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Abstract—To deliver 3-tier applications as a Service in the
Cloud state-related constraints crossing Infrastructure- and
Software as a Service boundaries need to be managed. By
automating the lifecycle of applications like databases, load
balancers, and web application servers rich SaaS business
services can be provided in the Cloud. We propose an object
oriented planning approach based on state constraints to plan
for changes of SaaS and IaaS components in the Cloud. We
evaluate techniques for fast storing and restoring of largeobject
oriented Configuration Management Databases and show that
enforcing constraints in a procedural instead of a declarative
way offers huge performance improvements. The advantages
of our approach lie within the tight integration of the plann ing
algorithm with object oriented models frequently used for
Configuration Management Databases. In addition to that, the
algorithm scales to a large number of nodes and preserves its
runtime even for large, heavily loaded data centers.

Keywords-IT change planning, service management, applica-
tion management, AI planning, state-based constraints

I. I NTRODUCTION

With the proliferation of Cloud Computing[1], e. g.,
Infrastructure as a Service(IaaS) and Software as a Ser-
vice (SaaS), it becomes more and more important for
cloud/service providers to migrate existing business applica-
tions to the Cloud to generate additional value for customers
on top of IaaS. A typical business application very often
consists of a three-tier architecture, comprising a database
(DB), several application- or web servers (WAS/Apache),
and a load balancer (LB). Offering and migrating such ap-
plications to the Cloud makes sense to decrease IT costs by
consolidating IT infrastructure, to offer business applications
as a service, and to dynamically scale the application layer
to cope with varying loads. Applications following the 3-
tier architecture are for example, SAP/R3 and wiki systems,
such as TikiWiki.
To automatically offer these applications to customers as
a service [2] in the Cloud, their lifecycle has to be au-
tomatically managed according to state-related constraints
crossing SaaS and IaaS boundaries. In a previous work
[3] we proposed to describe these constraints using state-
transition systems:

SaaS - SaaS constraints:To start an Apache server, the
database needs to be in staterunningbecause Apache relies
on data stored in the database.
SaaS - IaaS constraints: In order to install an application
in a virtual machine (VM), it needs to be in staterunning
and the physical machine (PM) needs to be in stateon.
Planning for state related changes in a cloud environment
becomes very challenging due to the large amount of com-
ponents comprising a data center leaving lots of possibil-
ities to instantiate an action. Traditionally object oriented
(OO) models, e. g., theCommon Information Model(CIM)
[4] standard, have been used to implementConfiguration
Management Databases(CMDBs) to describe the data center
and all its hosted applications. In the presence of large data
centers these models can become very big making planning
extremely difficult.
Although several approaches were proposed for IT change
planning [3], [5], [6], [7], [8], [9] they do not provide an
adequate planning approach working over object oriented
CMDBs in the presence of large data centers as imposed by
Cloud Computing. For example, Trastour et al. [6] proposed
a planning approach over an object oriented CMDB but did
not provide adequate performance for large scale CMDBs.
Others [5] used a planner over a predicate based knowl-
edgebase (KB). However, this approach has two drawbacks:
(1) The object oriented CMDB and the results of planning
need to be transformed between OO models and predicates.
(2) An operator familiar with the object based CMDB has
to learn an unknown predicate based language to describe
the knowledgebase. Our previous work [3] made use of
an object oriented CMDB and a KB written in aDomain
Specific Language(DSL) over this model. However, aiming
at performance in the presence of many nodes was not a goal
of this work. Furthermore, there were situations, that were
in fact out of the scope of this work, were the algorithm was
unable to find a solution although one existed.
In this work we propose an algorithm inspired by artificial
intelligence planning techniques [10] working over object
oriented models to plan according to IaaS and SaaS state
constraints. We evaluate the performance of several tech-
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Figure 1. Object oriented CMDB model over which planning is done

niques for fast object storing and restoring to pave the way
to directly use object oriented CMDBs for planning in the
presence of large data centers. We apply the algorithm to
a deployment case study of 3-tier applications and show
that it nicely scales with the increasing size of the data
center. In addition to that, we show that enforcing placement
constraints in a procedural way has significant advantages
over a declarative check-and-prune approach when it comes
to planning speed under varying load levels in the Cloud.
Compared to previous work our approach has several ad-
vantages: (1) It scales to a large number of nodes / objects
in the CMDB even in the presence of difficult placement
constraints. (2) Planning is directly done over an object
oriented CMDB making it easy to interface with tools and
existing models, such as CIM [4]. (3) The KB can directly
address properties of objects in the model. There is no
need for switching between different representations as in
[5]. (5) Direct interfacing with external tools can be easily
achieved, e. g., to determine an optimal placement [11]. (6)
The knowledgebase can be easily adapted to take different
solutions for application deployment into account. For ex-
ample, solving deployment usingVirtual Appliances[12],
[13] or using a finer grained domain comprising installation
and configuration of applications [14].
The remainder of this paper is organized as follows: Sec-
tion II introduces our notion of models and state-transition
systems. The algorithm is introduced in Section III. After
that, we propose and evaluate different strategies for fast
object storing and restoring in Section IV. In Section V we
propose a heuristic to optimize the runtime for large data
centers. Section VI evaluates the influence of declarative
and procedural constraints on the runtime of the algorithm.
Finally, we relate our work to others in Section VII and
conclude in Section VIII.

II. M ODELLING THE CLOUD

This section introduces the basic concepts our solution is
built on. Object oriented models, e. g., CIM [4], have been
traditionally used to describe the CMDB. The CMDB de-
scribes the configuration of a data center from its resources
to its hosted applications. The CMDB can be automatically
generated by scanning a data center for running applica-

tions, e. g., using HP’s Discovery and Dependency Mapping
software. We envision an approach in which independent
tools access a shared CMDB to act upon it. Knowing the
behavior of tools, scripts, and applications, we can plan for
their changes directly over a CMDB to achieve a certain
goal, e. g., to deploy a 3-tier architecture. Figure 1 shows
the model of the CMDB used throughout this work. Note,
that our approach is capable of planning over any OO model.
We modeled PMs, VMs, operating system (OS) images and
services. Objects are linked by references. We modeled DB,
WAS, and LB with their dependencies between each other.
Furthermore, the model provides methods to create and
destroy references. Each class is mapped to a state-transition
system describing its behavior. For example, Fig. 2 denotes
the state-transition system of classWASin Fig. 1. The STS
describes the behavior of a WAS instance. Every class owns
a state property storing its current state. More formally, our
solution comprises the following concepts:
Let O = {o1, ..., on} be a set of domain objects. An object
o ∈ O is a 3-tuple, such thato = (id, s, (p1, ..., pn)) where
id is the unique id ofo, s the current state ofo, and pi
the values ofo’s properties. For an objecto, id(o) returns
the unique id ofo andstate(o) denotes the current state of
o. Let o = (id, s, (p1, ..., pn)) ando′ = (id, s′, (p′1, ..., p

′

n))
be two versions of the object with identifierid. We define
changed(o, o′) such thatchanged(o, o′) = true iff s 6= s′

∨ ∃pi ∈ {p1, ..., pn} : pi 6= p′i. A model M ⊆ O is a
subset ofO such that references between objects are covered
by the objects’ properties. Similarly to changed objects we
can define for two modelsM and M ′: changed(M,M ′)
iff |M | 6= |M ′| ∨ ∃o ∈ M : ∃o′ ∈ M ′ : id(o) =
id(o′)∧ changed(o, o′). We definechangedobjs(M,M ′) as
the set of all objects changed or newly created between
M andM ′. More formally changedobjs(M,M ′) = {o′ ∈
M ′|∃o ∈M : changed(o, o′)∨¬∃o ∈M : id(o) = id(o′)}.
Deleted objects still remain inM , but are not referenced by
properties any more.
Our notion ofstate-transition systems(STS) is the following:
Let

∑
= {σ1, ..., σn} be the set of all state-transition

systems. A state-transition systemσ ∈
∑

is a 2-tuple
σ = (Sσ, Tσ) such thatSσ = {s1, ..., sn} are the states
of σ and Tσ = {t1, ..., tn} are the transitions ofσ. For
each domain objecto ∈ O there exists exactly oneσ ∈

∑

such thatstate(o) ∈ Sσ throughout the existence of the
object. It is denoted bysts(o). A transition t ∈ Tσ is a
tuple t = (ssource, ssink, precond(M), C, effects(M, c))
such thatssource ∈ Sσ is the source andssink ∈ Sσ the
sink of t. precond(M) describes a precondition evaluated
over modelM which needs to account to executet. C ⊆M
are the candidate objects of transitiont. A transition can be
instantiated for every candidate objectc ∈ C, e. g., to link
the candidatec to the objectσ describes.effects(M, c)
describes the effects the execution of the transition has on
the underlying modelM dependent on candidatec. We call



Figure 2. State transition system describing the lifecyle of a web application server.self refers to the object the STS describes.

transex(state(o)) ⊆ Tsts(o) the set of executable transi-
tions of o. More formally, transex(state(o)) = {ti|ti =
(state(o), ssinki

, precondi(M), Ci, effectsi(c)) ∈ Tsts(o)

andprecondi(M) evaluates to true over the current model
M }. For planning purposes we define, as a central concept
in this work, a Logical Planning State(LPS) lps as a
tuple lps = (o1, ..., on) ⊆ M ×n M such that alloi are
mutually disjunct. A LPS is a tuple formed of objects from
the model, over which planning is done.objects(lps) =
objects((o1, ..., on)) = {o1, ..., on} are the objects oflps.

III. A LGORITHM

The Algorithm consists of a loop iterating over LPSs
stored on a stack. The top of stack is read, and, if possible,
a successor LPS is created and pushed on the stack. If no
successor LPS exists, the planner backtracks by popping the
stack and continues with the preceding LPS. Backtracking to
the preceding LPS makes it necessary to restore all objects
that changed. The search ends if the current top of stack
satisfies thegoal check(gc). The search space of LPSs is
explored in a first-depth search order, making it necessary to
check for a circle of LPS involving the newly added LPS. A
LPS implements a stateful iterator shown in Alg. 1, which
allows access to previously unreturned successor LPSs to
explore the search space. For now we assume thatlpsinit,
the initial LPS on the stack, holds all objects in M, i. e.,
objects(lpsinit) = M . We will later relax this constraint in
Section V.
Line 2 in Alg. 1 chooses an objectoi and an executable
transitiont of oi in ascending order of theois stored inlps.
The transition must not have been chosen in a previous call
to the iterator, or if it has been before, there needs to be at
least one candidate left (C 6= ∅). Note, that transitions can be
instantiated multiple times for each candidate or only once
if C = ∅. The candidate is initialized withnull in Line 4. If
a remaining candidate exists,candidateis initialized with a
randomly chosen candidate fromC (Line 6), and removed
from C such that it is not used in future calls to the
iterator. For example, consider transitionlink to vmin Fig. 2.

The transition places a WAS server on a VM. The set of
candidatesC consists of all virtual machines present in
the model, that have no services deployed on them. This
is described by executable Groovy [15] code, dynamically
executed at runtime, over the current model to retainC.
The iterator randomly chooses a VM in Line 6. Note, that
there are also transitions withC = ∅, e. g., transitioninstall
in Fig. 2, because installing a service is an internal change
that makes candidate selection unnecessary. Candidates are
a way to describe model transformations necessary during
deployment to refine an abstract model to a fine grained
full-deployment model as described in [14]. After that, the
current model is assigned toMold (Line 9). The effects
are applied to the model and the candidate. In the case of
the example in Fig. 2,effects(M, c) = {self.set vm(c)}
which calls method setvm(c) on the WAS instance to
establish a reference in the model between the WAS instance
and the VM. The effects are described as executable Groovy
Code [15] over the OO CMDB. Finally, Line 12 checks the
two models for changes, as previously defined in Section II.
Because VM and WAS changed, their new versions are
both stored. The parent is set tolps, and suc is returned
in Line 19.

IV. FAST OBJECTSTORING AND RESTORING

During planning objects need to be stored before they
change between an LPS and its successor LPS (Alg. 1,
Line 14) or they need to be restored when backtracking.
Thus, fast object storing and restoring is crucial for the
performance of the planner, especially in the presence of
large models/data centers. In this section we evaluate the
performance of four differentModel Recovery Strategies
(MRSs) possible in Groovy [15]. Groovy is used because in
a previous work [3] we found it well suited to define DSLs
that can be directly executed over object oriented models.

A. Recovery by Full Serialization

Using theRecovery by Full Serialization(RbFS) strategy
the whole model is serialized when a new LPS is generated



Algorithm 1 Determine successor Logical Planning State
1: procedure GET NEXT LPS(lps) ⊲ determining next lps
2: if ∃oi ∈ objects(lps) : transex(state(oi)) 6= ∅

then
3: Choose oi and t = (state(oi), send,

precond(M), C, effects(M, c)) ∈ transex(stateoi)
in ascending order, such thatt is executable and
(¬chosen before(t) ∨ (chosen before(t) ∧ C 6= ∅))

4: candidate← null
5: if C 6= ∅ then
6: candidate← c ∈ C, random choice
7: C = C − {candidate}
8: end if
9: Mold ← current model

10: apply effects(effects(M, c))
11: Mnew ← current model
12: if changed(Mold,Mnew) then
13: for all o ∈ changedobjs(Mold,Mnew) do
14: o.store new version()
15: end for
16: end if
17: suc← new LPS(objects(lps))
18: suc.set parent(lps)
19: return suc
20: else
21: return null
22: end if
23: end procedure

independently of changed objects. Figure 3 depicts an RbFS
example in the right branch. Grey boxes denote LPSs,
circles denote domain objects of the LPS (objects(lps))
and rectangles their properties.lps1 in Fig. 3 consists of
three domain objects.o1 has a property holding valuea and
another property referencingo2. Similarly o2 holds b as a
value and referenceso1. o3 referenceso2 and o1. During
planning the effects of a transition are applied tolps1 (see
Line 10 in Alg. 1) leading to changes in the object model.
Changed object instances or properties are depicted in black.
The effects of an applied transition changesa to a′ andb to
b′. To backtrack fromlps2 to lps1 using RbFS, a previously
serialized version of the model oflps1 is deserialized.
This leads to instanceso1′, o2′, ando3′ being semantically
equivalent to the instances inlps1. Referential integrity is
guaranteed because the original model was serialized as a
whole.

B. Recovery by Partial Serialization

Recovery by Partial Serialization(RbPS) (Fig. 3, left
branch) only serializes single objects and deserializes
changed objects separate. To restorelps1 from lps2, pre-
viously serialized versions ofo1 and o2 need to be de-
serialized. However, deserializing an instance ofo1 to o1′
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automatically deserializes a new version ofo2, o2′′ because
serialization followed references held by a serialized object.
The seperate deserialized versionso1′ ando2′ do not refer-
ence each other as their originalso1 ando2 did. Furthermore,
o3 still references the outdated versions ofo1 ando2 in lps2.
Less objects need to be serialized compared to the RbFS
strategy but overhead emerges because references need to
be exchanged with unique identifiers that are mapped to the
most recent instance of an object.

C. Recovery by Cloning

The Recovery by Cloning(RbC) strategy restores objects
by restoring a previously cloned version of the object. It is
depicted in the left branch of Fig. 4. Compared to RbPS, RbC
avoids the additional objectso1′′ ando2′′. The references of
the restored objects,o1′ and o2′, referenceo1 and o2 and
not each other becauseo1 ando2 were cloned. Similarly to
RbPS,o3 does not point to the restored objectso1′ ando2′.
Thus, reference re-mapping becomes necessary.

D. Recovery by Properties Renewal

Recovery by Properties Renewal(RbPR) combines the
advantages of RbFS (untouched references) and RbPS / RbC
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(only changed objects are stored/restored). RbPR is shown in
the right branch of Fig. 4. The instance of an object stays the
same during planning, references do not need to be rerouted.
RbPR only stores and restores all properties of an object. To
restorelps1 from lps2, all properties ofo1 ando2 need to be
restored. Although it would suffice to only restore changed
properties, our implementation conducts stores and restores
for all properties. Restoring previous references is hassle-
free because there are no multiple instances of an object in
different versions.

E. Performance Evaluation

Figure 5 shows the planning duration and the time needed
for model initialization in seconds depending on the different
model recovery techniques. Measurements were taken for
model sizes between 4,000 and 20,000 domain objects.
All optimization techniques (LPSE-EE/LPSR + P-CE) from
Sections V and VI were applied. Each model consists to one
fourth of VMs, PMs, OS images, and services (equally 1/3
of DB, WAS, and LB). The change to plan for is to achieve
staterunning of a load balancer. This triggers deployment
of a web application server, a database and the placement
of services on VMs and VMs on PMs. Regarding solely
planning time, RbPS and RbC perform nearly equally with
RbC beeing marginally faster. Their runtime increases 3.5x
while the model increases 5x in size. RbFS is the slowest
strategy because the whole model is serialized for every
LPS. It’s runtime increases 4.5x, scaling worse than RbC
and RbPS. RbFS needs to store and restore 1.3 million
objects for the 20,000 object model, whereas RbC, RbPS,
and RbPR only need to conduct 79 store/restore operations
due to changed objects. RbPR scales best, with a factor of
2.4x in the presence of a 5-times larger model. Time for
model initialization has to be taken into account if a planner
is not running continuously. After the creation of the model,
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all domain objects need to be stored because it cannot be
foreseen which objects will be changed during planning.
Taking this time into account, RbC is between 44% and 53%
faster than RbPS. RbPS is more costly than RbC regarding
model initialization because each domain object has to be
serialized separately. RbFS is the strategy with the smallest
increase when taking model initialization into account for
all model sizes because batch-serializing a whole model is
cheaper than single storage operations for all objects as con-
ducted by RbC, RbPS, and RbPR. Note, that RbC and RbPS
performed equally with respect to planning duration because
only 79 objects were stored/restored during planning. All in
all, RbPR is the fastest strategy due to the following reasons:
(1) It only stores / restores changed objects and (2) Overhead
induced by serialization and cloning is avoided. If a modest
amount of objects (≈ 80) are changed during planning, RbC
and RbPS perform equally within milliseconds in respect
to the planning duration. Note, that a continously running
planning system would have to perform model initialization
only once. We will use RbPR as our recovery strategy
throughout the rest of this work because the other strategies
have proven to be not performant enough in the context of
large models or more complex changes.

V. OPTIMIZED RUNTIME FOR LARGE DATA CENTERS

A highly optimized version of Alg. 1 was used to achieve
the runtimes presented in Fig. 5. This section describesLog-
ical Planning State Expansion(LPSE) andLogical Planning
Space Reduction(LPSR), two techniques to prune large
portions of the search space in order to make our planning
approach feasible for large data centers hosted by a Cloud
Computing provider.
An object o ∈ M , not part oflps, i. e., o /∈ objects(lps),

is called relevant with respect(rwr) to an lps, if ∃oi ∈
objects(lps) : ∃t ∈ Tsts(oi) : t is not executable becauseo
violates the precondition oft. Thus, all objects violating a



precondition of an outgoing transition of the current state
of an object in lps are called rwr tolps. For example,
consider lps = (was) and M = {db, was, lb}. was is
currently in statestopped. The precondition to startwas
checks whetherdb is in staterunning (see transitionstart in
Fig. 2). We assumedb is in statestoppedas well. Thus, the
precondition of transitionstop in Fig. 2 evaluates tofalse.
db ∈M and /∈ objects((was)) is thus relevant with respect
to lps because it violates the precondition of transitionstart
of was, an object inobjects((was)). Adding objectdb to
lps will change the state ofdb in a subsequent planning
step, finally enablingwas to change its own state torunning.
Logical Planning State Expansion(LPSE) is the technique
of adding objectso ∈M ∧ o /∈ objects(lps) that are rwr to
lps to lps. Thus, holding|objects(lps)| minimal. An LPS
can be extended in two different ways: Belps = (o1, ..., on)
and objectoexp rwr to lps, then

• End Expansion(LPSE-EE) addsoexp at the end of the
tuple, i. e.,lps is expanded tolps′ = (o1, ..., on, oexp).

• Front Expansion(LPSE-FE) adds oexp at the front
of the tuple, i. e., lps is expanded to lps′ =
(oexp, o1, ..., on).

Using LPS expansion with an initial LPSlpsinit such that
objects(lpsinit) = M does not make sense becauselpsinit
cannot be extended beyond M. Determining a small, but not
necessarily minimal, initial LPS can be done as follows: At
the beginning of planning goal checkgc is evaluated over
M . Let {o1, ..., on} ⊆ M be the set of objects checked by
gc. Set lpsinit = (o1, ..., on). Note, that we can derive this
set in our implementation because getters record access on
objects in our CMDB. We call this initialization technique
LPS Reduction(LPSR). It makes sense to use LPSR in
combination with LPSE because LPSE will gradually extend
lpsinit with all domain objects having an indirect influence
on the evaluation of the goal check.
Figure 6 shows the sizes of LPSs created during a run of the
algorithm on the vertical axis. The horizontal axis denotes
thei-th LPS created during planning. The underlying CMDB
consisted of 3000 objects. The goal was to deploy a load bal-
ancer depending on one WAS server, which again depended
on a DB. Regarding runtime and length of the generated
plan LPSE-EE performs better LPSE-FE. LPSE-EE creates
50 LPSs during planning, while LPSE-FE creates 121 LPSs.
LPSE-FE backtracks 50-times whereas End Expansion only
backtracks 12-times. This leads to a performance loss for
LPSE-FE of around 200ms. Similar results are achieved
with an increased number of WASs but with a wider gap
in planning duration and number of backtracks.
The superior performance of LPSE-EE is explained as
follows: If no transition is executable,{oexp1

, ..., oexpn
},

the objects rwr tolps, are added at the end oflps such
that lps′ = (o1, ..., on, oexp1

, ..., oexpi
) is the next LPS to

be planned for. The planner will try to apply changes to an
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oexpi
in lps′ because changes to theoi are not possible. The

change to anoexpi
is then directly picked up by changing

an oi in lps′′ in the next iteration. Changing the order to
LPSE-EE results in frequent backtracking.
Figure 6 shows phases were constant phases of lps size
are followed by an expansion. Note, that constant phases
are longer for LPSE-FE because backtracking occurs be-
tween newly created and old LPSs to achieve a state in
oexp1

, ..., oexpi
such that a subsequentoi can execute a

transition. Without LPSE the deployment example already
leads to impractical runtimes as soon as|M | ≥ 18. In this
case runtimes vary between 500ms and several minutes,
depending on the permutation ofo1, ..., on in lps. LPSE
drastically reduces the search space to objects that are
directly, or indirectly relevant to reach an LPS that satisfies
the goal check. Independently of the size of the model,
the basic shape of the expansion curve stays the same. For
example, independent of model size, planning starts with
LB (added by LPSR), WAS is added, a DB, and finally
VMs, images, and PMs that become rwrt to the LPS. This
drastically reduces the search space and makes our approach
feasible for large data centers.

VI. D ECLARATIVE VS. PROCEDURAL CONSTRAINT

ENFORCEMENT

A. Constraint enforcement strategies

Constraint enforcement during planning is important to
generate valid intermediate LPSs. State-related constraints,
e. g., a service (DB,WAS,LB) is not allowed to be in state
running without its VM being running, are taken care of
by the preconditions of transitions (see Fig. 2). However,
there are other, non state-related constraints which need to
be enforced. For example, constraints on the placement of
services, VMs, and collocation constraints. In the contextof
the proposed algorithm they are equal in such a way, that a



suitable candidate (see Alg. 1, Line 6) needs to be chosen to
apply a transition. Without limitation consider the constraint
that VMs run exclusively on a PM. We call this constraint
the hosting constraint. It can be enforced in two ways:
(1) Check and Prune Constraint Enforcement(CaP-CE): A
CaP constraint is written in a declarative language to check
a created LPS for validity. Formally, first order logic can
be used to describe a CaP constraint. For instance, for the
hosting constraint, we specify∀o ∈ M : o is a physical
machine: o.vms.size() ≤ 1. Practically, a CaP constraint
is implemented as dynamically executable code overM . In
case of the hosting constraint afor loop iterating over all
PMs, and checking the size of thevms list.
(2) Procedural constraint enforcement(P-CE): Starting with
a valid model, constraints can be enforced in a procedural
way by choosing candidates that satisfy the constraint. For
instance, transitionlink pm of a VM would determine the
candidate PMs by querying the model for PMs with no
VMs on them (similar to thelink to vmtransition in Fig. 2).
Because only candidates satisfying the constraint are chosen,
every created successor LPS automatically adheres to the
hosting constraint.
The main difference between P-CE and CaP-CE is the
following: P-CE will only create successor LPSs by choos-
ing candidates that adhere to a constraint. CaP-CE creates
successor LPS by choosing any candidate, but will backtrack
from the successor LPS until a successor LPS adheres to the
constraint, i. e., the right candidate was chosen.

B. Evaluation

Figure 7 shows the runtime of the planner in seconds
for the LB deployment example using strategies CaP-CE,
CaP-CE + P-CE, and P-CE under different percentages of
resources satisfying the hosting constraint in the Cloud.M
consists of each 1000 VMs, PMs, OS images and 3000
services. The horizontal axis in Fig. 7 denotes the percentage
of PMs satisfying the hosting constraint.
From 90% onwards of qualifying resources, the runtime
of CaP-CE increases linearily. CaP-CE randomly choses a
candidate, which is more likely to be already loaded with
less free resources available, leading to frequent backtrack-
ing to chose another candidate. In fact, the amount of LPS
backtracked from correlates to the runtime curve of CaP-CE.
For 100% qualifying PMs CaP-CE is about 100ms faster
than CaP-CE + P-CE. In such lightly loaded data centers
CaP-CE is better off without P-CE because P-CE poses
an additional overhead and can only marginally reduce the
generated candidate sets. CaP-CE + P-CE and P-CE have
constant runtime (approx. 1.7s and 0.5s) independent of
the amount of qualifying resources because P-CE will only
chose candidates satisfying constraints, thus not generating
LPSs that will later need to be pruned (i. e., backtracked
from). CaP-CE in addition to P-CE poses an additional
overhead because each PM is still checked for the host-

ing constraint whenever a LPS is chosen. However, both
strategies can make sense in combination, when there are
constraints difficult to be enforced by a transition, or if
multiple constraints need to be enforced by a transition.
Especially if lots of objects exist of a certain class, it
is advised to use P-CE to propage a constraint. Besides
performance CaP-CE and P-CE have other distinguishing
characteristics:
(1) Maintenance : CaP-CE is easier to maintain because
constraints are specified in a constraint database, separated
from the behavior specification in the STS. P-CE specifies
constraints implicitly by defining adequate candidate setsfor
a transition. Thus, the STS description has to be changed to
apply different constraints.
(2) Integration of Optimizers: P-CE is well suited to easily
integrate external optimizers that decide for an optimal
placement. Several works propose optimization techniques
[16], [11], [17] our approach can benefit from. For example,
Li et al. [11] propose an approach for the energy efficient
placement of virtual machines. Using procedural constraints,
transition link pm of the VM can directly call an external
application to determine an optimal candidate set. If we used
CaP-CE, all placements would be tried by the planner until
a placement is not pruned because it is efficient.

VII. RELATED WORK

Related to state-based management of IaaS and SaaS
constraints is the area of IT change planning [8], [9], [7],
[6], [5]. None of the previously mentioned approaches aims
to address planning for large scale data centers and object
oriented CMDBs while reasoning about the preconditions
and effects as our approach does.
Keller et al. [8] proposed CHAMPS which formalizes plan-
ning and scheduling as an optimization problem achieving
a high degree of parallelism. Different to CHAMPS, we
rely on an IT practitioner to define the planning domain.
CHAMPS does not reason about the preconditions and
effects of actions which can lead to unsound plans. Cordeiro
et al. [9], [7] propose an approach to refine high-level IT
changes into lower-level IT changes. Different to our work,
the behavior of domain objects is not made explicit by
state-transition systems. Their approach enables planning for
general IT changes, while our approach focuses on state
related changes and the transformation of models. Compared
to CHAMPS they address the reuse of plans. Trastour et al.
[6] propose a planning approach for IT changes explicitly
working over OO models using a refinement version of
the HTN algorithm [10]. Model storing and restoring was
performed using Hibernate and the snapshot capabilities ofa
database. This was found to be a bottleneck. In addition to
that, the application of the approach to large data-centers
was out of the scope of this work. Maghraoui [5] et al.
propose transforming the OO CMDB to predicates to use
a variant of the POP [10] algorithm for planning. Different



to them our approach can directly plan over object oriented
models. Their algorithm searches within the plan space
while ours searches within the state space. We addressed
plan space search over OO models in our previous work
[3]. Our former work proposed a hybrid approach between
state-space planning and plan-space planning to address an
abstraction mismatch between the refinement of IT changes
and planning according to state-dependencies. However, we
did not examine the performance of different model storing /
restoring techniques and the application of this algorithmto
a large scale data center was out of the scope of that work.
Compared to this work, our previous work was capable to
plan for general IT changes, while we limit ourself to state-
related changes to IaaS and SaaS components in this work.

VIII. C ONCLUSION

We identified a performance short-coming when it comes
to plan over OO CMDBs in the context of large data centers.
We proposed a planning approach that is capable to plan
for SaaS and IaaS constraints even for large data centers.
Using a deployment case study for a 3-tier application we
showed the approaches scalability to a data center in size
of 5000 PMs and VMs. We found that storing and restoring
of OO models can be fastest achieved by storing / restoring
properties of objects. We evaluated the effect of procedural
and declarative constraints on the runtime of the planner
and found that procedural constraints can achieve constant
runtime for placement constraints in the presence of highly
loaded data centers.
For future work we would like to extend our approach
to other examples besides the deployment case study, to
apply it to Virtual Appliances [12], and to examine how
configuration aspects [14] can be addressed using the notion
of state-transition systems.
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