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Abstract—To deliver 3-tier applications as a Service in the
Cloud state-related constraints crossing Infrastructure and
Software as a Service boundaries need to be managed. By
automating the lifecycle of applications like databases,olad
balancers, and web application servers rich SaaS business
services can be provided in the Cloud. We propose an object
oriented planning approach based on state constraints to ph
for changes of SaaS and laaS components in the Cloud. We
evaluate techniques for fast storing and restoring of largebject
oriented Configuration Management Databases and show that
enforcing constraints in a procedural instead of a declarave
way offers huge performance improvements. The advantages
of our approach lie within the tight integration of the planning
algorithm with object oriented models frequently used for
Configuration Management Databases. In addition to that, tle
algorithm scales to a large number of nodes and preserves its
runtime even for large, heavily loaded data centers.

Keywords-IT change planning, service management, applica-
tion management, Al planning, state-based constraints

I. INTRODUCTION

With the proliferation of Cloud Computing[1], e.g.,
Infrastructure as a ServicélaaS and Software as a Ser-
vice (Saa$, it becomes more and more important for
cloud/service providers to migrate existing businessiappl
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SaaS - SaaS constraints: To start an Apache server, the
database needs to be in stataningbecause Apache relies
on data stored in the database.

SaaS - laaS constraints: In order to install an application

in a virtual machine (VM), it needs to be in statenning

and the physical machine (PM) needs to be in state
Planning for state related changes in a cloud environment
becomes very challenging due to the large amount of com-
ponents comprising a data center leaving lots of possibil-
ities to instantiate an action. Traditionally object otih
(O0) models, e.g., th€ommon Information ModgICIM)

[4] standard, have been used to implem&unfiguration
Management Databas¢EMDBS9 to describe the data center
and all its hosted applications. In the presence of larga dat
centers these models can become very big making planning
extremely difficult.

Although several approaches were proposed for IT change
planning [3], [5], [6], [7], [8], [9] they do not provide an
adequate planning approach working over object oriented
CMDBs in the presence of large data centers as imposed by
Cloud Computing. For example, Trastour etal. [6] proposed
a planning approach over an object oriented CMDB but did
not provide adequate performance for large scale CMDBs.

tions to the Cloud to generate additional value for cust@merOthers [5] used a planner over a predicate based knowl-
on top of laaS. A typical business application very oftenedgebase (KB). However, this approach has two drawbacks:
consists of a three-tier architecture, comprising a daaba (1) The object oriented CMDB and the results of planning
(DB), several application- or web servers (WAS/Apache),need to be transformed between OO models and predicates.
and a load balancer (LB). Offering and migrating such ap-2) An operator familiar with the object based CMDB has
plications to the Cloud makes sense to decrease IT costs ltg learn an unknown predicate based language to describe
consolidating IT infrastructure, to offer business apgions  the knowledgebase. Our previous work [3] made use of
as a service, and to dynamically scale the application layean object oriented CMDB and a KB written in omain

to cope with varying loads. Applications following the 3- Specific LanguagéDSL) over this model. However, aiming
tier architecture are for example, SAP/R3 and wiki systemsat performance in the presence of many nodes was not a goal
such as TikiWiki. of this work. Furthermore, there were situations, that were
To automatically offer these applications to customers agn fact out of the scope of this work, were the algorithm was
a service [2] in the Cloud, their lifecycle has to be au-unable to find a solution although one existed.

tomatically managed according to state-related consgrain In this work we propose an algorithm inspired by artificial
crossing SaaS and laaS boundaries. In a previous worktelligence planning techniques [10] working over object
[3] we proposed to describe these constraints using stat@riented models to plan according to laaS and SaaS state
transition systems: constraints. We evaluate the performance of several tech-



OSImage . VM . PM tions, e. g., using HP’s Discovery and Dependency Mapping
state : State [osmage | State : State [ymg— | state : State software. We envision an approach in which independent
™0 services tools access a shared CMDB to act upon it. Knowing the

Service behavior of tools, scripts, and applications, we can plan fo

state : State their changes directly over a CMDB to achieve a certain

‘ 2 ‘ goal, e.g., to deploy a 3-tier architecture. Figure 1 shows

DB _ WAS LB the model of the CMDB used throughout this work. Note,
e = that our approach is capable of planning over any OO model.

We modeled PMs, VMs, operating system (OS) images and
Figure 1.  Object oriented CMDB model over which planning enel services. Objects are linked by references. We modeled DB,
WAS, and LB with their dependencies between each other.
Furthermore, the model provides methods to create and
niques for fast object storing and restoring to pave the wayjestroy references. Each class is mapped to a state-ioansit
to directly use object oriented CMDBs for planning in the system describing its behavior. For example, Fig. 2 denotes
presence of large data centers. We apply the algorithm teghe state-transition system of clad#ASin Fig. 1. The STS
a deployment case study of 3-tier applications and showescribes the behavior of a WAS instance. Every class owns
that it nicely scales with the increasing size of the datag state property storing its current state. More formally; o
center. In addition to that, we show that enforcing placemensg|ution comprises the following concepts:
constraints in a procedural way has significant advantageset ) — {01,...,0,} be a set of domain objects. An object
over a declarative check-and-prune approach when it comese O is a 3-tuple, such that = (id, s, (1, ..., pn)) Where
to planning speed under varying load levels in the Cloud. ;4 is the unique id ofo, s the current state 06, and p;
Compared to previous work our approach has several athe values ofo’'s properties. For an object, id(o) returns
vantages: (1) It scales to a large number of nodes / objecie unique id ofo and state(o) denotes the current state of
in the CMDB even in the presence of difficult placement, et = (id, s, (p1,...,pn)) @ando’ = (id,s', (p,, ..., 1))
constraints. (2) Planning is directly done over an objecthe two versions of the object with identifiéd. We define
oriented CMDB making it easy to interface with tools and c,anged(o, ') such thatchanged(o,o') = true iff s # s
existing models, such as CIM [4]. (3) The KB can directly v 35, ¢ {p1.....pn} : p; # p}. A model M C O is a

address properties of objects in the model. There is N@ubset of) such that references between objects are covered
need for switching between different representations as iy the objects’ properties. Similarly to changed objects we

[5]. (5) Direct interfacing with external tools can be egsil ¢an define for two modeld/ and M changed(M, M)
achieved, e.g., to determine an optimal placement [11]. (6)f M| # M| V3o € M : 30 € M' : idlo) =
The knowledgebase can be easily adapted to take diﬁere@g(of) A changed(o, o'). We definechangedy;s(M, M) as
solutions for application deployment into account. For ex-the set of all objects changed or newly created between
ample, solving deployment usingirtual Appliances[12], A7 and M’. More formally changedyy;s(M, M') = {0’ €

[13] or using a finer grained domain comprising installation M'|Fo € M : changed(o, o)V =Jo € M : id(0) = id(o')}.

and configuration of applications [14]. Deleted objects still remain i/, but are not referenced by
The remainder of this paper is organized as follows: Secproperties any more.

tion Il introduces our notion of models and state-transitio our notion ofstate-transition systen{STS is the following:
systems. The algorithm is introduced in Section Ill. After et S~ = {5y,...,0,} be the set of all state-transition

that, we propose and evaluate different strategies for fa%ystems. A state-transition system € 3" is a 2-tuple
object storing and restoring in Section IV. In Section V we , — (S,,T,) such thatS, = {si,...,,s,} are the states
propose a heuristic to optimize the runtime for large dategf » and T, = {ti,...t,} are the transitions of. For
centers. Section VI evaluates the influence of declarativgach domain object € O there exists exactly one € 3
and procedural constraints on the runtime of the algorithmsych thatstate(o) € S, throughout the existence of the
Finally, we relate our work to others in Section VII and gpject. It is denoted byts(o). A transitiont € T, is a
conclude in Section VIII. tuple ¢ = (Ssources Ssink, precond(M), C, ef fects(M, c))
such thatsgpurce € S, is the source andg;,. € S, the
sink of t. precond(M) describes a precondition evaluated
This section introduces the basic concepts our solution isver modelM which needs to account to execute” C M
built on. Object oriented models, e.g., CIM [4], have beenare the candidate objects of transitibmA transition can be
traditionally used to describe the CMDB. The CMDB de- instantiated for every candidate object C, e.g., to link
scribes the configuration of a data center from its resourcethe candidate: to the objects describesef fects(M,c)
to its hosted applications. The CMDB can be automaticallydescribes the effects the execution of the transition has on
generated by scanning a data center for running applicahe underlying modelM dependent on candidate We call

Il. MODELLING THE CLOUD



precond:{self.runs_on == mﬂ]} precond:{self.runs_on.state == running & precond={self.runs_on.state == running &

C={ModelManager.get_vins( self.db_service.state # uninstalled & self.db_service.state == running &
{it.services.size()==0})} self.Ib.state == uninstalled } self.1b.state # running }
effects(M, ¢) = {self.set_vin(c)} c=0 c=0
link to v effects(M ,c)={self.state = stopped} effects(M ,c)={self.state = running}

T

link db service precond={self.runs_on.state == running & precond={se1f.runs.0g.state == running & ‘
o self.db_service.state # uninstalled & self.db_service.state == running &

precond={self.db_service == null} self.lb.state == uninstalled } self.lb.state # running }

C={ModelManager.get suitable_dbs(self)} ~ C=0 c=0

effects(M, c¢) = {self.set_db_service(c)} effects(M ,c)={self.state = uninstalled} effects(M ,c)={self.state = stopped}

Figure 2. State transition system describing the lifecyfl@ aveb application serveself refers to the object the STS describes.

transe, (state(o)) C Tys0) the set of executable transi- The transition places a WAS server on a VM. The set of
tions of o. More formally, trans.,(state(o)) = {t:|t; = candidatesC' consists of all virtual machines present in
(state(o), Ssink;, precond; (M), Ci,ef fectsi(c)) € Tyig(0) the model, that have no services deployed on them. This
and precond; (M) evaluates to true over the current modelis described by executable Groovy [15] code, dynamically
M }. For planning purposes we define, as a central concepxecuted at runtime, over the current model to ret&in

in this work, a Logical Planning State(LPS Ips as a The iterator randomly chooses a VM in Line 6. Note, that
tuple lps = (o01,...,0n) € M x,, M such that allo; are there are also transitions withi = (), e. g., transitiorinstall
mutually disjunct. A LPS is a tuple formed of objects from in Fig. 2, because installing a service is an internal change
the model, over which planning is donebjects(lps) =  that makes candidate selection unnecessary. Candidates ar
objects((01, ..., 0p)) = {01, ..., 0, } are the objects ofps. a way to describe model transformations necessary during
deployment to refine an abstract model to a fine grained
i _ ) ) full-deployment model as described in [14]. After that, the
The Algorithm consists of a loop iterating over LPSS ¢ yrent model is assigned td/,,; (Line 9). The effects

stored on a stack. The top of stack is read, and, if possible,re appjied to the model and the candidate. In the case of
a successor LPS is created and pushed on the stack. If RRe example in Fig. 2¢f fects(M,c) = {self.set_vm(c)}

successor LPS exists, the planner backtracks by popping thenich calls method sevm(c) on the WAS instance to

stack and continues with the preceding LPS. Backtracking tQstapjish a reference in the model between the WAS instance
the preceding LPS makes it necessary to restore all objeclg,q the VM. The effects are described as executable Groovy

tha_t ghanged. The search ends if the current top of St.acbode [15] over the OO CMDB. Finally, Line 12 checks the
satisfies thegoal check(gc). The search space of LPSs is o models for changes, as previously defined in Section Il.

explored in a first-depth search order, making it necesgary tgacause VM and WAS changed, their new versions are
check for a circle of LPS involving the newly added LPS. A poih stored. The parent is set tps, and suc is returmned

LPS implements a stateful iterator shown in Alg. 1, Whichin Line 19.
allows access to previously unreturned successor LPSs to
explore the search space. For now we assumelfhat;;, IV. FAST OBJECT STORING AND RESTORING

the initial LPS on the stack, holds all objects in M, i.e., During planning objects need to be stored before they
objects(Ipsinit) = M. We will later relax this constraint in - change between an LPS and its successor LPS (Alg.1,
Section V. Line 14) or they need to be restored when backtracking.
Line 2 in Alg.1 chooses an objeef and an executable Thys, fast object storing and restoring is crucial for the
transitiont of o; in ascending order of the;s stored inlps.  performance of the planner, especially in the presence of
The transition must not have been chosen in a previous calarge models/data centers. In this section we evaluate the
to the iterator, or if it has been before, there needs to be gierformance of four differenModel Recovery Strategies
least one candidate left’(# ()). Note, that transitions can be (MRS3 possible in Groovy [15]. Groovy is used because in
instantiated multiple times for each candidate or only oncey previous work [3] we found it well suited to define DSLs

if C'= 0. The candidate is initialized withull in Line 4. If  that can be directly executed over object oriented models.
a remaining candidate existsandidateis initialized with a

randomly chosen candidate frof (Line 6), and removed A. Recovery by Full Serialization
from C such that it is not used in future calls to the Using theRecovery by Full Serializatiof(RbFS strategy
iterator. For example, consider transititamk to vmin Fig.2.  the whole model is serialized when a new LPS is generated

IIl. ALGORITHM



Algorithm 1 Determine successor Logical Planning State est]
1: procedure GET_NEXT_LPS(Ips) > determining next Ips ﬁ :" :)
2: if Jo; € objects(lps) : transe,(state(o;)) # 0
then

* apply effects

3 Choose o; and t = (state(o;), Send, psz
precond(M),C,ef fects(M,c)) € transe,(state,,) estore s 1 0 :b :) restore s 1
in ascending order, such thdt is executable and using RbPS using RbFS
(—chosen_be fore(t) V (chosen_be fore(t) A C # 1)) Y Y

4: candidate <+ null 'psa ,

s 00 ten ©-.0 :) ©-.6.0

6: candidate < ¢ € C, random choice o

7: C = C — {candidate} ﬁ E

8: end if :

o Mouq < current model Figure 3. Restoring a LPS using Recovery by Partial Seattin (RbPS)

10: apply_effectsef fects(M, c)) and Recovery by Full Serialization (RbFS)

11: M,,es < current model

12: if changed(Moid, Mpew) then [Tos 1]

13: for all o € changedoyjs(Moid, Mpew) dO ﬁ :‘ :)

14: o.store new_version()

15: end for applyeffects

16: end if [los2]

17: suc < new LPS6bjects(Ips)) —— é :b :) esorolpe

18: suc.set parent(ps) using RbC using RbPR

19: return suc Y 47

20.  else e ' " "’53

21: return null ‘ @ 0 :»b :)

222 end if =

23: end procedure

Figure 4. Restoring a LPS using Recovery by Cloning (RbC)Recbvery
by Properties Renewal (RbPR)

independently of changed objects. Figure 3 depicts an RbFS

example in the right branch. Grey boxes denote LPSsautomatically deserializes a new versiono@f 02" because
circles denote domain objects of the LP&jects(lps))  serialization followed references held by a serializedzobj

and rectangles their propertieksl in Fig.3 consists of The seperate deserialized versien$ ando2’ do not refer-

three domain object®1 has a property holding valueand  ence each other as their originalisando2 did. Furthermore,
another property referencing2. Similarly 02 holdsb as a 03 still references the outdated versionsdfando2 in Ips2.

value and referencesl. o3 references2 andol. During  Less objects need to be serialized compared to the RbFS
planning the effects of a transition are applied/pe1 (see strategy but overhead emerges because references need to
Line 10 in Alg.1) leading to changes in the object model.be exchanged with unique identifiers that are mapped to the
Changed object instances or properties are depicted ik.blacmost recent instance of an object.

The effects of an applied transition changet® o’ andb to
b’. To backtrack frondps2 to Ips1 using RbFS, a previously
serialized version of the model dfpsl is deserialized. The Recovery by CloningRbQ) strategy restores objects
This leads to instancesl’, 02/, ando3’ being semantically by restoring a previously cloned version of the object. It is
equivalent to the instances ips1. Referential integrity is depicted in the left branch of Fig. 4. Compared to RbPS, RbC
guaranteed because the original model was serialized asayoids the additional objectd” ando2”. The references of

C. Recovery by Cloning

whole. the restored objects;1’ and 02’, referenceol and o2 and
) o not each other becausé ando2 were cloned. Similarly to
B. Recovery by Partial Serialization RbPS,03 does not point to the restored objeots and o2’

Recovery by Partial SerializatiofRbPS (Fig.3, left  Thus, reference re-mapping becomes necessary.
branch) only serializes single objects and deserializes )
changed objects separate. To resthrel from Ips2, pre- D Recovery by Properties Renewal
viously serialized versions 061 and 02 need to be de- Recovery by Properties Renew@bPR combines the
serialized. However, deserializing an instanceodfto o1’ advantages of RbFS (untouched references) and RbPS / RbC



Performance of planning and model initialization depending on recovery strategy and size of the Cloud LPS sizes during planning using LPSE/LPSR
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Figure 6. Size of the-th LPS created during the run of the deployment

Figure 5. Planning duration and additional time needed fardeh of a 3-tier service using Front or End Expansion of LPSs

initialization depending on recovery strategy in seconds

) ) all domain objects need to be stored because it cannot be
(only changed objects are stored/restored). RbPR is shoWN kg aseen which objects will be changed during planning.

the right branch of Fig. 4. The instance of an object stays theraking this time into account, RbC is between 44% and 53%
same during planning, references do not need to be reroute%ster than RbPS. RbPS is more costly than RbC regarding
RDPR only stores and restores all properties of an object. Ty, e initialization because each domain object has to be
restorelps1 from ips2, all properties obl ando2 need to be  geriglized separately. RbFS is the strategy with the sstalle
restored. Although it would suffice to only restore changediyrease when taking model initialization into account for
properties, our implementation conducts stores and ®SIOr o model sizes because batch-serializing a whole model is

for all properties. Restoring previous references is @ssl cheaper than single storage operations for all objects s co
free because there are no multiple instances of an object i cteq by RbC, RbPS, and RbPR. Note, that RbC and RbPS
different versions. performed equally with respect to planning duration beeaus
only 79 objects were stored/restored during planning. All i
all, RbPR is the fastest strategy due to the following reason
Figure 5 shows the planning duration and the time needegh) |t only stores / restores changed objects and (2) Overhea
for model initialization in seconds depending on the défér  induced by serialization and cloning is avoided. If a modest
model recovery techniques. Measurements were taken ffmount of objects# 80) are changed during planning, RbC
model sizes between 4,000 and 20,000 domain objectgng RbPS perform equally within milliseconds in respect
All optimization techniques (LPSE-EE/LPSR + P-CE) from tg the planning duration. Note, that a continously running
Sections V and VI were applied. Each model consists to 0n@|anning system would have to perform model initialization
fourth of VMs, PMs, OS images, and services (equally 1/3pnjy once. We will use RbPR as our recovery strategy
of DB, WAS, and LB). The change to plan for is to achieve hygughout the rest of this work because the other strategie

staterunning of a load balancer. This triggers deployment haye proven to be not performant enough in the context of
of a web application server, a database and the placemepfrge models or more complex changes.

of services on VMs and VMs on PMs. Regarding solely

planning time, RbPS and RbC perform nearly equally with V- OPTIMIZED RUNTIME FOR LARGE DATA CENTERS

RbC beeing marginally faster. Their runtime increases 3.5x A highly optimized version of Alg. 1 was used to achieve
while the model increases 5x in size. RbFS is the slowesthe runtimes presented in Fig. 5. This section desciilogs
strategy because the whole model is serialized for everycal Planning State ExpansiditPSE) andLogical Planning
LPS. It's runtime increases 4.5x, scaling worse than RbCSpace ReductiofLPSR, two techniques to prune large
and RbPS. RbFS needs to store and restore 1.3 millioportions of the search space in order to make our planning
objects for the 20,000 object model, whereas RbC, RbPSpproach feasible for large data centers hosted by a Cloud
and RbPR only need to conduct 79 store/restore operationSomputing provider.

due to changed objects. RbPR scales best, with a factor ofAn objecto € M, not part ofips, i.e., 0 ¢ objects(lps),
2.4x in the presence of a 5-times larger model. Time foris called relevant with respec(rwr) to an ips, if Jo; €
model initialization has to be taken into account if a planne objects(ips) : It € Ty50,) : t iS NOt executable because

is not running continuously. After the creation of the mqdel violates the precondition of. Thus, all objects violating a

E. Performance Evaluation



pl’econdltlon Of an Outh|ng tranSItIOH Of the Current State Planning duration dependent on % of resources satisfying contraint
25

of an object inlps are called rwr tolps. For example, CP.CE%EiEEi
considerlps = (was) and M = {db,was,lb}. was is PCE x
currently in statestopped The precondition to startvas 2

checks whethetib is in staterunning (see transitiorstart in
Fig. 2). We assuméb is in statestoppedas well. Thus, the
precondition of transitiorstop in Fig. 2 evaluates tdalse
db € M and¢ objects((was)) is thus relevant with respect
to Ips because it violates the precondition of transitieart
of was, an object inobjects((was)). Adding objectdb to
Ips will change the state oflb in a subsequent planning s
step, finally enablinguas to change its own state tanning )
Logical Planning State Expansiqi.PSE is the technique . U D S S S SR S D S
of adding objects € M /o ¢ objects(lps) thatare wrto ™ T T Tt
Ips to Ips. Thus, holding|objects(lps)| minimal. An LPS

can be extended in two different ways: Bes = (01’ - On) Figure 7. _Planning duration in seconds d_epending on Canseaforce-
. ment technigue and percentage of qualifying resources
and objecto.,, rwr to Ips, then

» End Expansior{LPSE-EB addso.,, at the end of the
tuple, i.e.,lps is expanded tdps’ = (01, ...,0n,0c:p).  Oexp; IN Ips’ because changes to theare not possible. The

« Front Expansion(LPSE-FB adds o.,, at the front change to ar..,, is then directly picked up by changing

of the tuple, i.e., lps is expanded tolps’ =  ano; in Ips” in the next iteration. Changing the order to
(Oeap; 01, -y On). LPSE-EE results in frequent backtracking.

. . . _— Figure 6 shows phases were constant phases of Ips size
Us’mg LPS expansion with an initial LP&s;n;; such that are followed by an expansion. Note, that constant phases
objects(lpsinit) = M does not make sense because i are longer for LPSE-FE because backtracking occurs be-
cannot be_ extgn_ded k_Je_y_ond M. Determining a small, but notr\/veen newly created and old LPSs to achieve a state in
necessarily minimal, initial LPS can be done as follows: Atoemp17 . 0eap, SUCh that a subsequent can execute a

che Il_aeginning of plﬁ”}?}ng g(;]al Che@:f i;evaluar:edkméeg transition. Without LPSE the deployment example already
- Let{or,...,0n} C € the set of objects checked by 16,5 1o impractical runtimes as soon [ag| > 18. In this

ge. Setlpsinit = (o1, ..., 0, ). Note, that we can derive this . s 1ntimes vary between 500ms and several minutes,
set in our implementation because getters record access %pending on the permutation of, ..., 0, in lps. LPSE
objects in our CMDB. We call this initialization techniqu_e drastically reduces the search sr;acve to objects that are
LPS Requctlo_r(LPSFa. It makes sense o use LPSR in directly, or indirectly relevant to reach an LPS that sagisfi
combination with LPSE because LPSE will gradually extendthe goal check. Independently of the size of the model
[psini; ith all _domain objects having an indirect influence the basic shape of the expansion curve stays the same. F’or
on the evaluation of _the goal check. ) example, independent of model size, planning starts with
Figure 6 shows the sizes of LPSs created during a run of theg (added by LPSR), WAS is added, a DB, and finally
algorithm on the vertical axis. The horizontal axis denote Ms, images, and Pl\/is that become r\,/vrt to t'he LPS. This

thei-th LPS created during planning. The underlying CMDB rastically reduces the search space and makes our anproach
consisted of 3000 objects. The goal was to deploy a load ba? asié)le f)c/)r Iaruge data centers P ur app

ancer depending on one WAS server, which again dependeg
on a DB. Regarding runtime and length of the generated v/|., DecLARATIVE vs. PROCEDURAL CONSTRAINT

plan LPSE-EE performs better LPSE-FE. LPSE-EE creates ENFORCEMENT

50 LPSs during planning, while LPSE-FE creates 121 LPSs, i i

LPSE-FE backtracks 50-times whereas End Expansion onf§ Constraint enforcement strategies

backtracks 12-times. This leads to a performance loss for Constraint enforcement during planning is important to
LPSE-FE of around 200ms. Similar results are achievedjenerate valid intermediate LPSs. State-related consdtai
with an increased number of WASs but with a wider gape.g., a service (DB,WAS,LB) is not allowed to be in state
in planning duration and number of backtracks. running without its VM beingrunning, are taken care of
The superior performance of LPSE-EE is explained asy the preconditions of transitions (see Fig.2). However,
follows: If no transition is executablefocyp,, -, Ocp, }» there are other, non state-related constraints which n@ed t
the objects rwr tolps, are added at the end éps such  be enforced. For example, constraints on the placement of
that Ips’ = (01, ..., 0n, Ocap, , ---» Ocap; ) IS the next LPS to  services, VMs, and collocation constraints. In the contéxt
be planned for. The planner will try to apply changes to anthe proposed algorithm they are equal in such a way, that a

Planning duration [s]




suitable candidate (see Alg. 1, Line 6) needs to be chosen fag constraint whenever a LPS is chosen. However, both
apply a transition. Without limitation consider the comgtit  strategies can make sense in combination, when there are
that VMs run exclusively on a PM. We call this constraint constraints difficult to be enforced by a transition, or if
the hosting constraintlt can be enforced in two ways: multiple constraints need to be enforced by a transition.
(1) Check and Prune Constraint Enforcem¢@aP-CB: A Especially if lots of objects exist of a certain class, it
CaP constraint is written in a declarative language to checks advised to use P-CE to propage a constraint. Besides
a created LPS for validity. Formally, first order logic can performance CaP-CE and P-CE have other distinguishing
be used to describe a CaP constraint. For instance, for theharacteristics:
hosting constraint, we specifyo € M : o is a physical (1) Maintenance : CaP-CE is easier to maintain because
machine: o.vms.size() < 1. Practically, a CaP constraint constraints are specified in a constraint database, separat
is implemented as dynamically executable code averin ~ from the behavior specification in the STS. P-CE specifies
case of the hosting constraintfar loop iterating over all  constraints implicitly by defining adequate candidate &ats
PMs, and checking the size of thenslist. a transition. Thus, the STS description has to be changed to
(2) Procedural constraint enforceme(R-CE): Starting with  apply different constraints.
a valid model, constraints can be enforced in a procedurgl) Integration of Optimizers: P-CE is well suited to easily
way by choosing candidates that satisfy the constraint. Fointegrate external optimizers that decide for an optimal
instance, transitiodink pm of a VM would determine the placement. Several works propose optimization techniques
candidate PMs by querying the model for PMs with no[16], [11], [17] our approach can benefit from. For example,
VMs on them (similar to thdink to vmtransition in Fig.2). Li etal. [11] propose an approach for the energy efficient
Because only candidates satisfying the constraint areechos placement of virtual machines. Using procedural constsain
every created successor LPS automatically adheres to theansitionlink pm of the VM can directly call an external
hosting constraint. application to determine an optimal candidate set. If weluse
The main difference between P-CE and CaP-CE is th&€aP-CE, all placements would be tried by the planner until
following: P-CE will only create successor LPSs by choos-a placement is not pruned because it is efficient.
ing candidates that adhere to a constraint. CaP-CE creates
successor LPS by choosing any candidate, but will backtrack
from the successor LPS until a successor LPS adheres to theRelated to state-based management of laaS and SaaS
constraint, i. e., the right candidate was chosen. constraints is the area of IT change planning [8], [9], [7],
[6], [5]. None of the previously mentioned approaches aims
to address planning for large scale data centers and object
Figure 7 shows the runtime of the planner in secondriented CMDBs while reasoning about the preconditions
for the LB deployment example using strategies CaP-CEand effects as our approach does.
CaP-CE + P-CE, and P-CE under different percentages dfeller etal. [8] proposed CHAMPS which formalizes plan-
resources satisfying the hosting constraint in the Claud. ning and scheduling as an optimization problem achieving
consists of each 1000 VMs, PMs, OS images and 300@ high degree of parallelism. Different to CHAMPS, we
services. The horizontal axis in Fig. 7 denotes the pergenta rely on an IT practitioner to define the planning domain.
of PMs satisfying the hosting constraint. CHAMPS does not reason about the preconditions and
From 90% onwards of qualifying resources, the runtimeeffects of actions which can lead to unsound plans. Cordeiro
of CaP-CE increases linearily. CaP-CE randomly choses atal. [9], [7] propose an approach to refine high-level IT
candidate, which is more likely to be already loaded withchanges into lower-level IT changes. Different to our work,
less free resources available, leading to frequent batitra the behavior of domain objects is not made explicit by
ing to chose another candidate. In fact, the amount of LPState-transition systems. Their approach enables plgriam
backtracked from correlates to the runtime curve of CaP-CEgeneral IT changes, while our approach focuses on state
For 100% qualifying PMs CaP-CE is about 100ms fasterelated changes and the transformation of models. Compared
than CaP-CE + P-CE. In such lightly loaded data centerso CHAMPS they address the reuse of plans. Trastour etal.
CaP-CE is better off without P-CE because P-CE posef6] propose a planning approach for IT changes explicitly
an additional overhead and can only marginally reduce thevorking over OO models using a refinement version of
generated candidate sets. CaP-CE + P-CE and P-CE hatlee HTN algorithm [10]. Model storing and restoring was
constant runtime (approx. 1.7s and 0.5s) independent gferformed using Hibernate and the snapshot capabilities of
the amount of qualifying resources because P-CE will onlydatabase. This was found to be a bottleneck. In addition to
chose candidates satisfying constraints, thus not gengrat that, the application of the approach to large data-centers
LPSs that will later need to be pruned (i.e., backtrackedvas out of the scope of this work. Maghraoui [5] etal.
from). CaP-CE in addition to P-CE poses an additionalpropose transforming the OO CMDB to predicates to use
overhead because each PM is still checked for the hosta variant of the POP [10] algorithm for planning. Different

VIl. RELATED WORK

B. Evaluation



to them our approach can directly plan over object oriented [4] DMTF. CIM Standard. [Online]. Available: http://wwwralf.

models. Their algorithm searches within the plan space
while ours searches within the state space. We addresse
plan space search over OO models in our previous work

[3]. Our former work proposed a hybrid approach between
state-space planning and plan-space planning to address an
abstraction mismatch between the refinement of IT changes

and planning according to state-dependencies. However, w
did not examine the performance of different model storing /

restoring techniques and the application of this algoritom

t)

Tel

a large scale data center was out of the scope of that work.
Compared to this work, our previous work was capable to

plan for general IT changes, while we limit ourself to state- [

related changes to laaS and SaaS components in this work.

VIIl. CONCLUSION

We identified a performance short-coming when it comes
to plan over OO CMDBs in the context of large data centers.
We proposed a planning approach that is capable to plan
for SaaS and laaS constraints even for large data centers.
Using a deployment case study for a 3-tier application we
showed the approaches scalability to a data center in size
of 5000 PMs and VMs. We found that storing and restoring

of OO models can be fastest achieved by storing / restoring

properties of objects. We evaluated the effect of procddura
and declarative constraints on the runtime of the planne[flo]
and found that procedural constraints can achieve constant

runtime for placement constraints in the presence of highly; 1;

loaded data centers.

For future work we would like to extend our approach

(8]

9]

to other examples besides the deployment case study, to
apply it to Virtual Appliances [12], and to examine how r,
configuration aspects [14] can be addressed using the notion

of state-transition systems.
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