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Abstract—Methods for detecting Acute Lymphoblastic (or
Lymphocytic) Leukemia (ALL) based on the analysis of blood im-
ages are being increasingly researched in the context of Computer
Aided Diagnosis (CAD) systems, which help the pathologist in
performing the diagnosis. Within CAD systems, approaches using
Deep Learning (DL) and Convolutional Neural Networks (CNN)
currently exhibit the highest accuracy in detecting the presence
of lymphoblasts, which indicate the possible presence of ALL.
Recently, approaches based on histopathological transfer learning
have been proposed to increase the accuracy of ALL detection
in the presence of databases with a small number of samples,
by pretraining the CNN on histopathological data instead of
using general-purpose datasets such as ImageNet. However, all
the approaches in the literature consider CNN architectures with
an extremely high number of learnable parameters, which easily
tend to overfit. To compensate for these drawbacks, in this paper
we propose ALLNet, the first approach in the literature for
ALL detection using a lightweight architecture based on fixed
binary kernels that replicate the Local Binary Patterns and that
uses only ~ 1.6% of the learnable parameters of a traditional
CNN. We evaluated our approach on a public ALL database,
achieving better results with respect to the state of the art in
terms of classification accuracy.

Index Terms—Acute Lymphoblastic Leukemia (ALL),

Deep Learning (DL), Convolutional Neural Networks (CNN)

I. INTRODUCTION

Acute Lymphoblastic (or Lymphocytic) Leukemia (ALL)
is a disease that affects the blood cells, can spread rapidly
throughout the body, and may result in fatal consequences if
not detected at an early stage. One of the techniques routinely
used to diagnose ALL consists in analyzing White Blood
Cells (WBC) present in peripheral blood samples to look for
malformations or abnormalities (Fig. 1). Such malformations
may be an indicator of lymphoblasts, which naturally occur
in the bone marrow. However, an elevated number of WBCs
with lymphoblast characteristics may be a sign of ALL [1],
[2].

Traditionally, the diagnostic process for detecting ALL is
performed manually by an expert pathologist, who looks at the
blood cells and estimates the concentration of lymphoblasts
present in peripheral blood. Such process, being extremely
repetitive and time-consuming, may lead to fatigue, with
the consequence that the pathologist could miss important
information correlated with the presence of ALL [3].
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Fig. 1: Examples of White Blood Cells (WBC) used to
detect the possible presence of Acute Lymphoblastic (or Lym-
phocytic) Leukemia (ALL): (a,b) “normal” cells; (c,d) “lym-
phoblasts”.

To overcome the disadvantages of a manual inspection
process, Computer Aided Diagnosis (CAD) systems are being
increasingly researched: such systems are often based on
image processing and machine learning and, by automatically
detecting lymphoblasts, can help the pathologist in performing
a preliminary screening of the blood samples [4]. Among CAD
systems, recent methods are increasingly considering the use
of machine learning approaches based on Deep Learning (DL)
and Convolutional Neural Networks (CNN), due to their high
accuracy in several fields, including medical imaging [5], [6].
In particular, CNNs have the ability of automatically learning
data representations, without the need for a handcrafted feature
extraction step, with the consequence that CAD systems based
on CNNs may be designed with limited knowledge of the
application scenario [7].

Currently, the majority of CAD systems based on CNN for
the detection of ALL consider the use of transfer learning to
increase the classification accuracy, by pretraining the CNN
on a larger database (e.g., ImageNet [8]) and then fine tuning
it on the ALL database [1], [3], [9]. In fact, while CNNs
exhibit high accuracy in several fields, they may not perform
optimally in the presence of limited data, as often happens
when considering medical records [10], [11].

Recently, instead of using CNNs pretrained on ImageNet,
as often happens in computer vision [12], recent DL-based
methods for ALL detection consider a CNN pretrained on
histopathological data. In fact, histopathological transfer learn-
ing proved to increase the classification accuracy by consid-
ering a source database more similar to the target database,
with respect to a database for generic object detection (such
as ImageNet) [3]. However, no method in the literature has
yet considered lightweight CNNs for ALL detection with a
histopathological transfer learning procedure. Such lightweight



CNNs with a lesser number of learnable parameters have
proven to be beneficial in the case of limited data available
for training them [13], such as the case of ALL data (e.g., the
ALL-IDB database has only 260 images [14]).

In this paper, we propose the first approach in the lit-
erature combining lightweight CNNs and histopathological
transfer learning for ALL detection, by considering a CNN
with fixed kernels that replicate the Local Binary Patterns
(LBP)!. With respect to the approaches in the literature,
our method is able to significantly reduce the number of
learnable parameters in the CNNs, limiting overfitting and
maintaining a high classification accuracy of WBCs in two
classes: normal or lymphoblast. We evaluate our approach on
the Acute Lymphoblastic Leukemia Image Database (ALL-
IDB)? [14], with results showing a superior accuracy with
respect to the literature.

The paper is structured as follows. Section II introduces the
relevant literature review. Section III describes the proposed
method. Section IV presents the experimental results. Finally,
Section V contains the conclusions and future works.

II. RELATED WORKS

Traditionally, approaches in the literature for ALL detec-
tion were divided in methods that considered a handcrafted
feature extraction step and methods using only DL [15].
However, recent methods in the literature for medical imaging,
histopathology, and ALL detection have been increasingly
considering the use of DL and CNNs for their greater accuracy
[16], and shifted the attention from the feature extraction step
to the design of more efficient learning procedures, novel
network architectures, or DL-based preprocessing [1], [3].

When proposing more efficient learning procedures, meth-
ods in the literature often consider the use of transfer learning,
either by using the ImageNet database to pretrain the CNN
[9], [16], [17] or a histopathological database [3]. Then, the
methods apply a fine tuning (or deep tuning) step to obtain a
CNN able to classify WBCs. In some cases, instead of a tuning
phase the metholodogy considers a feature selection step based
on swarm optimization, with the purpose of adapting the
pretrained CNNs to blood sample images [18].

When designing innovative network architectures, the ap-
proaches may consider convolutional layers specifically de-
signed to enhance the details of blood samples, and that
can be added to existing CNNs, for example to exploit also
the possibility of using pretrained CNNs [19] (e.g., AlexNet
[20]). In alternative, methods in the literature have proposed
variations of existing CNN architectures (e.g., ResNet [21])
that better focus on details both at a global and a local scale
[22]. When dealing with small datasets and reduce overfitting,
some approaches have considered Bayesian CNNs, that can
also provide uncertainty estimates [23], or custom CNNs with
less convolutional layers [24].

IThe source code is available at:
https://iebil.di.unimi.it/cnnALL/index.htm
2https://homes.di.unimi.it/scotti/all

Lastly, when introducing novel DL-based preprocessing,
some methods in the literature have considered adaptive and
intelligent algorithms based on unsupervised CNNs to enhance
the images, while also decorrelating the label from the image
quality and reduce possible bias in the database [1].

While some approaches in the literature proposed CNN ar-
chitectures with less convolutional layers to increase efficiency
and reduce overfitting [24], such methods require a custom
design and have not been pretrained using a histopathological
transfer learning procedure. On the contrary, our method is
based on a lightweight CNNs that can be applied on any
existing CNN architecture (e.g., ResNet) and that is pretrained
on histopathological data.

III. METHODOLOGY

This Section describes the proposed methodology for ALL
detection based on lightweight CNNs. Our approach is based
on creating the lightweight CNN by substituting the kernels of
an existing CNN architecture (e.g., ResNet) with fixed binary
kernels. The binary kernels are chosen an an approximation
of the LBP and are combined using learnable weights [13].
Since the binary kernels are fixed, the number of learnable
parameters is drastically reduced (a 9x to 169X reduction),
thus reducing the possibility for the CNN to overfit small
datasets. After creating the lightweight CNN, we perform a
histopathological transfer learning [3], by pretraining the CNN
on a database of histopathological data, replacing the last fully-
connected (FC) layer, then fine tuning the resulting CNN on
the ALL database. Lastly, we classify each WBC as normal
or lymphoblast.

It is possible to divide the proposed approach in the follow-
ing steps: A) creation of lightweight CNN; B) histopathological
pretraining; C) ALL detection. Fig. 2 shows the outline of the
methodology.

A. Creation of Lightweight CNN

We create the lightweight CNN by considering an existing
CNN architecture (e.g., ResNet) and replacing each convo-
lutional layer with a Local Binary Convolutional Module
(LBCM) [13]°. This module is, in turn, composed by 2
convolutional layers:

1) The first layer contains 8 binary kernels with size 3 x 3
and fixed weights. The kernels are designed by having —1
at the central cell and 1 in one of the other cells, with
each filter having only one cell with —1 (central cell)
and only one cell with 1. Such structure of the kernel
can replicate the image processing operation performed
using LBP, as described in [13]. Fig. 3 shows a graphical
representation of the binary kernels.

2) The second layer contains 8 kernels with size 1 x 1 and
learnable weights, designed to perform a weighted sum
of the activation maps resulting after the application of
the first layer.

3https://github.com/dizcza/lbenn.pytorch
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Fig. 2: Outline of the proposed methodology. After creating the lightweight CNN using fixed binary kernels (4), we perform a
histopathological pretraining (B). Then, we use the resulting CNN to classify each WBC as either normal or lymphoblast (C).
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Fig. 3: Outline of the Local Binary Convolutional Module (LBCM). In contrast to a standard convolutional layer (a) which
contains a variable number of kernels with learnable weights (colored boxes), the LBCM (b) contains 8 kernels with size 3 x 3
and fixed binary weights, and only 8 kernels with size 1 x 1 and learnable weights (colored boxes).

With respect to a standard convolutional layer, the number
of learnable parameters is significantly reduced, since only 8
learnable weights are present for each convolutional layer.

After replacing each convolutional layer of the CNN with
a LBCM, we obtain the Local Binary Convolutional Network
(LBCNN).

B. Histopathological Pretraining

To perform the histopathological pretraining, we consider
a database containing patches extracted from whole slide
imaging samples. Each patch describes a different histological
tissue, such as adipose, epithelial, nervous, or skeletal. To
facilitate the training process, each patch has its own label.

Since each patch can contain multiple tissues, the labels are
not mutually exclusive and each patch usually has multiple
labels.

The labeling process for the histopathological database is
performed by considering different labeling methodologies,
organized in a hierarchical way. In particular, there are n
labeling levels, with each level describing a more precise
labeling. Therefore, each patch p is associated with a set of
labels L(p) = {l;}?_,. Since the labeling precision increases
with each level, l3 describes a more precise labeling than ;.
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Fig. 4: Examples of samples pertaining to the histopathologi-
cal database. Each sample p; has a set of labels associated to
it (e.g., l1, l2, l3), organized in a hierarchial way with each
level having a more precise labeling (e.g., [3 contains the most
precise labeling).

As an example, a patch p; can have the following labels:

l1 = Nervous (N)
lo = Neuroglial Cells (N.G)
I3 = Neuroglial Cells Undifferentiated (N.G.X) @))

Fig. 4 shows examples of patch samples with the associated
set of labels.

We train the LBCNN on the histopathological database
to detect in each sample the corresponding histological tissue
types, following the training procedures and parameters de-
scribed in [25] and considering each time a different labeling
level. As a result, we obtain n LBC N N's, one for each of the
n labeling levels: {LBCNN,}7_,.

The only difference in the network architecture among
the n LBC'NNs resides in the size of the last FC layer,
whose dimension is chosen based on the cardinality of the
labeling level. As an example, if there are 1000 possible labels,
such as the case for ImageNet, the last FC layer of a CNN
trained to classify such database has 1000 neurons. Therefore,
each LBCNN has a last FC layer with size depending
on the cardinality of the labeling level. In the considered
histopathology database, the cardinality of the first level is
[{l1}] = 9, while the cardinality of the third level, describing
a more precise labeling, is |{l3}| = 42.

C. ALL Detection

To use the LBC' N N, pretrained on histopathological data,
to perform ALL detection, we apply a transfer learning pro-
cedure. First, we replace the last FC layer with a layer whose
dimension is suited to the cardinality of the classes in the ALL
database. In particular, the ALL database we considered has
2 classes, with each image having a binary label (0: normal;

1: Iymphoblast). Therefore, we replace the last FC layer of
each {LBCN N;} with a FC layer with 2 neurons (Fig. 5).

As a result, we obtain the n CNNs adapted for ALL
detection: {ALLNet;}? ;. Then, we train each ALLNet by
performing a deep tuning on the training subset of the ALL
database. In the deep tuning, differently than the fine tuning
process, all the weights of the CNN pretrained on the source
database are updated when training on the target database. To
compensate for the limited number of samples in the ALL
database, we perform a data augmentation during the training,
by randomly flipping or rotating each image in the training
subset.

Lastly, we apply each ALLNet, pretrained on histopatho-
logical data and deep tuned for ALL detection, on the testing
subset of the ALL database. The output of the ALLNet
applied on each image is a binary number indicating whether
the image is classified as 0: normal or as a 1: lymphoblast.

IV. EXPERIMENTAL RESULTS
A. Used Databases

In the proposed approach, we consider two databases, a
source database for histopathological pretraining (see Sec-
tion III-B) and a target database for ALL detection (see
Section III-C).

As the histopathology database, we used the Atlas of Digital
Pathology (ADP) [25]*, which contains 17,668 RGB image
patches {p;} with size 272 x 272 pixels, extracted from 100
whole slide images. Each patch p; is labeled according to
n = 3 levels, with each level describing a more precise
classification. Moreover, for each level, each patch can have
multiple labels, since each patch can describe multiple histo-
logical tissues and thus the labels are not mutually exclusive,
as described in Section III-B. Examples of images in the ADP
database are shown in Fig. 4 along with the corresponding
labels.

As the database for ALL detection, we used the ALL-IDB2
database [14]%, which contains 260 RGB images of peripheral
blood samples with size 256 x 256 pixels, with 130 cells
labeled as 0: normal and 130 cells labeled as 1: lymphoblast.

B. CNN Training

As mentioned in Section III-A, it is possible to apply the
proposed method by considering an existing CNN architecture
and modifying it by replacing each convolutional layer with
a LBCM. In this work, we considered the ResNetl8 and
ResNet34 network architectures, since they represent two
popular CNN architectures with high accuracy in several fields
[13], [217°.

For each chosen architecture, we create the LBCNN
as described in Section III-A and we apply the proposed
histopathological pretraining as described in Section III-B.
As a result, for each architecture we obtain LBCN N,
LBCN Ns, and LBC N N3, one for each of the n = 3 labeling

4https://www.dsp.utoronto.ca/projects/ADP
SMore details on the structure of the CNN are available at:
https://iebil.di.unimi.it/cnnALL/index.htm
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Fig. 5: Transfer learning procedure for adapting the LBC N N, pretrained on histopathological data, to ALLNet for ALL
detection. We replace the last FC layer of LBC'N N, whose dimension is based on the cardinality of the classes in the

histopathological data, with a FC layer with 2 neurons.

TABLE 1I: Overview of the different ALLNets for ALL
detection obtained by applying the proposed method.

CNN Architecture
ResNet18 ResNet34
1 | ALLNetgesnet1s,1 ALLNetresnet3a,1
Level * 2 | ALLNetgesnet1s,2 ALLNetgesNet3a,2
3 ALLNetReSNe,ﬂ&g ALLNetResNet34,3

Notes. * = Level of histopathology labels (see Section III-B).

levels. To train the LBCN N, we apply the parameters and
the training procedure described in [3], [25].

To create the ALLNet, we apply the procedure described
in Section III-C on each pretrained LBC' NN and we perform
the deep tuning on the ALL database. In particular, we obtain
an ALLNet for each chosen architecture and for each labeling
level. A summary of the resulting CNNs is outlined in Table I.
To train the ALLNet, we split the ALL database as 40%
training, 10% validation, and 50% testing. Then, we train
each ALLNet on the training subset, with a batch size 8
and for 100 epochs, using the Stochastic Gradient Descent
(SGD) algorithm. The parameters of the SGD are learning
rate [r = 0.02 and momentum m = 0.9. We half Ir' = Ir/2
every 20 epochs. After the last epoch, we select the values
of the weights for which we obtain the highest classification
accuracy on the validation subset. We consider the same
training procedure for all the ALLNets in Table L.

C. Evaluation Procedures and Error Measures

To compute the error measures, we perform a n-fold cross-
validation, with n = 2, repeated 5 times, with the different
subsets of the ALL database (training, validation, testing)
extracted randomly at each iteration. We compute the error
measures on the testing subset. Then, we average the results
on the 5 iterations.

The error measures considered in this work are the metrics
described in [14], which consist in the mean and standard

TABLE II: Accuracy results on the ALL-IDB2 database using
the proposed methodology, compared with the literature.

Ref. Deep CNN Classification Accuracy
(%) (Meangq)

HistoT NetpesNet18,1 95.383.41
HistoT'NetResNet18,2 97.921 62

;3] HistoT'NetresNet18,3 97.381.04
HistoTNetResNet34,1 97.541 13
HistoT'NetresNet34,2 96.622 26
HistoT'NetResNet34,3 97.080.90
ALLNetResNet18,1 97.850.58
ALLNetResNet18,2 97.541 57

) ALLNetResNet18,3 97.232.04
ALLNetResNet34,1 95.385.01
ALLNetRresNet34,2 98.460.84
ALLNetResNet34,3 98.001 86

TABLE III: Number of learnable parameters and size of the
ALLNet used in the proposed methodology and comparison
with the literature.

N. of learnable

Ref. Deep CNN Size [MB]*
parameters
[3]  HistoTNetgesnetsa,2 | 21,285,698 83
- ALLNetpesNetssz | 342,082 5

Notes. *Size computed considering a PyTorch implementation.

deviation of the classification accuracy, as well as the number
of true negatives, true positives, false negatives, and false
positives.

D. Accuracy and Complexity

Table II shows the result of each ALLNet in terms of
classification accuracy, obtained using the proposed method-
ology. In the Table, we present also the comparison with



TABLE 1IV:  Average
ALLNetResNet34,2 on the
the proposed methodology.

confusion matrix of the
ALL-IDB2 database using

Predicted

0 (normal) 1 (lymphoblast)

0 (normal) | TN = 49.54% FP = 0.46%

True

1 (lymphoblast) | FN =1.08% || TP = 48.92%

Notes. TN = True Negatives; TP = True Positives; FN = False Negatives;
FP = False Positives.

the accuracy of the HistoT'Net described in [3], which
represents the current state of the art. From the Table, it
is possible to observe that the proposed method, for each
variant of ALL Net, achieves better or on par accuracy with
the literature. In particular, ALLNetrcsnet3a,2 achieves the
best accuracy among the considered variants of ALLNet.
Table IV shows the average confusion matrix obtained using
ALLNetRresnet3a,2 on the ALL-IDB2 database.

In addition to exhibiting the highest accuracy among the
considered CNNs, the ALLNet considered in the proposed
approach use a significantly reduced number of learnable
parameters with respect to HistoT Net, as shown in Table III.
In particular, the use of ALLNetpesnet3a,2 permits a 62x
reduction in the number of parameters, with the number of
learnable parameters in ALLNetresnet3a,2 being 1.61% of
the learnable parameters present in HistoT' Netresnetsa,2.
Moreover, the table shows how the reduced number of learn-
able parameters enables to significantly reduce the size of the
model and thus save storage space (5 MB instead of 83 MB).

V. CONCLUSIONS

In this paper we proposed a novel method for Acute
Lymphoblastic (or Lymphocytic) Leukemia (ALL) detection
based on the analysis of White Blood Cells (WBC) present
in peripheral blood. Differently than the methods in the
literature, our approach combines a lightweight CNN with a
histopathological transfer learning procedure, by introducing a
CNN with a reduced number of learnable parameters, that uses
fixed kernels that replicate the Local Binary Patterns (LBP)
and that is first trained to detect histological tissue types, then
tuned on the ALL database to classify each cell as either
normal or lymphoblast. We evaluated our method on a publicly
available database designed for ALL detection, with results
better than the current state of the art.
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