 

3. Energy consumption of sensing 
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The average coverage rate, 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶) is described by Equation (2.3), which 

provides a ratio of the grid points covered by a sensor node 𝐶𝐶 and the total area of 

grid points representing a particular region of interest, 𝑚𝑚 𝑥𝑥 𝑛𝑛. 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶) =
∑ ∑ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦,𝐶𝐶) 𝑛𝑛

𝑦𝑦=1
𝑚𝑚
𝑥𝑥=1

𝑚𝑚𝑚𝑚
 (2.3) 

The sensor network redundant coverage area, 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, is defined in 

Equation (2.4). This function evaluates how many times a specific grid points at 

(𝑥𝑥,𝑦𝑦) is being surveyed by other nodes, measuring the amount of redundant 

coverage. 

𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ����𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑦𝑦, 𝑐𝑐𝑖𝑖) − 1
𝑁𝑁

𝑖𝑖=1

�
𝑛𝑛

𝑦𝑦=1

𝑚𝑚

𝑥𝑥=1

 (2.4) 

where 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is defined in Equation (2.5). This equation returns the value one if 

robot node 𝑐𝑐𝑖𝑖 and any other node both cover the location at 𝑥𝑥 and 𝑦𝑦, otherwise a 

zero is returned. 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥,𝑦𝑦, 𝑐𝑐𝑖𝑖) = � 1 𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦) ∈ 𝑐𝑐𝑖𝑖,𝑎𝑎𝑎𝑎𝑑𝑑 (𝑥𝑥,𝑦𝑦) ∈ 𝑐𝑐𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 ∈ [1,𝑁𝑁], 𝑖𝑖 ≠ 𝑗𝑗,
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒

 (2.5) 

The third objective function these authors consider is the amount of energy 

being consumed to operate the sensors. The energy demands of the sensor are 

proportional to the desired range of the sensor. Equation (2.6) captures the energy 

demands of the sensor network. 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑢𝑢�𝑟𝑟𝑖𝑖2
𝑁𝑁

𝑖𝑖=1

 (2.6) 
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where 𝑢𝑢 represents the sensor parameters and 𝑟𝑟𝑖𝑖 is the sensor radius of node 𝑖𝑖. 

The authors use an overall fitness function based on a weighted-sum approach as 

described in Equation (2.7). 

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥) = 𝑤𝑤1𝑛𝑛1𝑓𝑓1(𝑥𝑥) + 𝑤𝑤2𝑛𝑛2𝑓𝑓2(𝑥𝑥) (2.7) 

Let 𝑤𝑤1 and 𝑤𝑤2 be the weight coefficients and 𝑛𝑛1 and 𝑛𝑛2 are used as normalizing 

coefficients for the functions 𝑓𝑓1(𝑥𝑥) and 𝑓𝑓2(𝑥𝑥), respectively. The work in [25] 

employs a genetic encoding of robot coordinate values (i.e., real numbers), a 

coordinate for each sensor node in the network. Sensor nodes can be disabled by 

assigning the coordinate (0, 0) for a particular asset in the chromosome. Thus, the 

optimization algorithm will search for a solution using a subset of sensor nodes, if 

possible. However, the optimization algorithm always considers all sensor nodes 

which can become very cumbersome for very large sensor networks.   

2.4. Chapter Summary 

This chapter provided an overview of the three main topics of this thesis 

research: risk modelling, multi-robot task allocation, and self-organizing sensor 

networks. The first section of the report discussed previous research in the topic 

of risk modelling and risk assessment, while trying to keep as close to the domain 

of sensor networks as possible. Much risk assessment work is done in the field of 

computer network security and firewalls which is not directly applicable in this 

thesis, however, only a few researchers have begun applying a risk management 

framework to the domain of robotic sensor networks.  

The second section discussed previous research in the topic of multi-robot 

task allocation. This topic represents some of the major contributions of this thesis. 

20 
 



Existing protocols such as MURDOCH [19] have been discussed, which employ a 

market-based approach to task allocation. This has inspired the further exploration 

of market-based task allocation through the use of simple auctions. 

The third section discussed existing techniques in self-organizing sensor 

networks. Decentralized techniques are typically more advantageous in self-

organizing sensor networks problems. Much of the research reviewed employs a 

distributed algorithm to govern the movement behaviour of the sensor network’s 

nodes. Only few researchers have utilized evolutionary multi-objective optimization 

techniques for the purposes of self-organization.   
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 Assessing the Risk of a Robotic Sensor 
Network 

This chapter will introduce the techniques used by the risk-aware RSN to 

model and assess risk from raw data. A RMF developed in [9] and [10], will be a 

foundation for this work The framework is illustrated in Figure 3.1, which clearly 

shows each component and the relationships between components.   

 

Figure 3.1: A block diagram of the Risk Management Framework extended from the work of [9] and [10] 

This chapter discusses the various components of the RMF. In the first 

section, the data sources (i.e., environment) used and how this data is prepared 

for processing is presented. In the next section a set of risk features are defined 

and the process of extracting these features out of raw data is discussed. Finally, 

we present how a risk assessment module ingests the risk features and assigns a 

risk metric to a robotic node. 
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3.1. Data Sources / Environment 

Let us consider a single robotic node, 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 , which is the 𝑖𝑖th robotic node in 

the RSN. Thus, an RSN is a family of robotic nodes, 𝐹𝐹 = �𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛1 ,𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 , … , 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�. 

A robotic node is equipped with sensor instruments in other to gather information 

regarding the environment. These sensors can be classified as proprioceptors and 

exteroceptors measuring sensors. Internal sensors retrieve data regarding the 

internal components of the sensor node itself which can be interpreted as 

measuring vitals of the sensor node unit. Table 3.1 highlights a few examples of 

these types of sensors. External sensors retrieve information external to the sensor 

node. In the context of CIP, this involve the detection of objects in close proximity 

to an established defence perimeter.  

Internal Measurement Sensors External Measurement Sensors 

• Voltmeter 

• Ammeter 

• Thermal Sensors 

• Humidity Sensors 

• 3-D Accelerometers 

• Global Position System (GPS) 

Module 

• Wheel Encoders 

• Electronic Compass 

• Laser Range Finder (LRF) 

• Sonar 

• Infrared Proximity 

• Infrared Motion Detection 

• Magnetic Field 

• Vision (optic/infrared) 

• Microphones 

• Gas Detector 

• Metallic Presence Detector 

• Electric Field Measurement 

Table 3.1: Possible measurement sensors for a robotic sensor node 
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 Within the category of internal sensors, let us consider the measurements 

of the robot node’s battery management system and sensor node’s wireless 

communication device system. A robotic node is in constant need of energy to 

function and requires the ability to communicate with surrounding robotic nodes to 

establish a communication network. Let 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) (units mAh) represent the 

remaining energy in the battery. Let 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) (units of mAh) represent the total 

battery capacity. Finally, let 𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) (unit-less) be the signal to noise ratio 

measured at the robotic node. Let 𝑡𝑡 represent the time since the robot’s initial 

condition at 𝑡𝑡𝑜𝑜. Let 𝑡𝑡𝑜𝑜 represent initial time.  

Within the category of external sensors, let us consider sensors to aid in 

the detection of threatening objects in proximity to the robotic nodes. Let 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) 

(units meters) represent the distance of the closest detected object to the robot 

node. Let 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (units meters-squared) represent the cross sectional area of the 

object at distance 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡). Lastly, let 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) represent the presence of metal in 

proximity of the robot node. 

Data for a single robotic node is packed into a data snapshot to be 

processed by the risk feature extraction module as was done in [9] and [10] and 

as depicted in Figure 3.2.   
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Figure 3.2: Data Snapshot Ingress at Risk Feature Extraction 

The data snapshot 𝐷𝐷𝑖𝑖[𝑛𝑛], uses a discrete time index 𝑛𝑛. Raw data from 

sensor percepts are sampled at a constant period, 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. Therefore, the system 

can start at time 𝑡𝑡𝑜𝑜, which makes 𝑛𝑛 = 0. With a data snapshot prepared, the data 

can now be processed by risk feature extraction.  

3.2. Risk Feature Extraction 

A data snapshot, 𝐷𝐷𝑖𝑖[𝑛𝑛] has been produced by the robot node which is then 

passed to the risk feature extraction module (see Figure 3.2). It is not guaranteed 

that the contents of the data snapshot reveal the risk in the environment and within 

the robot node itself. Through the use of an appropriate risk model, risk features 

can be extracted out of the data snapshots. The process of risk feature extraction 

represents the transformation into the risk feature space. This is a prerequisite for 

the risk assessment algorithm [9] and [10].  

The risk feature extraction process (depicted in Figure 3.3) begins by 

mapping each element of the ingested data snapshot at discrete time 𝑛𝑛, 𝐷𝐷𝑖𝑖[𝑛𝑛], to 

inputs of some transformation system. This thesis uses a fuzzy-based 

transformation system, specifically a Mamdani Fuzzy Inference System (FIS), Ψ. 

Each data element in 𝐷𝐷𝑖𝑖[𝑛𝑛] will be mapped to a fuzzy input variable, 𝜑𝜑(𝑥𝑥[𝑛𝑛]). A 
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fuzzy input variable is represented by a set of membership functions as shown in 

Equation (3.1). It is through these membership functions that the raw data from the 

sensor node can be fuzzified. 

𝜑𝜑(𝑥𝑥[𝑛𝑛]) = {𝜇𝜇1(𝑥𝑥[𝑛𝑛]), … , 𝜇𝜇𝑁𝑁(𝑥𝑥[𝑛𝑛])} (3.1) 

where 𝑁𝑁 is the number of membership functions used to represent that fuzzy input 

variable.  

 
Figure 3.3: The risk feature extraction process 

The input fuzzy variables are used in the FIS as well as a set of fuzzy rules 

and a fuzzy output variable, 𝜑𝜑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = Ψ(∙). The defuzzification of this fuzzy output 

variable provides the crisp risk metric.  

The two risk features chosen for implementation in this thesis are the 

distress, 𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, risk feature and the detection, 𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, risk feature. Although 

many more risk features can be considered, in the context of CIP, the distress of 

the network and the detection of intruders are most important to capture.  
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3.2.1. Detection Risk Feature 

The detection risk feature, 𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is a metric extracted out of raw data to 

indicate the presence of risk as a consequence of detecting the presence of an 

object within the sensor coverage of a robotic sensor node. The raw data used is 

𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, which represent the distance to the detected object, cross-

sectional area of the detected object, and the presence of metal in the detected 

object. This information is retrieved from a Laser Range Finder (LRF) and a metal 

detection sensor. 

The motivation behind the aforementioned data inputs is to generate a risk 

metric for object detection. This risk metric will be generated considering the 

proximity distance of the object, as well as size and composition to help classify 

the detection. Additional knowledge regarding the detected object could greatly 

impact the risk inferred by the detection. For instance, a small and non-metal object 

detected by a sensor node, may need the object to get very close before raising a 

high-risk event. However, a large metal object may cause the robotic sensor node 

to fire a high-risk event at a distance greater than the small and non-metal object.  

A Mamdani FIS, Ψ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, is used to calculate the detection risk metric from 

the aforementioned data inputs. This process begins by defining fuzzy input 

variable 𝜑𝜑(𝑥𝑥), which will fuzzify crisp value 𝑥𝑥. The first fuzzy input variable is 

𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), which uses crisp input 𝑥𝑥𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠. If we let 𝐷𝐷𝑥𝑥 be the domain of some variable 

𝑥𝑥, then 𝐷𝐷𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  = {𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∈ ℝ|𝑥𝑥 ≥ 0}, where 𝐷𝐷𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐷𝐷𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.  
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Figure 3.4: The detection distance fuzzy input variable for detection risk feature 

The fuzzy input variable, 𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 using a set of membership functions: 

𝜇𝜇𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), 𝜇𝜇𝑑𝑑
𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), and 𝜇𝜇𝑑𝑑

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑); depicted in Figure 3.4 and 

described in Table 3.2. The membership functions are defined using A, B, and C 

parameters from triangular membership functions. Trapezoidal membership 

functions use an additional D parameter (see Appendix A). The values described 

within Table 3.2 have been acquired experimentally.  

Membership Function, 

𝝁𝝁𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 

Definition 

Function Type Parameters 

𝝁𝝁𝒅𝒅𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒙𝒙𝒅𝒅) Trapezoidal A=0.0, B=0.0, C=0.25, D=0.41 

𝝁𝝁𝒅𝒅
𝒇𝒇𝒇𝒇𝒇𝒇(𝒙𝒙𝒅𝒅) Trapezoidal A=0.35, B=0.53, C=0.62, D=0.9 

𝝁𝝁𝒅𝒅
𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗(𝒙𝒙𝒅𝒅) Triangular A=0.7, B=1.0, C=1.0 

Table 3.2: The membership functions for the detection distance fuzzy input variable 

The second fuzzy variable is 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), which uses crisp input 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

Let 𝐷𝐷𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ ℝ | 0 ≤ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 1}. The crisp value is read and normalized 

from the metal detection sensor equipped on the robotic node. The fuzzy input 

variable, 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 uses two membership functions: 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) and 
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𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚). These membership functions are depicted in Figure 3.5 and 

described in Table 3.3. The membership functions of Table 3.3 were acquired 

experimentally.  

 

Figure 3.5: The detected metal fuzzy input variable for the detection risk feature 

Membership Function, 

𝝁𝝁𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 

Definition 

Function Type Parameters 

𝝁𝝁𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔(𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎) Trapezoidal A=0.0, B=0.58, C=1.0, D=1.0 

𝝁𝝁𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 (𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎) Trapezoidal A=0.35, B=0.53, C=0.62, D=0.9 

Table 3.3: The membership functions for the detected metal fuzzy input variable 

The third fuzzy variable is 𝜑𝜑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), which represents the cross-

sectional area of the detected object, 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (in units meters-squared, 𝑚𝑚2). Let the 

domain be 𝐷𝐷𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = {𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∈ ℝ | 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 0}. This fuzzy input variable consists of 

three membership function: 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), 𝜇𝜇𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), and 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎). 

These membership functions are depicted in Figure 3.6 and Table 3.4. These 

membership function have been defined experimentally.  
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Figure 3.6: The detection cross-sectional area fuzzy input variable for detection risk feature 

Membership Function, 

𝝁𝝁𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 

Definition 

Function Type Parameters 

𝝁𝝁𝒂𝒂𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔(𝒙𝒙𝒂𝒂) Trapezoidal A=0.0, B=0.0, C=0.22, D=0.54 

𝝁𝝁𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙𝒂𝒂) Triangular A=0.0, B=0.5, C=1.0 

𝝁𝝁𝒂𝒂
𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝒙𝒙𝒂𝒂) Trapezoidal A=0.64, B=0.82, C=1.0, D=1.0 

Table 3.4: The membership functions of the detection cross-sectional area fuzzy input variable 

The detection risk metric, 𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the result of the defuzzifcation 

process of the output variable. In the case of a Mamdani FIS, this output variable 

is a fuzzy variable 𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. Let 𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 have the domain, 𝐷𝐷𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

{𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∈ ℝ | 0 ≤ 𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 1}, with no units. A maximum value of 1 

indicates the complete presence of detection risk, whereas the minimum value of 

0, indicates the complete absence of detection risk. The membership functions of 

the output fuzzy variable are: 𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑤𝑤 (∙), 𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(∙), 𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (∙), 𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
ℎ𝑖𝑖𝑖𝑖ℎ (∙), 

and 𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖ℎ (∙). These functions are depicted in Figure 3.7 and defined in Table 

3.5. The definition of the membership function have been acquired experimentally. 
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Figure 3.7: The detection risk fuzzy output variable for the detection risk feature 

Membership Function, 𝝁𝝁 Definition 

Function Type Parameters 

𝝁𝝁𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒍𝒍𝒍𝒍𝒍𝒍 (∙) Triangular A=0.0, B=0.0, C=0.11 

𝝁𝝁𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(∙) Triangular A=0.04, B=0.22, C=0.48 

𝝁𝝁𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(∙) Triangular A=0.3, B=0.5, C=0.7 

𝝁𝝁𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓
𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉(∙) Triangular A=0.6, B=0.85, C=1.0 

𝝁𝝁𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓
𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗(∙) Triangular A=0.9, B=1.0, C=1.0 

Table 3.5: The membership functions for the detection risk fuzzy output variable 

The FIS, 𝚿𝚿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (depicted in Figure 3.8) is transforming a three-

dimensional input space to a one-dimensional quantity. This quantity is the 

introduced detection risk metric, 𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. A set of fuzzy rules are defined within 

𝚿𝚿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 to select the output fuzzy variable membership functions. These rules 

are defined within Table 3.6. 

Fuzzy Rule Weight 

if (Distance is Near) then (Risk is High) 0.2 
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if (Distance is Far) then (Risk is LowMedium) 0.2 

if (Distance is Near) and (Area is Large) then (Risk is VeryHigh) 0.2 

if (Distance is Far) and (Area is Large) then (Risk is High) 0.2 

if (Distance is Near) and (Metal is Strong) and (Area is not small) then 

(Risk is VeryHigh) 

0.2 

if (Distance is Far) and (Metal is Strong) and (Area is not Small) then 

(Risk is Medium) 

0.2 

if (Distance is VeryFar) then (Risk is Low) 0.7 

Table 3.6: The fuzzy logic rule-set for the detection risk feature FIS 

The fuzzy system 𝚿𝚿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 uses the minimum AND method, the 

maximum OR method, the minimum IMPLICATION method, and maximum 

AGGREGATION method. The centroid defuzzification method is used for the 

detection risk feature.  

 

Figure 3.8: A block diagram of the detection risk feature FIS 
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3.2.2. Degree of Distress Risk Feature 

This risk feature utilizes the proprioceptors of the robotic node to assess the 

degree of distress of the robotic node. The degree of distress risk feature, 𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

is the amount of risk generated within the robotic node itself. This risk feature 

begins by mapping the available data sources into normalized metrics. Let us 

consider the following data sources: battery level, 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, battery health, 

𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ, and communication distance, 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. These three data sources 

represent some of the major contributors of risk for a wireless robotic node. Since 

the robotic nodes are wireless, they depend on an independent power supply. With 

a depleted power supply, the robotic node will not be able to remain a functioning 

member of the RSN. Therefore, the remaining electrical energy is inversely 

proportional to the distress risk contribution for that node. Battery health is another 

great data source for risk assessment of a robotic node. Over time and depending 

on how the battery is used, the energy capacity of the battery will decrease. Thus, 

a fully-charged battery in poor health is a similar threat to a healthy battery with a 

poor charge. Both can result in power failure for the robotic node. The third 

contributor to distress risk is the communication distance of the node. This is the 

distance to either the closest base station or neighboring robotic node. An increase 

in 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is proportional to an increase in average power usage and proportional 

to the contributed amount of risk.  

Let us define a Mamdani FIS, Ψ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 to extract the degree of distress risk 

feature from the selected raw data sources. This FIS uses three fuzzy input 

variables: 𝜑𝜑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), 𝜑𝜑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ), and 𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐); the FIS 
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uses one single fuzzy output variable 𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(∙). The first fuzzy input variable 

is 𝜑𝜑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, which uses crisp input 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. This is the normalized battery level on the 

robotic node. Let the domain be, 𝐷𝐷𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = {𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∈ ℝ | 0 ≤ 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 1}. 

 

Figure 3.9: Battery level fuzzy input variable for distress risk feature 

The membership functions (as shown in Figure 3.9) are: 𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎, 

and 𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 . These functions are defined in Table 3.7 and have been acquired 

experimentally. 

Membership Function, 𝝁𝝁 Definition 

Function Type Parameters 

𝝁𝝁𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃) Triangular A=0.0, B=0.0, C=0.4 

𝝁𝝁𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃) Trapezoidal A=0.1, B=0.35, C=0.65, D=0.9 

𝝁𝝁𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈(𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃) Triangular A=0.6, B=1.0, C=1.0 

Table 3.7: Battery level fuzzy input variable membership functions 

The second fuzzy variable is 𝜑𝜑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ, which uses crisp input value 

𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ. This crisp value is a normalized quantity of the battery’s ability to hold 

a charge. Let the domain be 𝐷𝐷𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ = {𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ ∈ ℝ | 0 ≤ 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ ≤ 1}, 
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where a quantity of 1 represents a new battery capable to charge to its rated 

capacity. A value of 0 represents a battery that can no longer hold a charge. The 

fuzzification of this crisp input uses three membership functions: 𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 

𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , and 𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 . These membership functions are depicted in Figure 

3.10 and described in Table 3.8. The membership functions for the battery health 

fuzzy input variable were defined experimentally. 

 

Figure 3.10: Battery health fuzzy input variable for distress risk feature 

Membership Function, 𝝁𝝁 Definition 

Function Type Parameters 

𝝁𝝁𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 �𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃� Triangular A=0.0, B=0.0, C=0.4 

𝝁𝝁𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 �𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃� Triangular A=0.1, B=0.5, C=0.9 

𝝁𝝁𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 �𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃� Triangular A=0.6, B=1.0, C=1.4 

Table 3.8: Battery health fuzzy input variable membership functions 

The third and final fuzzy input variable is 𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, which uses crisp input 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. The input 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the communication distance to the closet 

neighboring robotic node. This value is a significant source of distress for the 
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robotic node as the more distance separates a robotic node with its neighbours the 

more difficult it is for the node to communicate with others. This can lead to 

dropped connections and excess battery usage, compromising the longevity of the 

sensor network. The domain of the crisp input value is 𝐷𝐷𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = {𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈

ℝ | 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 0}. The fuzzy input variable, 𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 uses three membership 

functions: 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , and 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. These membership functions are 

depicted in Figure 3.11 and described in Table 3.9. The communication distance 

membership functions were defined experimentally. 

 

Figure 3.11: The communication distance with closest neighbor fuzzy input variable for distress risk feature 

Membership Function, 𝝁𝝁 Definition 

Function Type Parameters 

𝝁𝝁𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) Triangular A=60.0, B=100.0, C=140.0 

𝝁𝝁𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 (𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) Triangular A=10.0, B=50.0, C=90.0 

𝝁𝝁𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 (𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) Triangular A=0.0, B=0.0, C=40.0 

Table 3.9: The membership functions for the communication distance fuzzy input variable 

The FIS, 𝚿𝚿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 uses a single output variable, which provides the 

distress risk metric of the robotic node upon defuzzification. As 𝚿𝚿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is a 
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Mamdani FIS, the output variable, 𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is a fuzzy variable with a domain 

𝐷𝐷𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = {𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∈ ℝ | 0 ≤ 𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 1}, with no units. A maximum 

value of 1 indicates the complete presence of distress risk, whereas a minimum 

value of 0 represents the complete absence of distress risk. The variable, 

𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 utilizes five triangular membership functions where are defined in 

Table 3.10 and depicted in Figure 3.12. The output distress risk fuzzy variable 

membership functions were defined experimentally. 

 

Figure 3.12: The distress risk fuzzy output variable for the distress risk feature 

Membership Function, 𝝁𝝁 Definition 

Function Type Parameters 

𝝁𝝁𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒍𝒍𝒍𝒍𝒍𝒍 (∙) Triangular A=0.0, B=0.0, C=0.11 

𝝁𝝁𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(∙) Triangular A=0.04, B=0.22, C=0.48 

𝝁𝝁𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(∙) Triangular A=0.3, B=0.5, C=0.7 

𝝁𝝁𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 (∙) Triangular A=0.6, B=0.85, C=1.0 

𝝁𝝁𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗(∙) Triangular A=0.9, B=1.0, C=1.0 

Table 3.10: The membership functions for the distress risk fuzzy output variable 
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A set of fuzzy rules are defined within 𝚿𝚿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 to select the output fuzzy 

variable membership functions. These rules are presented in Table 3.11. 

Fuzzy Rule Weight 

if (BatteryLevel is Poor) then (Risk is VeryHigh) 1.0 

if (BatteryHealth is Replace) then (Risk is VeryHigh) 1.0 

if (CommDist is OutOfRange) then (Risk is VeryHigh) 1.0 

if (BatteryLevel is Good) then (Risk is Low) 1.0 

if (BatteryHealth is Good) then (Risk is Low) 1.0 

If (CommDist is Close) then (Risk is Low) 1.0 

Table 3.11: The fuzzy logic rule-set for the distress risk feature FIS 

This FIS uses a minimum AND method, maximum OR method, minimum 

IMPLICATION method, and maximum AGGREGATION method. The centroid 

DEFUZZIFICATION method used for the distress risk feature.  

3.3. Risk Assessment 

The risk assessment module [9] is depicted in Figure 3.13. It evaluates the 

risk input features and outputs risk events. This module is capable of generating 

the necessary context to begin a network response for a high-risk detection.  

 

Figure 3.13: The risk assessment algorithm receiving a risk vector and potentially producing a risk event 
context. This module is a component in a Risk Management Framework [9] 
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Each risk feature produces a single output value on the interval of [0,1]. 

Each data snapshot will contain a risk vector 𝑣⃗𝑣 = [𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑], which is 

ingested by the risk assessment algorithm. Given a risk vector, 𝑣⃗𝑣 we want to 

generate a risk event, R. Each risk feature added should represent an additional 

dimension in the risk feature space. In other words, a new risk feature should not 

add redundant risk information. A risk event, 𝑹𝑹, provides: robot id, risk type, spatial 

information, and severity, as defined below: 

1. Robot Id, 𝜙𝜙𝑖𝑖𝑖𝑖: The robotic node that detected the risk; 

2. Risk Type, 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: Obtained by interpreting 𝑣⃗𝑣; 

{NODE_DISTRESS, POTENTIAL_INTRUSION}; 

3. Spatial Information, 𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: Spatial information pertaining to the 

risk; and 

4. Overall Risk Metric, 𝜙𝜙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜: The overall risk metric at the time of 

high-risk event generation. 

An overall risk metric, 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 for a robot node is determined using the 

maximum component of  𝑣𝑣, as shown in Equation (2.2). 

𝜙𝜙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = max(𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) (3.2) 

This is a simple and effective means of getting the overall risk of a robot node. The 

risk type is selected based on which risk vector component is largest. Let 

𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∈ {𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼} and is defined as shown 

in Equation (2.3). 
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𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = � 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 > 𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (3.3) 

3.4. Chapter Summary 

This chapter provided an overview of the risk modeling and risk assessment 

process for the risk-aware RSN. It is very important to discuss the environment of 

the robotic nodes in a CIP scenario as well as the available sensor instruments 

available. By observing the external and the internal environments of the robotic 

nodes, useful sensor percepts are generated. The methods by which the sensor 

percepts are transformed into risk features were presented. This was necessary 

to explain how an overall risk metric can be assigned to a single robot node, 

possibly invoking a high-risk event trigger. It is this trigger that instigates the RSN’s 

unique ability to generate newly optimized node topologies using EMO 

optimization.  
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 Multi-Robot Task Allocation Auction 
Technique 

This chapter discusses how to capitalize on the risk detections produced by 

the techniques discussed in Chapter 3. With risk sources detected in the sensor 

network, the use of actuation can allow the robotic nodes to interact with the 

environment and mitigate the detected risks. A network response is formulated 

with hopes to mitigate the risk types of Sect. 3.2. Such a response calls upon the 

robotic members of the RSN, 𝑭𝑭, to assume new locations in the environment to 

form a more efficient (i.e., less risky) network topology.  

The objective of this chapter is to begin the formulation of the network 

response by creating autonomous groups of robotic members within the RSN. 

These groups of robot nodes are called coalitions, 𝑪𝑪. These coalitions are 

centralized around the detected risks and each coalition executes an optimization 

task, 𝑻𝑻. This problem is typically called Multi-Robot Task Allocation (MRTA), which 

involves the allocation of robots to tasks. In Section 2.2 of this report, the taxonomy 

of MRTA problems was discussed from the work of [18]. One of the types of MRTA 

problems is called a Single-Task, Multi-Robot, and Instantaneous Assignment 

(ST-MR-IA) MRTA problem. This best fits the description of the problem at hand 

since the following are true:  

1. An RSN contains multiple robots, 

2. Each robot will able to participate in a single optimization task 

3. Each optimization task requires multiple robots  

4. Robots are allocated to tasks instantaneously 
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A fuzzy-based MRTA technique is introduced in this chapter, which will 

effectively take a complete set, 𝑭𝑭 and partition the set into the aforementioned 

coalitions.  Let 𝑪𝑪𝑖𝑖 be the ith coalition of robotic nodes, where 𝑪𝑪𝑖𝑖 ⊆ 𝑭𝑭,∀𝑖𝑖 ∈

{1 …𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡} for 𝑁𝑁𝑡𝑡𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 active optimization tasks. A robotic node can only be 

assigned to a single group and as a result can only participate in a single 

optimization task, such that 𝐶𝐶0 ∩ 𝐶𝐶1 ∩ …∩ 𝐶𝐶𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∅. A coalition is formed at the 

time a high-risk event has been detected by a robotic member of 𝑭𝑭. Robot 

members are assigned to a coalition instantaneously by means of fuzzy-auction 

MRTA. One condition of the fuzzy-auction MRTA, is that no robot member can be 

added to a coalition after the initial robots are assigned.  

 

Figure 4.1: The Fuzzy-Auction MRTA Process Cycle 

If we consider the process cycle shown in Figure 4.1, the MRTA process of 

the RMF must follow a series of sequential states before the optimization can 

begin. The fuzzy-auction MRTA process cycle begins with risk awareness 

identifying a high-risk event. This high risk event is translated into an appropriate 

optimization task by a self-appointed auctioneer through optimization task 

Risk Awareness

Optimization Task 
(𝑇𝑇𝑗𝑗) Generation

Task 
Announcement

Bid Metric 
EvaluationBid Submission

Finalize Auction 
Session

Message EMO 
Optimization
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generation. At this point the auctioneer will notify all robotic members of the RSN 

by means of task announcement. RSN robot members are presented a chance to 

undergo a bid metric evaluation and then proceed with a bid submission back the 

auctioneer. The auctioneer will eventually finalize the auction session and notify 

the appropriate winners.  

In this implemented auction protocol each robotic member of the RSN is 

able to assume one of three possible robot roles: idle, auctioneer, or participant. 

In the idle role, the robotic member performs its scheduled tasks (e.g., sensor 

scans) while observing for high-risk events or auction sessions. A robot in the 

auctioneer role, means that the robotic node has detected a high risk event. As an 

auctioneer, the robotic node has the responsibility to generate an optimization task 

and host a bidding session to recruit a subset of robots from the total population 𝑭𝑭 

to form a coalition, 𝑪𝑪𝑗𝑗. The auctioneer will then manage the coalition to mitigate 

risk, 𝑅𝑅𝑗𝑗. Within the auctioneer role, a robotic member will be in one of four possible 

states: ANNOUCE_TASK, AWAIT_BIDS, CLOSE_AUCTION, or OPTIMIZE – 

these will be explained further in the sections to follow.  

A robot in the participant role is a robot that has participated in coalition 

forming and is a member of a response group. A participant can be in one of four 

states: EVALUATE_BID, AWAIT_AUCTION_RESULTS, 

AWAIT_INSTRUCTIONS, or TIME_OUT. A participant awaits instructions from the 

auctioneer in the optimization phase and carries out any necessary commands 

(e.g., movement vectors). This entire process begins with the auctioneer 

generating an optimization task. 
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4.1. Optimization Task Generation 

During the process of risk feature extraction and risk assessment 

conducted by each robot of the RSN, the auction MRTA role of each robot will 

remains set to idle until some risky event is detected. Upon the identification of 

some risky event, 𝑹𝑹𝑗𝑗, where j is 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 1. 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the number of detected risks 

by the risk awareness modules in Figure 3.1 of a single robot, 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 . As a result of 

the detected risk, 𝑹𝑹𝑗𝑗, the robotic node transition from the idle role to the auctioneer 

role, to begin the coalition forming process. The initial state for an auctioneer is 

ANNOUCE_TASK. The optimization task, 𝑻𝑻𝑗𝑗 must be communicated to all other 

robots in the RSN, at which point an auction session hosted by 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 can be 

considered open. The goal of the auction session is to allow robotic members of 

the RSN to bid on task, 𝑻𝑻𝑗𝑗 in order to reduce the detected risk 𝑹𝑹𝑗𝑗.  Optimization 

task 𝑻𝑻𝑗𝑗 will contain the necessary optimization criteria to compute an optimal 

placement of robot members belonging to coalition, 𝑪𝑪𝑗𝑗. The optimal placement of 

the coalition members will be guided by the objectives of the optimization task.   

4.2. Task Announcement 

A risk, 𝑹𝑹𝑗𝑗, that has been detected by some robotic node 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑗𝑗  must now 

proceed with the announcement of optimization task 𝑻𝑻𝑗𝑗. Auctioneer 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑗𝑗 , is in 

state ANNOUCE_TASK. In order to construct a coalition, 𝑪𝑪𝑗𝑗, of robotic nodes, task 

𝑻𝑻𝑗𝑗 must be advertised to all members of 𝑭𝑭. This is accomplished by means of a 

message broadcast, involving every robotic node, 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,
𝑖𝑖  ∀𝑖𝑖 ≠ 𝑗𝑗. Each member of 

the RSN that receives a task announcement, 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗  message will broadcast it 
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once to be received by all neighbouring nodes. All redundant task announcement 

messages are dropped to prevent communication flooding.  

The auctioneer is the first robot to broadcast the task announcement 

message to other listening robots. The auctioneer is also the robot who will await 

bid responses from other RSN members. The task announcement message is 

responsible for providing RSN nodes with the required context to evaluate their bid 

metric in a given auction session. The task announcement message provides the 

following context (Table 4.1):  

1. Auctioneer ID;  

2. Risk event type; 

3. Risk metric; and  

4. Spatial Context 

Message Component Example 

Task ID Integer 

Auctioneer ID Integer 

Optimization (Task) 

Objectives Flags 

• ReduceMovementEnergy 
• MaximizeCoverageOfRegion 
• MinimizeCoverageOfRegion 

Spatial Context, 𝑷𝑷𝑹𝑹𝒋𝒋 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ ℝ 

Table 4.1: Task Announcement Message 

Only robotic members in the idle role are able to process task 

announcement messages, otherwise a robotic node is already a participant in a 

task or an auctioneer hosting an auction session. The handling of a task 

announcement message is depicted in the flow diagram of Figure 4.2.  
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Figure 4.2: A flow diagram depicting the process of handling a task announcement message. 

If idle, a robotic node may receive a message 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗 . This is an 

announcement message from node index j corresponding to the jth task and 

forming robot coalition, 𝑪𝑪𝒋𝒋. The node must process the message and evaluate a 

bid metric (bid metric evaluation) based on the node current state and the 

information within 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗 .  Upon the generation of a bid metric (as described in 

the next section) a robot node can decide whether or not to place a bid to the 

auctioneer. At this stage, the auctioneer has announced 𝑇𝑇𝑗𝑗, and transitions from 

state ANNOUCE_TASK to AWAIT_BIDS.  

4.3. Bid Metric Evaluation 

 In this stage of the process, a robot node undergoing bid metric evaluation 

is still considered as idle. A robot member of the RSN can receive multiple task 

announcement messages and is required to generate a bid metric for each one. 

The bid metric, 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏 generated by a robotic member, which can be interpreted as 

the robots fitness for an optimization task. A submitted bid metric of 1.0, indicates 

to the auctioneer that a robotic node is well-fit for the optimization task. The 

auctioneer is allowed to rank all bids received based on the total bids received. 

A Sugeno FIS is used to by each robotic node to determine its bid metric in 

an auction session. Let the FIS be denoted by Equation (4.1). 
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𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏 = 𝚿𝚿𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟) (4.1) 

4.3.1. Input Variable: Battery Level 

The battery level metric, 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the crisp input to the fuzzy input variable 

𝜑𝜑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏). The battery level metric is an incentive of the robotic node to bid 

based on battery’s energy capacity. The domain of 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is 𝐷𝐷𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =

{𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∈ ℝ | 0 ≤ 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 1}. For example, 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0 would indicate that the robotic 

node battery is completely depleted, whereas 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1 would represent a fully-

charged battery. The input 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is fuzzified using fuzzy input variable, 𝜑𝜑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, which 

consists of a set of membership functions: 𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), 𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), and 

𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏). These functions are depicted in Figure 4.3 and are described in Table 

4.2. The membership function definitions were acquired experimentally. 

 
Figure 4.3: The battery level fuzzy input variable for the bid metric FIS 

4.3.2. Input Variable: Distance 

The distance metric, 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 represents the incentive for the robotic node to bid based 

on the ith node’s distance to the risky event, 𝑑𝑑𝑅𝑅𝑗𝑗
𝑖𝑖 . This metric is inversely 
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propositional to the actual distance away from the risky event, such as defined in 

Equation (4.2). 

𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁

𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁 ≤  𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

0.0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (4.2) 

Let 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∈ ℝ represent the upper distance bound considered. Distance values are 

mapped to the interval [0, 1], where 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 implies no distance separation of the 

node to the risky event. On the other hand, 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 implies the robotic node is 

spatially separated by a distance of at least 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. The input value 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the crisp 

input the fuzzy input variable, 𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), which uses membership functions: 

𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) and 𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑓𝑓𝑓𝑓𝑓𝑓 (𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑). These membership functions are shown in 

Figure 4.4 and are defined in Table 4.2. The membership function definitions were 

acquired experimentally. 

 
Figure 4.4: The distance fuzzy input variable for the bid metric FIS 

4.3.3. Input Variable: Redundant Coverage  

The final input is the redundancy metric, 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖  which attempts to capture the 

incentive to place a bid based on the amount of spatially redundant sensor 
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coverage of member i with all neighboring sensor nodes of 𝑭𝑭. Each deployed 

member of the RSN will attempt to monitor its local region of any intrusions or signs 

of trouble. Let the region monitored by robotic node i, be 𝛀𝛀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖  , which is a two-

dimensional region on the ground surface.  

𝛀𝛀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖,𝑗𝑗 = 𝛀𝛀𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢

𝑖𝑖 ∩ 𝛀𝛀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗 ≠ ∅, 𝑗𝑗 ≠ 𝑖𝑖 (4.3) 

Given Equation (4.3), a region of intersection can be generated given all 

members of 𝑭𝑭, which represents a region of terrain that is redundantly monitored 

by multiple sensor nodes. The union of all the intersection regions will produce a 

new region of the redundant coverage, 𝛀𝛀𝑟𝑟𝑟𝑟𝑟𝑟
𝑖𝑖 : 

𝛀𝛀𝑟𝑟𝑟𝑟𝑟𝑟
𝑖𝑖 = 𝛀𝛀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖 �𝛀𝛀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗

𝑗𝑗≠𝑖𝑖

 (4.4) 

Therefore, using Equation (4.4) we can define the input 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖  as shown in Equation 

(4.5). 

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 =
�𝛀𝛀𝑟𝑟𝑟𝑟𝑟𝑟

𝑖𝑖 �
�𝛀𝛀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖 �
 (4.5) 

From Equation (4.5) we can clearly see that the input 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖  is a simple ratio of the 

region redundantly surveyed by 𝑭𝑭 with 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  and the region surveyed by 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 . 

The input value, 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 is the crisp input for fuzzy input variable, 𝜑𝜑𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟). This 

fuzzy input variable uses membership functions:  

𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟), 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟), and 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟
ℎ𝑖𝑖𝑖𝑖ℎ(𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟). These membership functions are 

depicted in Figure 4.5 and are defined in Table 4.2. The membership function 

definitions were acquired experimentally. 
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Figure 4.5: The redundant sensor coverage fuzzy input variable for the bid metric FIS 

Membership Function, 𝝁𝝁 Definition 

Function Type Parameters 

𝝁𝝁𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃) Triangular A=0.0, B=0.0, C=0.4 

𝝁𝝁𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃) Trapezoidal A=0.1, B=0.35, C=0.65, D=0.9 

𝝁𝝁𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈(𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃) Triangular A=0.6, B=1.0, C=1.0 

𝝁𝝁𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 (𝒙𝒙𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅) Triangular A=0.0, B=0.0, C=0.5 

𝝁𝝁𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝒇𝒇𝒇𝒇𝒇𝒇 (𝒙𝒙𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅) Trapezoidal A=0.1, B=0.45, C=1.0, D=1.0 

𝝁𝝁𝒓𝒓𝒓𝒓𝒓𝒓𝒍𝒍𝒍𝒍𝒍𝒍(𝒙𝒙𝒓𝒓𝒓𝒓𝒓𝒓) Triangular A=0.0, B=0.0, C=0.4 

𝝁𝝁𝒓𝒓𝒓𝒓𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙𝒓𝒓𝒓𝒓𝒓𝒓) Triangular A=0.1, B=0.5, C=0.9 

𝝁𝝁𝒓𝒓𝒓𝒓𝒓𝒓
𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉(𝒙𝒙𝒓𝒓𝒓𝒓𝒓𝒓) Triangular A=0.6, B=1.0, C=1.0 

𝝁𝝁𝒃𝒃𝒃𝒃𝒃𝒃𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊(∙) Constant 1.0 

𝝁𝝁𝒃𝒃𝒃𝒃𝒃𝒃𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(∙) Linear Equation 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
3

+
𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

3
+
𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟

3
 

𝝁𝝁𝒃𝒃𝒃𝒃𝒃𝒃
𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(∙) Constant 0.0 

Table 4.2: The membership functional for all fuzzy input and output variable of the bid metric FIS. 

4.3.4. Output Variable: Bid Metric 

low medium high 
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The output variable, 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖  of system Ψ𝑏𝑏𝑏𝑏𝑏𝑏 is the availability of the ith robotic 

node in the RSN. Given a risky event, 𝑹𝑹𝑗𝑗 and the consequent optimization task, 𝑻𝑻𝑗𝑗, 

then 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖  is a gauge of availability to 𝑻𝑻𝑗𝑗. In other words, 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  calculates its fitness 

to optimization 𝑻𝑻𝑗𝑗 based on: available battery power, distance to the event, and the 

amount of redundant coverage from surrounding RSN members. Table 4.2 

describes the membership functions used in all three fuzzy input variables of 𝚿𝚿𝑏𝑏𝑏𝑏𝑏𝑏 

as well as three output functions to produce a crisp output. The output functions 

are labelled as: ideal, available, and reject. Based on a set of fuzzy rules (see 

Table 4.3) defined within 𝚿𝚿𝑏𝑏𝑏𝑏𝑏𝑏, the appropriate output function is selected to 

produce a crisp output value. 

Fuzzy Rule Weight 

if (Battery is Poor) and (Distance is Near) and (RedCoverage is Low) then (Bid is Reject) 1.0 

if (Battery is Poor) and (Distance is Far) and (RedCoverage is Low) then (Bid is Reject) 1.0 

if (Battery is Poor) and (Distance is Near) and (RedCoverage is Medium) then (Bid is Available) 1.0 

if (Battery is Poor) and (Distance is Far) and (RedCoverage is Medium) then (Bid is Reject) 1.0 

if (Battery is Poor) and (Distance is Near) and (RedCoverage is High) then (Bid is Available) 1.0 

if (Battery is Poor) and (Distance is Far) and (RedCoverage is High) then (Bid is Reject) 1.0 

if (Battery is Average) and (Distance is Near) and (RedCoverage is Low) then (Bid is Ideal) 1.0 

if (Battery is Average) and (Distance is Far) and (RedCoverage is Low) then (Bid is Reject) 1.0 

if (Battery is Average) and (Distance is Near) and (RedCoverage is Medium) then (Bid is Ideal) 1.0 

if (Battery is Average) and (Distance is Far) and (RedCoverage is Medium) then (Bid is Reject) 1.0 

if (Battery is Average) and (Distance is Near) and (RedCoverage is High) then (Bid is Ideal) 1.0 

if (Battery is Average) and (Distance is Far) and (RedCoverage is High) then (Bid is Ideal) 1.0 

if (Battery is Good) and (Distance is Near) and (RedCoverage is Low) then (Bid is Ideal) 1.0 
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if (Battery is Good) and (Distance is Far) and (RedCoverage is Low) then (Bid is Available) 1.0 

if (Battery is Good) and (Distance is Near) and (RedCoverage is Medium) then (Bid is Ideal) 1.0 

if (Battery is Good) and (Distance is Far) and (RedCoverage is Medium) then (Bid is Available) 1.0 

if (Battery is Good) and (Distance is Near) and (RedCoverage is High) then (Bid is Ideal) 1.0 

if (Battery is Good) and (Distance is Far) and (RedCoverage is High) then (Bid is Ideal) 1.0 

Table 4.3: The fuzzy logic rule-set for the bid metric FIS 

The rules defined in Table 4.3 attempt to capture the expertise of a human 

operator in deciding, which robotic nodes to allocate to task 𝑻𝑻𝑗𝑗 for coalition 𝑪𝑪𝑗𝑗. 

Undesirable conditions, such as a node with a POOR battery, that is FAR away 

from the risky EVENT, with LOW redundant coverage will use output function 

REJECT (i.e., 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏 = 0.0). There also are more favourable conditions such as 

GOOD battery, NEAR the risky event and MEDIUM to HIGH redundant coverage 

which use the IDEAL output function (i.e., 𝑦𝑦 𝑏𝑏𝑏𝑏𝑏𝑏 = 1.0). Rules are defined to capture 

the in-between conditions, such as what happens when a robotic node has a 

POOR battery, but is NEAR the risky event, with HIGH redundant coverage. A 

POOR battery is not IDEAL, but the node is considered AVAILABLE. Such nodes 

meeting conditions in between REJECT and IDEAL use the AVAILABLE output 

function (i.e., 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
3

+ 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
3

+ 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
3

).  

Once robotic node, 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  has computed its bid metric, 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 , then this 

information must be sent back to the auctioneer hosting the auction session for 𝑻𝑻𝑗𝑗 

so that a coalition 𝑪𝑪𝑗𝑗 can be formed and risky event 𝑹𝑹𝑗𝑗 can be mitigated. 
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4.4. Bid Submission 

A robotic member in the idle state will process each task announcement 

message received and will determine a bid metric as explained in the previous 

section. If a node 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  is idle and processes a task announcement message, 

𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗 , will generate a bid metric, 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 . A bid submission message, 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏

𝑗𝑗,𝑖𝑖  is 

used as a means of submitting the generated bid metric, 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖  to an auctioneer. 

This message requires the transmission of: 

1. Node Identifier; and 

2. Bid Metric  

Table 4.4 shows the contents of the bid submission message. 

Bid Message Component Values 

Node ID integer 

BID Metric 0.0 to 1.0 

Table 4.4: The bid submission message used by a robotic node to submit a bid to an auctioneer  

If possible, this message would not be transmitted via broadcasting 

protocols, but routed directly to auctioneer, 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑗𝑗 . Section 4.3.4 stated that there 

are three possible output functions, which can be selected by the fuzzy inference 

system, 𝚿𝚿𝑏𝑏𝑏𝑏𝑏𝑏: ideal, available, and reject. A robotic node will only submit a bid (i.e., 

transmit a bid submission message) for output function ideal and available. If reject 

was selected as the output function in 𝚿𝚿𝑏𝑏𝑏𝑏𝑏𝑏, which implies that 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 = 0, then the 

robotic member will remain silent and remain its idle state. A robotic node is not 

restricted to bidding in a single auction session. For each task announcement 
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message, a bid metric will be produced and sent (if not reject). Upon sending each 

bid submission message, each robotic node will await a finalize auction session, 

𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑗𝑗  message from any of the active auctioneers. This message will notify a 

robotic node if it has been selected to join a coalition for a risk mitigation task. 

4.5. Finalize Auction Session 

This stage of the process concludes the fuzzy-auction MRTA process. Up 

to this point, an auction session was initiated due to a risky event. This instantiated 

a broadcast announcement of the auction session and then a bid submission 

process by each robotic node capable of participating in an auction session. During 

all of this, the auctioneer remains in state AWAIT_BIDS, processing each bid 

submission it receives. An auctioneer will remain in state AWAIT_BIDS until the 

following stop condition is satisfied: the elapsed time in state AWAIT_BIDS 

exceeds a timeout threshold (𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏 > 𝛿𝛿𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). 

When the stop condition is met, the auctioneer will transition to state 

CLOSE_AUCTION or regress to ANNOUNCE_TASK. In the case of the stop 

condition, the auctioneer will track the time since 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗  was sent to all robots in 

the RSN. If no bids are not received by the time 𝛿𝛿𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 has elapsed, the 

auctioneer will regress to the ANNOUCE_TASK state and re-open the auction. 

Essentially the robot auctioneers are able to re-open auction if no bids have been 

placed. As an auctioneer received bid submission messages, they are handled in 

the manner depicted in Figure 4.6.  
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Figure 4.6: The process executed by an auctioneer robot to handle bid submission messages. 

During the processing of a single bid submission message, the robot must 

first check whether it is hosting an open auction session. If no auction session 

exists, the received bid will be discarded. Otherwise, the bid will be added to the 

collection of received bids. At the moment of a triggered event to stop listening for 

bids, the received bids are sorted in descending order based on bid metric value 

of each bid. The top 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 will determine the winning robots and must be notified 

by the auctioneer. Figure 4.7 illustrates this.  

 
Figure 4.7: After a timeout period the auctioneer will take the top bids within the entire collection of received 

bids. 

The auctioneer is aware of the winning robots and must transition from state 

AWAIT_BIDS to state CLOSE_AUCTION, where each winning robot will be 

notified. Winning robots are notified through a close auction message representing 

the final steps of the coalition forming process. Recipients of a close auction 

message will undergo a decision process as shown in Figure 4.8. 
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Figure 4.8: The process of handling a close auction message. 

Upon receiving a close auction message, a robot first must verify that it is 

current in the idle role. Only a robot in the idle role is able to join a coalition. If the 

robot is idle, then the robot will transition its role from idle to participant. An 

acknowledgement is sent back to the auctioneer along with the robot’s current 

position. The current position is necessary information in order to execute the 

optimization task, 𝑻𝑻𝑗𝑗. It is at this point that the coalition forming process concludes 

and what is left is an independent robot response group.  

4.6. Chapter Summary 

In this chapter, a fuzzy auction-based task allocation algorithm is discussed 

for multi-robot task allocation. This chapter was segmented into five sections, each 

discussing a primary stage of the algorithm as depicted in Figure 4.1. The first 

section defined an optimization task in which the MRTA algorithm is selecting 

robotic nodes. A task, 𝑻𝑻 is generated as a consequence of a detected risk threat 

in the network. This task gets advertised to the robotic population by a self-

assigned auctioneer in a task announcement message. The task announcement 

process is the main focus of section two. 

The third section described how available robotic nodes interpret the task 

announcement message. Robotic nodes will undergo a bid metric evaluation 
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process. Nodes take into account their battery level, distance to the risky event, 

and current amount of redundant coverage in order to calculate a single bid metric.  

The fourth section discussed how these bids are transmitted back to the 

auctioneer. Based on the bid metric produced in section three, a node decides 

whether or not to place a bid. Nodes which produce a bid metric, 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏 using the 

reject output fuzzy membership function will not place a bid. 

For nodes placing a bid in an auction session, the bid submission process 

was discussed in the fourth section of this chapter. A simple (bid submission) 

message is constructed by the robotic node containing the node’s identification 

information and its submitted bid value. This message is transmitted and is to be 

received by the auctioneer. 

The fifth section explains the conclusion of the task allocation process. 

Received bid submission messages are processed by the auctioneer and ranked. 

The ranking is sorting the bid submissions based on the bid metrics where the 

greater the bid metric value the better fitted an asset is to the optimization task. 

When more than 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 are received, the best 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 are considered. At this point, a 

maximum of 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 robotic nodes have been allocated to the optimization task, 𝑻𝑻.  
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 Evolutionary Multi-Objective Optimization for 
Self-Organization of RSN 

In this chapter, the self-organization ability of the RSN will be described in 

detail while linking its usability to the techniques described in the two previous 

chapters. The ability of an RSN to understand risk and raw data features from 

sensor instruments enables an awareness for non-optimal network configurations. 

The risk awareness techniques described in Chapter 3 allow the RSN to perceive 

the risks of the deployment based on: degree of distress risk and potential intrusion 

risk. The fuzzy-auction MRTA technique described in Chapter 4 allocates the 

necessary robotic members of the RSN into response groups, called coalitions. 

Each coalition, 𝑪𝑪𝑗𝑗, exists for the purpose of a task, denoted 𝑻𝑻𝑗𝑗, which is the result 

of a identified risk, 𝑹𝑹𝑗𝑗. Let the objectives of the task, 𝑻𝑻𝑗𝑗, be the set, 𝑂𝑂𝑗𝑗, where 𝑂𝑂𝑗𝑗 ⊆

𝑶𝑶, where 𝑶𝑶 Equation (5.1) is the set of all considered objectives.  

𝑶𝑶 = �𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(∙),𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(∙),𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(∙)� (5.1) 

The problem discussed in this chapter involves tasks requiring the 

concurrent optimization of multiple objective functions. Unfortunately these 

objectives will likely be conflicting ones, such as the case with optimizing coverage 

and reducing the energy exerted by the network. The Non-Dominated Sorting 

Genetic Algorithm II (NSGA-II) [12] – an Evolutionary Multi-Objective (EMO) 

Optimization Algorithm – searches the solution space for optimal, non-

dominated solutions for 𝑻𝑻𝑗𝑗. An EMO approach to this problem because it proved 

successful in the application discussed in [10]. This approach can also 

accommodate additional optimization objectives as required without the need to 
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reformulate the entire optimization algorithm. As depicted in Figure 3.1, the MRTA 

and potential responses provide the necessary optimization criteria and response 

alternatives to the EMO optimization. This chapter is going to discuss the following: 

1. The optimization criteria generated from risk assessment;  

2. The potential responses feeding into the NSGA-II; 

3. The objective functions’ criteria from the decision makers; 

4. The chromosome design of the NSGA-II; and 

5. The mutation and crossover operators.  

5.1. Optimization Criteria 

The optimization criteria provide the essential context to the optimization 

problem. In Chapter 3, a risk model and risk assessment technique was 

introduced. The RSN is in some initial state and is undergoing strenuous risk 

evaluations to highlight potential threats in the network. The initial state of the RSN, 

refers to the initial topological configuration of the network, which includes the 

position of each robotic member. The context included in the optimization criteria 

includes: 

1. Defensive Region, 𝛀𝛀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑; 

2. Risk Region, 𝛀𝛀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟; 

3. Risk Type, 𝑻𝑻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟; and 

4. Coalition, 𝑪𝑪 

A defensive region, 𝛀𝛀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the spatial region that the RSN is deployed 

to monitor and defend. In the case of CIP, the defensive region would encapsulate 
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the critical infrastructure. The robotic sensor nodes are equipped with sensor 

instruments to observe a subset of the defensive region, as given by 𝛀𝛀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖 ⊂

𝛀𝛀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 for the ith robotic node in the RSN. Although the surveillance of as much 

of the defensive region as possible is of importance, more care is taken into the 

detection of unauthorized personnel and vehicles entering and leaving the 

defensive region. That being said, for 𝛀𝛀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 a contour can be defined, which can 

represent a security perimeter around 𝛀𝛀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. The risk region, 𝛀𝛀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is a spatial 

region representing the risky event detected by a robotic member of the RSN. The 

risk type, 𝑻𝑻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is a categorization of a detected risk event. In Chapter 3, multiple 

risk features were defined to observe different forms of risk in the RSN’s 

environment. This included internal and external risks, which both affect the 

objectives of the network. 

5.2. Potential Responses 

The NSGA-II will search the solution space for non-dominated Pareto 

optimal solutions. This solution space is not infinite, but contains a finite number of 

solutions after the potential responses are generated. Given coalition, 𝑪𝑪 the 

number of possible locations for all robotic nodes is expressed by Equation (5.2). 

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�

𝑛𝑛𝑪𝑪 (5.2) 

The number of possible combinations of selected robots in a coalition is expressed 

by Equation (5.3). 

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 2𝑛𝑛𝑪𝑪 (5.3) 
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Thus, there are 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, expressed by Equation (5.4) to be explored by the 

optimization algorithm.  

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (5.4)  

where 𝑛𝑛𝑪𝑪 ∈ ℤ represent the number of robotic nodes in a coalition. The variable 

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈ ℤ is the number of coordinate locations within the response region, 

𝛀𝛀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, of each robotic node in 𝑪𝑪.  

 
Figure 5.1: The response region of a single robot is a circular region (blue circle) and all randomly generated 

coordinate locations (grey crosshairs) 

The potential response of each robotic member in 𝑪𝑪 are defined by the set 

of coordinate points, 𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = �𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡1
𝑖𝑖 ,𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡2

𝑖𝑖 , … ,𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖 � (depicted in Figure 5.1), 

Robot 
Location 

Response 
Radius 
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which are constrained by the shape of 𝛀𝛀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. A circular response region was 

considered, centered about the location of each robot with a radius 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 .  Each 

coordinate location within set 𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 is randomly generated using a uniform 

distribution. For each single target point 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘
𝑖𝑖 �𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘

𝑖𝑖 , 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘
𝑖𝑖 � the x- and y-coordinate 

values can be described by (5.6) and (5.6): 

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘
𝑖𝑖 = 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘

𝑖𝑖 cos�𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘
𝑖𝑖 � (5.5) 

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘
𝑖𝑖 = 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘

𝑖𝑖 sin�𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘
𝑖𝑖 � (5.6) 

where 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘
𝑖𝑖 ~𝑈𝑈�0,𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 � and 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘

𝑖𝑖 ~𝑈𝑈(0,2𝜋𝜋).  

5.3. Chromosome Design 

The design of the chromosome captures one possible response by the RSN 

and its robotic members. A network response is a set of coordinate locations 

selected for each robotic node that is enabled for action. Each robotic node marked 

as inactive in a network response remains at its initial location. Robotic members 

marked as selected will assume a new location based on the selected location 

index in the chromosome. The selected location index selects a single location 

from the set of random target locations, 𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕. As such, a chromosome is a 

collection of genes �𝜶𝜶1,𝜶𝜶2, … ,𝜶𝜶𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�, which contain two pieces of information:  

robot selected, 𝛿𝛿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘  and coordinate index, 𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 . The NSGA-II will seek 

solutions which involve the best combination of enabled nodes in the response as 

well the target locations for each of the enabled nodes. Let a chromosome be 

defined as expressed in Equation (5.7). 

62 
 



𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �𝜶𝜶1,𝜶𝜶2, … ,𝜶𝜶𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� (5.7) 

The set of selected coordinate indices for each robotic node enabled in the 

response, represents a new network topology for the coalition, 𝑪𝑪𝒋𝒋. By changing the 

network topology, the sensor-scanned region of each enabled robotic node will 

change, targeting the mitigation of any risks detected within the network. The 

NSGA-II will evolve network responses by trying countless variations, as per the 

evolutionary process, of coordinate indices for each node in 𝑪𝑪𝑗𝑗, with each 

generation of the genetic algorithm producing offspring to converge on Pareto 

optimal solutions. The work of [7] only considered a chromosome of coordinate 

indices; however this usually produced solutions with unnecessary energy 

expenditures. By considering a second layer of information to indicate the 

involvement of a robotic node in a response, the GA is able to search for solutions 

using subsets of robotic member of 𝑪𝑪𝑗𝑗. The goal is to find the simplest solution to 

meet the fitness of the objective functions. For example, if only one robotic node 

is required to respond to meet the fitness requirement of the objective functions, 

then that should be the most suitable response for the coalition.  

5.4. Objective Functions 

As discussed in the beginning of this chapter, a set of all possible objective 

functions have been defined in Equation (5.1) for any given task 𝑻𝑻𝑗𝑗. A task 𝑻𝑻𝑗𝑗 is 

generated with the intention to modify a segment, 𝑪𝑪𝑗𝑗 topology to mitigate the 

detected risk. The objective functions assigned to 𝑻𝑻𝑗𝑗, denoted 𝑂𝑂𝑗𝑗, will directly affect 

how the network topology will be changed. Each objective function will add a very 

unique characteristic to the topology changes of 𝑪𝑪𝑗𝑗 and usually the set 𝑂𝑂𝑗𝑗 will 
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contain objective functions that conflict with one another, such as the simultaneous 

minimization of redundant coverage while minimizing energy expenditures.  

5.4.1. Coverage of Perimeter Objective Function 

One possible goal of an optimization task, 𝑻𝑻, is to increase the sensor 

coverage over a security perimeter (see Figure 5.2 (a)) or a security perimeter 

segment (see Figure 5.2 (b)). The coverage of perimeter objective function 

evaluates the amount of the security perimeter or segment of the security 

perimeter is actually surveyed by the robotic members of 𝑪𝑪𝑗𝑗. Hence, this objective 

function is a crucial performance tracker of an optimization task trying to enhance 

the coverage of a security perimeter or a security segment.  

 

(a) 

 

(b) 

Figure 5.2: Illustration of robots providing sensor coverage of a security perimeter segment (a) and security perimeter 

contour (b)  

A task using this objective function can focus sensor coverage along a 

specific contour or segment to erect a virtual fence around some critical 

infrastructure (e.g., embassy, military base, protected zone, etc.). Given a line 
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segment over 𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 it can be represented by discrete points along the line, as 

described in Equation (5.8).  

𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
�⎯⎯⎯⎯⎯⎯� 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1 ,𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 , … ,𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 � (5.8) 

With a set of points, 𝑺𝑺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖  and a sensor coverage region 𝛀𝛀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖  of 

𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 ∈ 𝐹𝐹, the 𝑺𝑺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , where 𝑺𝑺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ⊆ 𝑺𝑺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 can be determined which 

represents the set of discrete security points surveyed by 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  (see Figure 5.3). 

 

Figure 5.3: Robot Node Sensor Coverage of 𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 segment 

The function 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝛀𝛀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖 � takes in the following 

parameters: security line segment and the coverage region of the robotic node to 

produce an output, 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 with range of 0.0 to 1.0. A set of discrete points 

are generated producing set 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 containing Npoints (user defined) elements. 

Given the definition of 𝛀𝛀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖 , a set 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖  (representing the number of 

elements) of 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 intersect with 𝛀𝛀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖 . Effectively this is determining the 
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number of discrete points of 𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 that are within the sensor coverage region of 

robotic node 𝑖𝑖. If we let 𝛀𝛀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖  be a circular region as shown in Figure 5.3, then 

the coverage region can be represented by a center coordinate, 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 �𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 ,𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 � 

and a radius, 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. Let 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 ∈ 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖  iff the equality in Equation (5.9) is 

valid. 

�𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑚𝑚 � ≤ 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (5.9) 

Thus, we can define the output of the objective function 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 with Equation 

(5.10). 

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝛀𝛀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖 � =

�𝑺𝑺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 �
�𝑺𝑺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�

 (5.10) 

5.4.2. Coverage of Region Objective Function 

This objective function, 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(∙) evaluates the performance of a 

robotic node’s coverage of a specific region, 𝛀𝛀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The region 𝛀𝛀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 can be 

defined as a spatial region over ground requiring an increased sensor 

coverage. This region can be autonomously defined based on custom algorithms 

or manually defined by a human operator.  As seen in section 5.4.1, where the 

coverage over a line was considered, the line segment 𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 was discretized 

into evenly distributed points. A similar approach is taken here, where the security 

region 𝛀𝛀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is discretized as described by Equation (5.11). 

Ω𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
�⎯⎯⎯⎯⎯⎯⎯� 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1 ,𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 , … ,𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 � (5.11) 
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The desired output of this objective function is 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∈ [0,1] 

representing the intersection region, Ω𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∩ Ω𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖  as depicted in Figure 5.4.  

 

Figure 5.4: A robotic node with circular sensor coverage surveying a subset of a region 

This objective function is a function of 𝛀𝛀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑖𝑖 , 𝛀𝛀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 ∈ 𝑺𝑺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖  

such that 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝛀𝛀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝛀𝛀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖 ,𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 𝑘𝑘

�. Considering Ω𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖  as a 

circular region as depicted in Figure 5.4 with center 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 �𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  ,𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 � and radius, 

𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠we can determine the set 𝑺𝑺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 , which are the discrete points from 

Equation (5.11) within sensor range of the robotic node. Therefore, let 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 ∈

𝑺𝑺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖  iff the inequality in Equation (5.9) proves true. The output of this objective 

function can now be properly represented in Equation (5.12).  

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

= 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝛀𝛀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝛀𝛀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖 ,𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 𝑘𝑘

� =
�𝑺𝑺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 �
�𝑺𝑺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�

 (5.12) 

5.4.3. Energy Cost (Response) Objective Function 

The objective function 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(∙) calculates the approximated energy 

expenditure of a robotic node given a new spatial location, 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 , and the node’s 
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original location, 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 . With Equation (5.13), a distance metric, 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖  can be 

calculated for the ith robotic node. 

𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 = �𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 − 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘
𝑖𝑖 � (5.13) 

In combination with approximate battery consumption rates for that robotic node a 

cost metric, 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖  can be calculated. Let 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖  be the battery consumption 

rate (in percentage) per meter travelled. The output of this objective function is 

expressed in Equation (5.14). 

𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 ,𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘
𝑖𝑖 � = 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 δmovementi  (5.14) 

5.5. Crossover and Mutation Operators 

Genetic algorithms employ crossover and mutation operations in order to 

produce new members of the population. In section 5.3, the chromosome design 

was introduced as a set of genes, 𝜶𝜶, each containing an integer-based gene, 

𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 , and a Boolean-based gene, 𝛿𝛿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘 . The pairing of these two pieces of 

information represents one possible spatial configuration of the robotic nodes in a 

coalition, 𝑪𝑪𝑗𝑗. This spatial configuration also happens to represent a network 

response or solutions to the optimization task 𝑻𝑻𝑗𝑗. Therefore, the manipulation of 

𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘  or 𝛿𝛿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘  will change the spatial configuration of 𝑪𝑪𝑗𝑗. These two gene 

values can be modified by two separate and independent operations: crossover 

and mutation.  

5.5.1. Crossover Operator 

The crossover operation allows multiple chromosomes to combine genetic 

information to produce multiple new offspring members. Given objective functions 
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𝑂𝑂𝑗𝑗 for task 𝑻𝑻𝑗𝑗 the crossover is used to exchange 𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝛿𝛿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 values aiming 

to produce a new chromosome with better fitness of each element in 𝑂𝑂𝑗𝑗. If we 

consider a task with objective function 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(∙) and 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(∙), it may be the 

case where two different members best fit one objective function each. For 

instance, 𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑚𝑚 maximizes 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛 (𝑚𝑚 ≠ 𝑛𝑛) 

minimizes 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. Performing a crossover operation of chromosome member 

indices 𝑚𝑚 and 𝑛𝑛 will hopefully produce a new chromosome member that can 

achieve a high fitness to both objective functions.  

A chromosome consists of two layers: robot selected(𝛿𝛿) and coordinate 

index (𝜑𝜑). This work uses dual crossover operation involving a uniform crossover 

on 𝜑𝜑 and a single-point crossover on 𝛿𝛿. The uniform crossover exchanges gene 

information one-by-one randomly from a parent. This is a more exploratory 

approach as the structure of the gene information of either parent is not retained. 

In other words, the child chromosome contains very small gene segments from all 

parent chromosomes. Data in the coordinate index layer of the chromosome is 

exchanged in this manner. As described in pseudo code of Figure 5.5, when 

initializing the gene values of a new chromosome member (child) while iterating 

over each gene value, genes are randomly exchanged from parent A or parent B. 

 
Figure 5.5: Pseudo code for uniform cross over 

for all coordinateIndex_genes in child 
if (randomDouble > 0.5) 
 set child gene value at i from parent A gene value at i; 
else 
 set child gene value at i from parent B gene value at i; 
next i; 
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In the case of the asset enabled layer in each chromosome a single-point 

crossover operation is used. A single cross over point, 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 must be randomly 

chosen, such that 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ {1, 2, … ,𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏}. The gene values from both parents are 

split at this point which creates four sets as follows: 

𝑺𝑺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 , … , 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 

𝑺𝑺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = �𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+1, … , 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 � 

𝑺𝑺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 , … , 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 

𝑺𝑺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = �𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+1, … , 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑥𝑥𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 � 

Once these sets are generated, we can produce the gene values for the child 

chromosomes A and B: 

𝑺𝑺𝐴𝐴𝛿𝛿 = 𝑺𝑺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑺𝑺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡  

𝑺𝑺𝐵𝐵𝛿𝛿 = 𝑺𝑺𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑺𝑺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡  

 Now two offspring chromosomes have been created based on two parent 

chromosomes, which are added to the chromosome population as potential 

solutions to optimization task 𝑻𝑻𝑗𝑗. 

5.5.2. Mutation Operator 

Individuals in the population may be mutated, in each generation, as to help 

explore the solution space and generate new unique solutions. Although a 

particular individual and genetic information within may represent a solution with 
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high fitness to the objective functions of the task, a slight perturbation of some 

genetic information may increase the fitness. For this reason, the genetic 

information of each individual is subject to a random value test to decide if a piece 

of genetic information is to be mutated. One of the optimization algorithm input 

parameters is the probability of mutation denoted 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. A simple bit flip 

operation occurs for gene 𝛿𝛿𝑘𝑘 that is randomly selected for mutation. In the case of 

𝜑𝜑𝑘𝑘 that is selected for mutation, a new integer value of the set {1, 2, … ,𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏} is 

assigned.  

5.6. Chapter Summary 

In this chapter an overview is provided on the topic of the self-organization 

behavior using EMO optimization. The NSGA-II is selected for this optimization. 

The first section of the chapter described the input criteria for the NSGA-II.  Thus 

far, we define a risk event, 𝑹𝑹, which invokes the creation of optimization task, 𝑻𝑻. A 

robotic coalition, 𝑪𝑪 is formulated around 𝑻𝑻. The input criteria includes: 𝑻𝑻, 𝑪𝑪, and 

𝛀𝛀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, which effectively defines the optimization algorithm problem.  

The optimization algorithm will not explore an infinite search space, but will 

be limited to a set of potential responses. This is discussed in the second section 

of the chapter. A circular response region, centralized about the robot node’s 

center and radius is a function of maximum mobility range. Random coordinates 

are generated within these regions, representing all possible locations an asset 

can traverse to.  

The genetic encoding structure used in the NSGA-II is discussed in the third 

section of this chapter. The NSGA-II initializes a population of individuals encoded 
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with a genetic schema to represent a single possible node topology within 𝑪𝑪. 

Random coordinates discussed in section two, can be referenced using an index 

value. Chromosomes are coded with integer values representing coordinate 

location indices. The integer-based genes within the chromosomes can also be 

enabled or disabled using a single bit value.  

Section four describes the fitness functions used in producing a comparable 

metric for each solution generated within the individual population. The set 𝑂𝑂 and 

all possible subsets (excluding the empty set) are possible objective functions to 

be used in an optimization task. The fifth section described the mutation and 

crossover operators performed on the individual population.   
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 Experimentation 
This chapter will provide an evaluation of the proposed risk-aware RSN 

comprised of three major system components: risk assessment, fuzzy-auction 

MRTA, and EMO optimization.  The entire system can be evaluated by analyzing 

the risk mitigation response regarding the coverage recovery and the minimization 

of energy. The fuzzy-auction MRTA process can be evaluated by measuring the 

reduction of complexity in the optimization problem. MRTA technique will be 

compared to against a rule-based selection method.  

6.1. Experimental Setup 

The RSN used to assess the feasibility of a risk-aware RSN was configured 

in a computer simulator, Microsoft Robotics Developer Studio 4® (MRDS) [26]. A 

single computer is used to host the simulations, namely a Dell Precision M4700. 

This unit is comprised of an Intel® Core™ i7-3840QM and 20 GB of RAM. As all 

simulation was conducted in MRDS, the operation system used was Windows 7 

64-bit edition. The implementation required the use of various software packages, 

the first being General Matrix.NET [27], which is a C# wrapped library of Jama 

(JaVa Matrix package). General Matrix.NET was used to perform linear algebra 

operations. Additionally Fuzzy Logic Library for Microsoft.Net was used to provide 

Mamdani and Sugeno FIS. The implementation of the NSGA-II is based on work 

conducted at Larus Technologies [10]. 

The virtual robotic node (shown in Figure 6.1) consists of the following 

components:  

• Simulated Battery 
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• Differential Drive Platform 

• Simulated LRF sensor 

• Simulated GPS Module 

The simulated battery uses a simple linear decay model to simulate the 

robotic node’s energy demands for regular operations. The usage of sensing 

devices such as the GPS module or the LRF module will incur addition battery 

energy. The same situation occurs for any actuation performed by the robotic 

device, such as enabling the different drive platform required for a robot to self-

relocate.  

 
Figure 6.1: A single robotic node consisting of a differential drive platform, a simulated LRF, and a simulated 

GPS module. 

In the scenario used to evaluate the risk-aware RSN, a series of structures 

will be placed in the simulation environment, representing some form of critical 

infrastructure. Encapsulating the structures creates a virtual security perimeter, 

which is defined by drawing a closed contour around the critical infrastructure. To 

ensure that the initial condition of the risk-aware RSN is ideal, robot nodes are 
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placed along the virtual perimeter in a non-uniform manner such that as much as 

possible of the security perimeter is surveyed by the RSN.    

6.2. Scenario 1: Factory Complex 

The first scenario used in the evaluation of the risk-aware RSN is based on 

the “Factory” simulation (see Figure 6.2) environments provided with MRDS 4. 

 

Figure 6.2: Scenario 1 “Factory” CIP Scenario 

In the proposed scenario a risk-aware RSN comprised of 47 robotic nodes 

is used. This scenario allows an efficient testing of the concurrent response 

selection ability for a large-scale deployment of the risk-aware RSN.  

6.2.1. Scenario Configuration 

This scenario uses a collection of robotic nodes to erect a defense 

perimeter around the factory complex. Each robotic node uses a simulated 
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proximity sensor, which is capable of detecting objects up to a distance of 7.5 

meters. Each robotic node is allowed to respond up to a distance of 55 meters. 

Both of these values have been selected experimentally. Robotic nodes are placed 

non-uniformly along the virtual security perimeter marked in Figure 6.3 by dotted 

red line segments connecting the user defined points drawn as large solid red dots. 

The values chosen for user defined points, identified as P1-P4, are displayed in 

Table 6.1. A linear interpolation provides additional points, 500 in this case, 

connecting the user-defined points. 

 
Figure 6.3: The definition of the security perimeter encapsulating the facility. Positive x is in the right 

direction on the page and positive z is downwards on the page. 

 

 

P1(-67.559, 0, -74.2623)  P2(70.663, 0, -73.032)  

P3(71.857, 0, 72.787)  P4(-70.663, 0, 74.016)  
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Scenario Parameter Definition 

Unit Value 

Security Perimeter Meters, m P1(-65.560,-74.262), P2(70.663, -

73.033), P3(71.857, 72.787), P4(-

70.663, 74.016) 

Security Perimeter Interpolated 

Points 

 500 

Maximum Robot Response  Meters, m 55 

Robot Battery Usage Rate % / s 0.5% 

Robot Sensor Field of View Radius Meters, m 7.5 

Table 6.1: The scenario parameters used for Scenario 1 "Factory" 

The risk-aware RSN is depicted in Figure 6.4 showing all 47 robotic nodes 

unevenly distributed along the user-defined security perimeter. In the figure, a 

robotic node is represented by a small black circle and the blue circular region 

surrounding it represents the sensor field of view of the robotic unit.  The scenario 

is configured such that the initial condition of the risk-aware RSN is surveying the 

entire security perimeter. The goal of the experimental run is to maintain the sensor 

coverage of the virtual security perimeter.   
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Figure 6.4: The risk-aware RSN robotic nodes as black dots and their respective sensor field of views as 
blue circular regions. 

The first point of observation is the risk assessment. Here the perceived risk by 

select robotic nodes will be discussed. 

6.2.2. Risk Assessment 

A subset of the robotic nodes was selected to observe sensor readings and 

risk assessment metrics. These robots, selected at random for observations, are: 

robot 1, robot 9, robot 19, robot 23, robot 27, and robot 32. Robots 1 and 27 are 

initialized with weak batteries 15% and 22%, unlike the remaining 45 robots which 

are fully charged. Figure 6.5 is a series of plots, which visualize the battery level 
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(Figure 6.5a), battery health (Figure 6.5b), and communication distance to the 

closest neighbor (Figure 6.5c) for the mentioned robots, respectively. 

 
(a) 

 
(b) 

 
(c) 

Figure 6.5: Robot sensor readings from randomly selected robots in the RSN, showing (a) the battery level of the 
selected robots; (b) the battery health of the selected robots; and (c) the communication distance for the selected 

robots. 

As mentioned, robots 1 and 27 begin the scenario with very low battery 

levels. This can be seen in Figure 6.5 (a), where the battery level of robot 1 is in 

pink and the orange for robot 27. The battery level is very low for both robots and 

is the primary risk contribution factor for each robot. In Figure 6.6, a plot of the 

overall risk is shown for the same selected robots. The overall risk values are 
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produced by the risk assessment techniques in Chapter 3. The overall risk metrics 

of robots 1 and 27 have been highlighted as well as the risk threshold set to 0.75. 

 

 
Figure 6.6: Risk assessment plot for select robotic members of the risk-aware RSN 

Robot 1 identifies a high-risk event at t = 8.0 seconds. The event type is 

distress risk event as a result of its low battery. The high-risk event was triggered 

with an overall risk of 0.756, exceeding the allowable risk threshold by 0.006. The 

spatial context for this risk is a collection of virtual perimeter points that robot 1 is 

providing sensor coverage for. If robot 1 becomes offline, then these points – 

belonging to the virtual security perimeter – will be unmonitored. This results in a 

gap in the defence perimeter around the critical infrastructure. The details of the 

risk event can be found in Table 6.2. 

Risk Event  Value 

Robot ID 1 

Risk Threshold at 0.75 

Robot 1 

Robot 27 
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Risk Type NODE_DISTRESS 

Spatial Information 

(units in meters) 

{P(13.070, -73.545), P(14.222, -73.534), P(15.374, -73.524), 

P(16.525, -73.514), P(17.677, -73.504), P(18.829, -73.493), 

P(19.981, -73.483), P(21.133, -73.473), P(22.285, -73.463), 

P(23.437, -73.452), P(24.588, -73.442), P(25.740, -73.432), 

P(26.892, -73.422)} 

Overall Risk Metric 

(normalized value) 

0.756 

Table 6.2: Risk event details for robot 1 at t = 8. 

A similar event is triggered by robot 27 on account of its low battery at t = 

27 seconds. The high-risk distress event was raised with an overall risk of 0.758, 

exceeding the allowable risk threshold by 0.008. The coverage provided of the 

virtual perimeter becomes the spatial context for this risk event, given that if this 

robot goes offline, those perimeter points may be completely un-surveyed by any 

other robot. 

Risk Event  Value 

Robot ID 27 

Risk Type NODE_DISTRESS 

Spatial Information 

(units in meters) 

{P(-52.124, 73.856), P(-53.282, 73.866), P(-54.441, 73.876), 

P(-55.600, 73.886), P(-56.759, 73.896), P(-57.917, 73.906), P(-

59.076, 73.916), P(-60.234, 73.926), P(-61.393, 73.936), P(-

62.552, 73.946), P(-63.711, 73.956), P(-64.869, 73.966), P(-

66.028, 73.976)} 
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Overall Risk Metric 

(normalized value) 

0.758 

Table 6.3: Risk event details for robot 1 at t = 27. 

Two robotic nodes in the risk-aware RSN know of the existence of one risk-

event each, which pertains to their own distress. These are two independent risk-

event requiring two independent responses. The selection of robotic members to 

participate in a risk mitigation response is discussed next. 

6.2.3. Robot Selection using Fuzzy-Auction MRTA 

In this section, the use of the fuzzy-auction MRTA technique is considered 

for the selection of robotic members to construct coalitions. In this current instance, 

robot 1 and robot 27 have identified themselves as high-risk in the category of 

distress. As per the fuzzy-auction MRTA technique, each robot in distress will be 

promoted to the state of auctioneer. In this state, a robotic node is capable of 

initiating the formation of a coalition in order to mitigate the risk detected. In this 

scenario, robot 1 creates an optimization task (as shown in Table 6.4) based on 

the information received in the risk event (the information in Table 6.2).  

Optimization Task  Value 

Auctioneer ID 1 

Objective NODE_DISTRESS 

Spatial Information 

(units in meters) 

{P(13.070, -73.545), P(14.222, -73.534), P(15.374, -73.524), 

P(16.525, -73.514), P(17.677, -73.504), P(18.829, -73.493), 

P(19.981, -73.483), P(21.133, -73.473), P(22.285, -73.463), 
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P(23.437, -73.452), P(24.588, -73.442), P(25.740, -73.432), 

P(26.892, -73.422)} 

Overall Risk Metric 

(normalized value) 

0.756 

Table 6.4: The optimization task generated by robot 1 based on a high-risk event 

The optimization task created by robot 1 (Table 6.4) is transmitted over the 

RSN in a task announcement message. Each robotic member of the risk-aware 

RSN receives the task announcement message (if the robot is idle) and must 

calculate its bid value. Table 6.5 shows the battery level (normalized), the 

redundant coverage (normalized) and the distance to the risk all at the time of 

receiving the task announcement message. Using the Sugeno FIS described in 

Chapter 4, the bid metric shown in the last column of Table 6.5 and is crisp output 

value of the FIS. This metric is sent back to the auctioneer using the bid submission 

message. In this simulation, the following robots (in order) have placed bids: robot 

3, robot 44, robot 46, robot 2, robot 4, and robot 45. 

Auction 1 Bid 

Submissions 

Battery Redundant 

Coverage 

Distance to 

Risk 

 Bid Value 

Robot 2 0.968 0.384 20.595 1.000 

Robot 46 0.633 0.583 29.632 0.828 

Robot 3 0.980 0.385 31.582 0.801 

Robot 45 0.967 0.461 40.047 0.569 

Robot 4 0.971 0.154 45.181 0.415 

Robot 44 0.969 0.538 51.961 0.121 
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Table 6.5: The bid submissions for the auction robot 1; ranked in order of bid value 

Similarly to 1, robot 27 will undergo the same process. The details of the 

bid submission for robot 27 are shown in Table 6.6. 

Auction 27 Bid 

Submissions 

Battery Redundant 

Coverage 

Distance to 

Risk 

 Bid Value 

28 0.924 0.400 17.370 1.000 

29 0.913 0.462 23.779 1.000 

26 0.861 0.461 19.486 0.993 

25 0.893 0.538 29.991 0.856 

30 0.906 0.538 31.673 0.835 

31 0.893 0.417 40.399 0.542 

24 0.893 0.462 41.921 0.490 

32 0.893 0.250 50.347 0.323 

23 0.893 0.308 53.144 0.171 

Table 6.6: The bid submission details for auctioneer robot 27; ranked in order of bid value. 

With all of the bids submitted to the respective auctioneers, each auctioneer 

can close the auction session by sending the close auction message. A robotic 

member will transition from role idle to participant, upon receiving the first close 

auction message from an auctioneer. At this point, all other task announcement 

messages received by the robotic node will be ignored. This process is illustrated 

in the log message in Figure 6.7, where robot 2 handles a task announcement 

message from robot 1 and responds with a bid. Shortly after (about a second), 

robot 2 transitions from idle to participant indicating that it received a close auction 
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message. As robot 27 raising its high-risk event after robot 1 does, it announces a 

task which is ignored by robot 2. 

 
Figure 6.7: Log excerpt from robot 2 where the handling of multiple task announcement message at different 

times is shown 

At this point, two independent coalitions have been established: one by 

robot 1 and the other by robot 27, as shown in Figure 6.8.  

 
Figure 6.8: Two coalitions formed by robot 1 (group at bottom-right) and by robot 27 (group at top-left). 

63519204095 Initializing Multi Robot Task Allocation...Robot ID is 2 
63519204095 Parameters: 
    MAX_FUZZY_DISTANCE_INPUT = 55 
    AWAIT BIDS TIMEOUT = 1500 
    BID QUOTA = 10 
63519204103 Handling Task Announcement Message from robot 1 
63519204103 Calculate BID metric... 

Batt:0.968298614025116  
RedCov:0.384615361690521  
Distance:20.595308303833  
Bid:1 

63519204103 Submitted bid to auctioneer 
63519204104 Changing role from IDLE to PARTICIPANT 
63519204104 Responding to Close Auction Message with position and identifier 
63519204121 Ignoring task announcement, since the robot has the role of PARTICIPANT 
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Figure 6.8 illustrates both coalitions. The coalition formed by robot 1 is 

located at the bottom right of the figure and the coalition formed by robot 26 is at 

the top-left of the figure. All other robotic nodes have been hidden for the sake of 

clarity. The security perimeter, visualized as a series of small red dots forming a 

polygon in Figure 6.8 is marked in green for robot 1’s coalition and in blue for robot 

27’s coalition. Each coalition is responsible for providing sensor coverage to all of 

these marked virtual perimeter points.  

The next stage of the response is executing the optimization task generated 

at the fuzzy-auction MRTA state (see Table 6.3 and Table 6.4). 

6.2.4. Self-Organization using the NSGA-II 

In this section, the performance of the NSGA-II will be evaluated for the 

search of non-dominated solutions, which ensure a maximum coverage of the 

virtual perimeter and minimize the energy cost in relocating each robot. Table 6.7 

describes the parameters used for the NSGA-II. 

Optimization Parameters  Value 

Number of Target Points 250 

Population Size 50 

Crossover Probability 0.85 

Mutation Probability 0.1 

Maximum Pareto Archive Set Size 50 

Stop Criterion Stop after 200 generation of the 

population 
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Maximum Robot Response  55 m 

Table 6.7: The optimization parameters used to obtain the results in this section. 

As illustrated in Figure 3.1, the EMO Optimization block in the diagram 

requires optimization criteria and alternatives before optimization can begin. The 

criteria are fed from the fuzzy-auction MRTA algorithm by generating the 

optimization task (seen in the previous section). The alternatives represent all 

possible solutions considered in the scope of this optimization. Thus, the 

alternatives form the solution space, which the NSGA-II will explore for Pareto 

optimal solutions.  

 
Figure 6.9: Illustration of a single robot's response region. Acceptable positions are represented by crosshair 

markers 

To best illustrate the alternatives for the optimization problem, Figure 6.9 

depicts a response region for a single robot within the coalition managed by robot 
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1. The response region (as per Table 6.7) will use a maximum radius of 55.0 

meters. The origin of the response region is fixated to the robot’s position. Each 

coalition is led by the auctioneer robot, which in this case is robot 1 and robot 27 

for their respective coalitions. Robot 1 and robot 27 will generate response regions 

for their coalitions and then execute the optimization algorithm.  

The NSGA-II is executed for 200 generations and produces a Pareto 

Archive Set (PAS) as shown in Table 6.8. 

Solution 

ID 

Robot Configuration Coverage 

(%) 

Cost (%) 𝚫𝚫Coverage 

(%) 

𝚫𝚫𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪

 

1 -1,-1,-1,-1,-1,-1,-1 88.24 0.00 0.000  

2 200,-1,-1,175,-1,-1,-1 95.29 4.24 +7.05 1.663 

3 200,-1,-1,-1,-1,-1,-1 90.59 0.75 +2.35 3.133 

4 131,-1,-1,-1,-1,-1,-1 92.94 3.09 +4.70 1.521 

5 119,-1,-1,-1,-1,-1,-1 89.41 0.42 +1.17 2.785 

6 200,-1,-1,175,-1,236,-1 96.47 5.45 +8.23 1.510 

7 3,-1,-1,-1,-1,-1,-1 91.76 2.35 +3.52 1.498 

8 3,-1,-1,175,-1,236,-1 97.65 7.05 +9.41 1.334 

Table 6.8: The PAS for robot 1 listing the solutions by ID. The robot configuration indicates the activated 
target point, except when -1 which implies the robot is not considered in the response. The coverage and 

the cost are normalized scalar quantities and cost is a normalized scalar quantity. 

Figure 6.10 (a) through (h) illustrate the solutions listed in Table 6.8 with 

solution identifiers 1 through 8, respectively.  Each optimization objective is taken 

with equal consideration. This explains why solution 1 has been added to the PAS, 

since it completely minimizes the coverage objective, even though it is very unlikely 
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this would be the selected response. Desirable solutions provide maximum 

coverage gain but with minimum energy expenditure. Since these are conflicting 

objectives, the selected response will likely be a compromise between the 

desirable coverage recovery and minimizing energy usage. For instance, solution 

8 provides the maximum coverage recovery, but the coverage-cost ratio raises 

concerns as the solution is very inefficient. Compared to other solutions the energy 

used per unit coverage recovered is the highest. Solution 6 provides a more 

efficient response from the coalition, while sacrificing 1.18% coverage recovery. 

However, the sensor network’s longevity was better preserved.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) (f) 

 
(g) (h) 

Figure 6.10: PAS Solutions for robot 1 coalition 

The decision to choose solution 6 over solution 8 can also be justified by 

observing the response in Figure 6.10 (f) versus Figure 6.10 (h).  

6.3. Chapter Summary 

This chapter has evaluated the risk-aware RSN and its major components 

including: fuzzy risk assessment for RSN in CIP, fuzzy-auction based MRTA, and 

a self-organization technique using the NSGA-II. This evaluation was conducted 

using the factory scenario, which allows a large-scale deployment of robotic 

sensors. This was beneficial to permit multiple risk events varying in space and 

time and letting the risk-aware RSN handle this high-risk events concurrently. As 

a robotic member detected a high-risk event, immediately the fuzzy-auction MRTA 
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technique was able to allocate robotic members of the RSN to form a coalition. As 

shown in the results, these coalitions are capable of finding feasible solutions to 

respond to high-risk events. Thus, the risk-aware RSN is capable of perceiving 

risky situations and evolving its physical topology to safe-guard critical 

infrastructure. 
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 Conclusion 
7.1. Summary 

In this thesis many different technologies in the domain of risk assessment, 

MRTA, and self-organization have been discussed. Risk assessment conducted 

by robotic nodes have not been pursued by very many researchers, however a few 

examples do exist: [9], [10], [13], [14], [16], and [17]. The research conducted by 

[13] and [14] use a HMM to approach the challenge of effective risk assessment. 

For a real-time RSN, the requirement of a priori information in the context of the 

problem may be troublesome. A fuzzy-based approach to risk assessment can 

allow the system to begin sampling sensor data and extracting risk features based 

on the fuzzy model. This approach has been explored in this thesis as well as [9], 

[10], [16], and [17].  

The MRTA problem was thoroughly surveyed in [18], where the MRTA 

problem can be classified into eight separate types. Based on this taxonomy, the 

work of this thesis falls under the category of ST-MR-IA. This problem is addressed 

by a multi-robot coordination technique called MURDOCH [19]. This thesis built 

upon the foundations of MURDOCH focusing attention to the bid evaluation 

process, named a fuzzy-auction MRTA. This technique effectively forms a coalition 

of robots, to mitigate a high-risk event. This technique permits the robots in the 

RSN to operate in a decentralized manner. This alone brings many benefits to the 

RSN, the most prominent being that the risk-aware RSN is capable of managing 

itself in the environment. No centralized server is required to delegate operations 
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and perform computations. During times of crisis in the RSN (i.e., high-risk events) 

the robotic nodes in the risk-aware RSN can take charge and manage smaller 

group of robots. These smaller groups are referred to coalitions, which are able to 

effectively mitigate detected risks in the network.  

The self-organization process of the risk-aware RSN uses the NSGA-II to 

converge on a set of non-dominated solutions. This was an interesting and creative 

approach to obtaining optimal locations for robotic nodes while meeting the 

optimization criteria of maximum coverage of coordinates of interest and minimal 

moving energy expenditure. In Chapter 6, this behaviour of the RSN in the factory 

scenario met the design objectives, where a set of feasible of solutions were 

provided by the NSGA-II to maximum coverage of regions of interest while 

reducing the moving cost of the robots.  

7.2. Contributions 

This thesis proposed a risk-aware RSN to be used in a CIP scenario. This 

RSN uses a fuzzy-based risk assessment technique and employs a completely 

decentralized implementation. Once deployed the risk-aware RSN does not 

require any external management to assist in the coordination of the robots during 

a high-risk event. The individual risk-aware RSN members are capable of 

communicating with one another using a fuzzy-auction MRTA process used to join 

self-managed robot coalitions. Finally using the NSGA-II and specialized genetic 

encoding scheme, the robot coalition can seek new robot configuration to mitigate 

the detected risk. This work has been published in the form of two IEEE conference 

proceedings [7] and [11] and presented at a poster session [28]. 
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7.3. Future Research 

The various components presented in this thesis have currently only been 

tested in a virtual environment. The system has not yet been subjected to the risks 

and threats of a real environment. In the simulated world of MRDS, the individual 

robot sensor require more advanced communication models to better assess the 

energy cost of transmitting data from one robot to another. In addition, more 

advanced sensor models would produce more realistic detection. The current 

implementation utilizes a circular field of view where most real devices would be 

directional. The response regions of the robotic members, required for the self-

organization process were also circular regions. Future work will investigate to 

define potential responses for robotic assets. Finally, it would be beneficial to begin 

implementing the described techniques of this thesis on real robots to create a real 

risk-aware RSN.   
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Appendix A. Fuzzy Membership Declarations 
Fuzzy membership functions can be easily defined using a set of simple 

parameters to represent the characteristic of the function. For membership 

function, 𝑓𝑓(𝑥𝑥), let the domain of the function be the interval [−∞,∞] and the range 

of the function be the interval [0,1]. For a trapezoidal function 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) (see Figure 

A.1), a set of parameters A, B, C, and D can be used to define the shape of the 

function. The parameters and the function 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) are related as follows: 

𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) =

⎩
⎪⎪
⎨

⎪⎪
⎧

0 𝑥𝑥 ≤ 𝐴𝐴
𝑥𝑥 − 𝐴𝐴
𝐵𝐵 − 𝐴𝐴

𝐴𝐴 ≤ 𝑥𝑥 < 𝐵𝐵

1 𝐵𝐵 ≤ 𝑥𝑥 ≤ 𝐶𝐶
𝐷𝐷 − 𝑋𝑋
𝐷𝐷 − 𝐶𝐶

𝐶𝐶 ≤ 𝑥𝑥 ≤ 𝐷𝐷

0 𝐷𝐷 ≤ 𝑥𝑥

 

 
Figure A.1: An example of a trapezoidal membership function declarations with parameters A=1, B=2, C=5, 

and D=10.  

𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) 
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For a triangular function 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) (see Figure A.2), a set of parameters A, B, 

and C can be used to define the shape of the function. The parameters and the 

function 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) relate as follows: 

𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

0 𝑥𝑥 ≤ 𝐴𝐴
𝑥𝑥 − 𝐴𝐴
𝐵𝐵 − 𝐴𝐴

𝐴𝐴 ≤ 𝑥𝑥 < 𝐵𝐵
𝐶𝐶 − 𝑋𝑋
𝐶𝐶 − 𝐵𝐵

𝐵𝐵 ≤ 𝑥𝑥 ≤ 𝐶𝐶

0 𝐶𝐶 ≤ 𝑥𝑥

 

 
Figure A.2: An example of a triangular membership function declaration with parameters A=2, B=5, and 

C=7. 

𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) 

99 
 


	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Abbreviations
	Chapter 1. Introduction
	1.1. Motivations
	1.2. Contributions
	1.3. Thesis Organization

	Chapter 2. Background and Related Work
	2.1. Risk Modeling and Risk Assessment
	2.2. Multi-Robot Task Allocation Techniques
	2.3. Self-Organization of Robotic Sensor Nodes
	2.4. Chapter Summary

	Chapter 3. Assessing the Risk of a Robotic Sensor Network
	3.1. Data Sources / Environment
	3.2. Risk Feature Extraction
	3.2.1. Detection Risk Feature
	3.2.2. Degree of Distress Risk Feature

	3.3. Risk Assessment
	3.4. Chapter Summary

	Chapter 4. Multi-Robot Task Allocation Auction Technique
	4.1. Optimization Task Generation
	4.2. Task Announcement
	4.3. Bid Metric Evaluation
	4.3.1. Input Variable: Battery Level
	4.3.2. Input Variable: Distance
	4.3.3. Input Variable: Redundant Coverage
	4.3.4. Output Variable: Bid Metric

	4.4. Bid Submission
	4.5. Finalize Auction Session
	4.6. Chapter Summary

	Chapter 5. Evolutionary Multi-Objective Optimization for Self-Organization of RSN
	5.1. Optimization Criteria
	5.2. Potential Responses
	5.3. Chromosome Design
	5.4. Objective Functions
	5.4.1. Coverage of Perimeter Objective Function
	5.4.2. Coverage of Region Objective Function
	5.4.3. Energy Cost (Response) Objective Function

	5.5. Crossover and Mutation Operators
	5.5.1. Crossover Operator
	5.5.2. Mutation Operator

	5.6. Chapter Summary

	Chapter 6. Experimentation
	6.1. Experimental Setup
	6.2. Scenario 1: Factory Complex
	6.2.1. Scenario Configuration
	6.2.2. Risk Assessment
	6.2.3. Robot Selection using Fuzzy-Auction MRTA
	6.2.4. Self-Organization using the NSGA-II

	6.3. Chapter Summary

	Chapter 7. Conclusion
	7.1. Summary
	7.2. Contributions
	7.3. Future Research

	References
	Appendix A.  Fuzzy Membership Declarations

