

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-814435

Dirk Habich, Sebastian Richly, Uwe Assmann, Wolfgang Lehner

Using Cloud Technologies to Optimize Data-Intensive Service
Applications

Erstveröffentlichung in / First published in:

IEEE 3rd International Conference on Cloud Computing. Miami, 05.–10.07.2010. IEEE, S. 19-
26. ISBN 978-1-4244-8207-8

DOI: https://doi.org/10.1109/CLOUD.2010.56

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-814435
https://doi.org/10.1109/CLOUD.2010.56

Using Cloud Technologies to Optimize Data-Intensive Service Applications

Dirk Habich, Wolfgang Lehner
Dresden University of Technology

Database Technology Group
Dresden, Germany

{dirk.habich,wolfgang.lehner}@tu-dresden.de

Sebastian Richly, Uwe Assmann
Dresden University of Technology

Software Engineering Group
Dresden, Germany

{sebastian.richly,uwe.assmann}@tu-dresden.de

Abstract—The role of data analytics increases in several
application domains to cope with the large amount of captured
data. Generally, data analytics are data-intensive processes,
whose efficient execution is a challenging task. Each process
consists of a collection of related structured activities, where
huge data sets have to be exchanged between several loosely
coupled services. The implementation of such processes in a
service-oriented environment offers some advantages, but the
efficient realization of data flows is difficult. Therefore, we use
this paper to propose a novel SOA-aware approach with a
special focus on the data flow. The tight interaction of new cloud
technologies with SOA technologies enables us to optimize the
execution of data-intensive service applications by reducing the
data exchange tasks to a minimum. Fundamentally, our core
concept to optimize the data flows is found in data clouds.
Moreover, we can exploit our approach to derive efficient
process execution strategies regarding different optimization
objectives for the data flows.

Keywords-service applications; data-intensive; data cloud;

I. INTRODUCTION

The service-oriented architecture is a widely accepted and
engaged paradigm for the realization of business processes
that incorporate several distributed, loosely coupled part-
ners. Today, Web services and the Business Process Exe-
cution Language for Web Services (BPEL4WS, BPEL for
short) [1], [2] are the established technologies to implement
such a service-oriented architecture [1], [2]. The function-
ality provided by business applications is enclosed within
Web service software components. Those Web services can
be invoked by application programs or by other Web services
via Internet without explicitly binding them. On top of that,
BPEL has been established as the de-facto standard for
implementing business processes based on Web services [1],
[2].

Aside from business processes, the service-oriented ap-
proach using Web services and BPEL is also of great
interest for the implementation of data-intensive processes
such as, for example, those found in the area of data
analytics. Generally, we define the notion of a data-intensive
process as a collection of related structured activities or tasks
(services) that produce a specific result; huge data sets have
to be exchanged between several loosely coupled services in
such a data-intensive process. In this case, the exchange of

massive data is challenging and several papers have shown
that the preferred XML-based SOAP protocol [2] for the
communication between Web services is not efficient enough
in those scenario settings [3], [4], [5], [6].

To tackle this data exchange issue on a conceptual level,
we proposed specific extensions on the Web service [4] as
well as the BPEL levels [7] for data-intensive service appli-
cations. Using these extended technologies, the exchange of
large data sets between participating services in a process
is conducted with specific data-oriented approaches, such as
ETL tools for the data exchange between databases [8]. The
incorporation of such specific data propagation tools is done
in a transparent way using service technologies during the
process execution. The main disadvantages of our approach
can be characterized as follows:

1) The specific data propagation/exchange services have
to be available at process execution time. If this de-
mand is not met, the process execution is not possible;
this clearly restricts the practicability and applicabil-
ity of our approach. Therefore, the overall approach
depends on the availability of such specialized data
propagation services.

2) The performance of the data exchange is dramatically
improved by this approach, as proven in [7]. However,
the data exchange is still a time-consuming activity,
which should not be underestimated. Therefore, fur-
ther improvements have to be done to optimize the
overall performance of data-intensive service applica-
tions.

Up to now, our proposed conceptual design perfectly
fits our main realistic assumption: each loosely coupled
service has its own storage system, e.g., a database system.
This storage system is utilized to efficiently process large
amounts of data within the service. However, based on work
in the direction of cloud technologies, the assumption can
be refined in a novel way. Fundamentally, the cloud is a
metaphor for the Internet, and it is an abstraction for the
complex infrastructure it conceals. Therefore, a data cloud
is a widely available abstract data layer offering scalable,
reliable, cheap and speedy access to data over the Internet.
Examples of a data cloud are Amazon SimpleDB [9] or

Final edited form was published in "IEEE 3rd International Conference on Cloud Computing. Miami 2010", S. 19-26, ISBN 978-1-4244-8207-8
https://doi.org/10.1109/CLOUD.2010.56

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

HadoopDB [10]. According to this, we define our main
assumption as follows: Each loosely coupled service uses
the same data cloud as common, shared storage and data
processing system.

Using our so-called data cloud assumption, we are able to
simplify the execution of data-intensive service applications
in two ways: (i) specific data propagation services do not
have to be available at process execution time, and (ii) the
data exchange between participating services in a process
is completely replaced by the exchange of data references
as pointers. Based on this issue, the overhead of the data
propagation—by value exchange—is reduced to a minimum.
Fundamentally, we only want to propagate data in those
situations where we cannot avoid it at all.

In order to reach our described properties, we review
the proposed underlying infrastructure [4], [7] in detail in
Section II. Then, we introduce our specialized variant of
Data Cloud Web Services as an extension of [4], which
incorporates our main assumption in Section III. While
Section III focuses on the service level, Section IV intro-
duces all concepts for the process modeling and execution
level. Section V presents our data cloud abstraction approach
to overcome some of the limitations introduced earlier.
Moreover, we present several strategies to initialize process
executions regarding different optimization objectives in this
section. Finally, we conclude the paper with a summary and
an outlook in Section VII.

II. PRELIMINARIES

As already mentioned, the service-oriented approach
should be efficiently applicable for other domains, such as
data-intensive service applications, e.g., for data analysis
processes [11]. As emphasized several times in [3], [4], [7],
[5], [6], Web services as well as BPEL suffer from certain
shortcomings regarding the exchange of large amounts of
data between Web services. To tackle these shortcomings,
extensions on the service level [4] and on the process
level [7] have been proposed. In this section, we review
these extensions and present their main disadvantages.

A. Service-Level Extension

The concept of Data-Grey-Box Web Services (DGB-WS) is
a specific extension of the Web service technology for data-
intensive service applications [4]. Each DGB-WS exhibits its
own storage system—e.g., a database system as illustrated
in Figure 1—that can be used to efficiently process large
amounts of data within the service. However, in contrast
to the original black-box Web service approach [2], the
Web service interface of the Data-Grey-Box Web services
is enhanced with an explicit data aspect offering exhaustive
information about the data semantics. Aside from the sep-
aration of functional parameters and data in the interface
description, a novel binding format for structured data was
introduced. Through this new data binding, services signal

Figure 1. Operation Method of Data-Grey-Box Web Services.

that data has not been transferred via SOAP and that there is
a separate data layer instead. As before, regular functional
parameters are handed over via SOAP when calling the Web
service.

To handle this newly introduced data binding, the SOAP
framework was extended with the integration of a novel data
layer component. On the client side, enhanced Web service
call semantics are necessary. Besides the transmission of the
endpoint information and regular parameters in the SOAP
message, the client has to deliver access information as
references for (i) where the input data is available (input
reference) and (ii) where the output data should be stored
(output reference). Thus, the new data binding is translated
into no more than two additional parameters with access
information for input and output data on the client side.
These new parameters are included in the SOAP message
for the invocation of Web services. The advantage of this
procedure is that instead of propagating the pure data in an
XML-marshaled SOAP message, only the access informa-
tion in the form of data pointers are delivered in SOAP. This
property is depicted in Figure 1, where the client delivers
data pointers to its storage system to the service.

On the service side, the extended SOAP framework re-
ceives the SOAP message and conducts a separation into
the functional aspect and the data aspect. The associated data
layer calls an appropriate mediator for the data propagation
based on the access information of the client and the service.
While the client’s data access information can be found in
the received SOAP message, the data access information
for the service instance must be queried from the extended
service infrastructure [4]. Fundamentally, a mediator is a
neutral third party member that is responsible for the data
propagation between client and Web service. Such mediators
have to be accessible via a standard Web service interface.
Using this mediator approach, the heterogeneity of the
storage system is tackled on a conceptual level.

If a DGB-WS receives and returns a data set as illustrated
in Figure 1, two data propagation tasks via mediators at the
service side will be initiated. The first propagation task for
the input data is conducted before the pure functionality of
the service is invoked. The correlation between such input

Final edited form was published in "IEEE 3rd International Conference on Cloud Computing. Miami 2010", S. 19-26, ISBN 978-1-4244-8207-8
https://doi.org/10.1109/CLOUD.2010.56

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Figure 2. BPELDT - Modeling and Execution Perspective.

data and the Web service instance is realized by our extended
service infrastructure. If the input data propagation task is
finished, the functionality is automatically invoked. The last
step is the initiation of the data propagation task to deliver
the output data to the client.

Fundamentally, this proposed concept of Data-Grey-Box
Web services offers several drawbacks. One drawback is that
the client has to deliver access information to its internal
storage system. Another drawback is the restricted usability
of Data-Grey-Box Web services, which is linked to the avail-
ability of appropriate mediator services to propagate data
between the participating storage systems. If no appropriate
mediator service is available, either the client cannot invoke
the service or the client has to change its own storage system.
The data exchange will also be initiated when the storage
systems of client and service are equal.

B. Process-Level Extension

In order to efficiently realize comprehensive data-intensive
service applications, the next step is the orchestration of
Data-Grey-Box Web services. Therefore, BPEL data tran-
sitions, as a data-aware extension of BPEL, have been
proposed in [7]. These data transitions are explicit link types
connecting several Data-Grey-Box services on the data level.
Fundamentally, those data transitions are an orthogonal data
flow concept compared to the control flow.

In the left part of Figure 2, a simple process consisting
of two service invocations (DGB-WS), WS1 and WS2,
with a user interaction between these invocations, is illus-
trated, where the user’s input is necessary to call service
WS2. Furthermore, both services, WS1 and WS2, are
also explicitly connected on the data level with a data
transition (illustrated by a solid line). The meaning of the
data transition is that the output data of WS1 is used as
input data for WS2. Moreover, the data transition includes
a schema transformation specification to construct the input
data for WS2 according to the necessary schema from the
output data of WS1 (illustrated by a circle containing the
character T). As a consequence, data transitions include a
specification of how the output data of a source service has
to be transformed to the input data schema of the target
service.

Aside from the process definition, Figure 2 illustrates the
process execution on an abstract level as well (using dashed
lines). An adapted BPEL engine also has an explicit storage
system as a temporary storage location. As depicted, the
output data of WS1 is stored at this position. Then, the
schema transformation of the data transition is executed
(T-Service) with the help of the temporary storage system.
Afterwards, Web service WS2 gets its input data from this
storage system. In summa, three explicit data propagation
(by value) tasks using specialized propagation tools are
conducted during the process execution. In [7], we have
shown that such an execution strategy performs better than
the traditional SOAP-based approach.

C. Cloud Technologies

The term cloud computing points to the following aspects:
(i) applications delivered as services over the Internet and
(ii) the hardware and system software in the data centers that
provide those services. As already mentioned by Anstett et
al. [12], three different delivery models have been introduced
in the area of cloud computing over the last years: (i)
infrastructure as a service (IaaS), (ii) platform as a service
(PaaS) and (iii) software as a service (SaaS). These three
models are exhaustively described in [12].

In this paper, we focus on infrastructure as a service,
which provides the basic infrastructure to the customer.
This infrastructure model can be distinguished into storage
(data cloud) and computing capabilities (resource cloud).
The advantage of this model is that the complexity of
infrastructures is completely concealed from developers and
users. Thus, developers as well as users do neither know
nor require to know what is in the cloud; they only care that
it delivers the services they need. In the next section, we
show how to use a data cloud to optimize the data-intensive
service applications.

III. DATA CLOUD WEB SERVICES

With the increasing availability and popularity of data
clouds, their efficient usage is a challenging task for re-
searchers as well as practitioners. The goal of this paper
is to tightly incorporate data clouds into functionally driven
SOA technologies to optimize data-intensive service appli-
cations. Therefore, we first introduce our concept of Data
Cloud Web services (DC services) as the foundation for
this optimization. Our concept is a specialized variant of
Data-Grey-Box Web services, but we start with a new main
assumption. As illustrated in Figure 3, every DC service
works in combination with a commonly shared data cloud
as storage system for the efficient processing of massive
data. In this scenario, we see a data cloud as a widely
open, scalable and accessible data layer with a well-defined
interface for efficient data access. In contrast to the concept
of Data-Grey-Box Web services, this is a main shift that
allows more flexibility, as we will describe later.

Final edited form was published in "IEEE 3rd International Conference on Cloud Computing. Miami 2010", S. 19-26, ISBN 978-1-4244-8207-8
https://doi.org/10.1109/CLOUD.2010.56

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Figure 3. Our Data Cloud Assumption.

Based on the foundation of Data-Grey-Box Web services,
DC services have the same enhanced interface description
with a separation of functional and data aspects. In this case,
the already introduced new data binding format signals that
data has not been transferred via SOAP and that there is
a separate data layer instead [4]. According to the use of
the data binding format by Data-Grey-Box Web services,
Figure 4 illustrates the adjusted mapping for DC services.
Again, on the client side, enhanced service invocation se-
mantics are essential. In such invocation semantics, the end-
point information, regular parameters, and data references
are delivered in a SOAP message to the DC service. As
depicted in Figure 4, data references are pointers into the
data cloud for (i) where the input data is available and (ii)
where the output data should be stored. As we can see, there
are no differences in the invocation semantics between Data
Cloud Web services and Data-Grey-Box Web services on
the client side.

However, in contrast to Data-Grey-Box Web services, the
internal operation method on the service side is completely
different. This difference is clearly noticeable when we
compare Figures 1 and 4. Using our main assumption of
a commonly shared data cloud for all DC services, we do
not have to propagate data from the client storage system
to the service storage system. Therefore, we are able to
remove the invocation of appropriate mediators from the
internal service processing procedure, and the delivered data
references from the client are directly passed to functional
aspects of the service as main data pointers. These main
working data pointers are used to read the input data (READ
operation) and to store the output data at the corresponding
location in the data cloud (WRITE operation). As already
illustrated in Figure 3, the interactions between DC services
and the data cloud are restricted to the operations READ and
WRITE, and the delivered data references of the client are
used to instantiate these operations in an appropriate way.
At the moment, these operations are abstract and should

Figure 4. Operation Method of Data Cloud Web Services.

allow efficient access to data in the cloud. Thus, we prefer
an SQL-like interface as offered by Amazon SimpleDB [9]
or HadoopDB [10] at the moment. Aside from efficient
descriptive access to data, such an interface offers further
data processing capabilities like grouping or aggregation
of data as well. However, this introduce some limitations,
which have to addressed in further research activities.

In contrast to the concept of Data-Grey-Box Web services,
the internal service processing procedure is simplified. The
main advantage of our DC service concept is that the data
propagation itself is completely eliminated by the use of a
commonly shared data cloud. Instead of exchanging data in
a by-value manner—either using SOAP messages or with
specialized mediators—, DC services exchange data in a
pure by-reference manner, and the internal service procedure
guarantees the correct data processing. For data-intensive
service applications, this makes a lot of sense and strongly
reduces the execution time of services. Another advantage
of DC services is the clear definition of the requirements
for the invocation. If a client wants to invoke a DC service,
the client has to ensure that (i) the input data is available in
the data cloud and/or (ii) a storage position for output data
is available in the data cloud. In comparison to Data-Grey-
Box Web services, these requirements are more strict and
the degrees of freedom are fewer.

To summarize, Data Cloud Web services are a specialized
variant of Data-Grey-Box Web services. The tight coupling
with a data cloud is an outstanding property and enables the
elimination of all data propagation tasks within the service
invocation. In this case, the service invocation corresponds
to a pure functional invocation without any data delivery. If
the essential input data is available in the data cloud, DC
services are able to access this data directly within the data
cloud. Furthermore, the output data of DC services is also
put in the data cloud. In the following section, we show how
to efficiently exploit these aspects to process data-intensive
service applications without the execution of any explicit
data propagation task.

IV. COMPOSITION AND EXECUTION

In order to create comprehensive data-intensive service
applications using several DC services, we employ the
BPELDT approach [7]. From the modeling perspective, we

Final edited form was published in "IEEE 3rd International Conference on Cloud Computing. Miami 2010", S. 19-26, ISBN 978-1-4244-8207-8
https://doi.org/10.1109/CLOUD.2010.56

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Figure 5. Data-Cloud-Aware Process Execution.

do not have to modify anything in the already proposed
approach. The left part of Figure 5 illustrates a sample data
analysis process consisting of the following steps:

1) The first DC service provideData—after starting the
process—provides the data to be analyzed by the
subsequent services.

2) The second DC service normalizeData conducts a
normalization of data. The first and the second DC
services are connected by a control link as well as
by a data link. The data link—BPEL data transition—
signals a data exchange between these services. This
data link also includes a specification of how the
output data of the DC service provideData has to be
transformed to the input data schema of the DC service
normalizeData.

3) The third step is a user interaction to get essential
analytics parameters from the user for the subsequent
step.

4) The fourth step invokes a DC service analyseData,
which is responsible for determining the analytic result
of the normalized data. Therefore, the DC service
normalizeData and this DC service are connected by
a data link including a schema mapping specification.
Afterwards, the process finishes.

In this scenario setting, we assume that the relevant data
to be analyzed is already available in the data cloud and is
made accessible by the provideData DC service. The process
execution is depicted in detail in the right part of Figure 5.
As in the original BPELDT approach [7], the process engine
is responsible for the data reference handling during process
execution. Thus, the process engine is tightly coupled to
the same data cloud as the participating DC services. The
process execution can be described as follows:

• Based on the functionality of the DC service pro-
videData, the data is copied to an engine-determined
location outRef1 in the data cloud. Those reference
information is delivered to the DC service during
the service invocation. If the DC service has finished

(synchronous invocation), the next process tasks can be
executed.

• The engine-determined output data reference of the
DC service provideData is then used as input data
reference for the subsequent DC service normalizeData
(outRef1 equals inRef2). The DC service normalize-
Data reads the corresponding data from this location
within the data cloud and writes the normalized data
to an engine-determined location outRef2 using our
defined READ/WRITE interface.

• Afterwards, the user interaction is processed and the
DC service analyseData will be invoked. During this
service invocation, the delivered output data reference
outRef2 of normalizeData is used as input data refer-
ence inRef3. This DC service reads and writes the
data according to the engine-determined data cloud
locations.

To determine the data reference equalities of input and
output data for several DC services, the explicitly available
data transitions within the process definition are highly
practicable and usable in this case. As we can observe by
this example, the process execution is conducted without any
explicit data propagation between participating DC services.
Instead of propagating data between heterogeneous storage
systems, as proposed in [4], [7], we efficiently employ the
developed techniques of data clouds and propagate only
data cloud reference information between services. Each DC
service then operates directly on the delivered data reference
locations. Up to now, the described process execution has
been simplified by removing the execution of possible data
transformation tasks specified within the data transitions.
However, we are able to include such tasks easily. One
possible way is to invoke a special transformation DC
service at any time to execute the delivered transformation.
From our point of view, such a functionality should be
offered in a data cloud approach.

With our proposed concept of DC services including the
adjusted BPELDT process execution, the data flows within
data-intensive service applications are optimized. Instead
of propagating massive data sets between heterogeneous
systems, we suggest handling all data with a data cloud like
Amazon SimpleDB [9], without losing the property of dis-
tributed services. However, the tight coupling of all services
with one commonly shared data cloud comes with some
drawbacks. In the next section, we propose a completely
alternative approach to the described concept of Habich et
al. [4], [7] to cope with several heterogeneous data clouds.

V. DATA CLOUD ABSTRACTION

Our main assumption of a single available and accessible
data cloud for all DC services is only valid in a small and
restricted real-world environment. Today, we find more than
one data cloud, and this eco-system will grow over time.
Each of these data clouds can be used as a commonly shared

Final edited form was published in "IEEE 3rd International Conference on Cloud Computing. Miami 2010", S. 19-26, ISBN 978-1-4244-8207-8
https://doi.org/10.1109/CLOUD.2010.56

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Figure 6. Abstract Data Cloud4 Layer Approach.

storage and data processing system for our DC services.
However, if we were to restrict a DC service to a specific
data cloud implementation, we would limit this service’s
longevity in a fast-changing eco-system. To overcome this
limitation and to establish more flexibility, we propose an
alternative way for the interaction of DC services with
several heterogeneous data clouds. One possible solution
would be the usage of the Data-Grey-Box Web service
concept to tackle the heterogeneity. However, this solution
is too inflexible regarding the runtime exchange of the
underlying data cloud of a service. Therefore, we propose an
alternative approach offering more optimization possibilities,
which will be described next.

In order to abstract from a concrete data cloud imple-
mentation, we introduce a novel generic data cloud layer
called Abstract Data Cloud Layer. As depicted in Fig-
ure 6, our novel generic data cloud layer is on top of a
set of concrete data cloud implementations and offers all
operations—READ and WRITE—that are essential for DC
services. Aside from providing the appropriate operations,
the abstract data cloud layer is also responsible for mapping
the operations on different heterogeneous data clouds. For
each data cloud implementation, a new adapter can be added
to the layer to support this data cloud. This adapter only has
to implement our generic data cloud adapter interface with
the READ and WRITE operations.

Fundamentally, the implementation of a DC service has to
be conducted by the use of our new abstract data cloud layer.
In this case, each DC service is independent of any concrete
data cloud, and this property offers more flexibility regarding
the service execution. However, we have to distinguish
two strategies—compile-time and runtime binding—for data
cloud bindings, which restricts the execution. On the one
hand, the data cloud binding can be defined at the service’s
compile time. In this case, the developer specifies a binding

to a concrete data cloud at deployment time for a DC
service. This strategy is essential for the implementation
of services that provide e.g. stored data in a specific data
cloud on the service level. Another occasion for compile-
time binding is the use of specific offered functionalities of
a data cloud. On the other hand, the data cloud binding can
be defined at runtime, which is our second possible strategy.
With this strategy, the business logic is completely compiled
to the generic data layer, and the data layer itself can be
instantiated at runtime. This runtime configuration can be
changed by each single service execution, which allows the
possibility to adjust the execution to different environmental
settings.

Based on these two data cloud binding strategies–compile-
time and runtime binding—, we are able to create compre-
hensive processes with the following property: participating
DC services in a process are either strictly connected with a
data cloud or completely adjustable to different clouds. This
special property is illustrated with a small example with two
different data clouds in Figure 7. In this example, DC service
WS1 is linked to DataCloud1, WS3 is connected with
DataCloud2, and the data cloud binding for all other DC
services can be configured at runtime. The arrows between
the DC services indicate the data flows on a high level. To
execute this process, we need to specify the data bindings
for DC services WS2 and WS3.

Figure 7. Example Process with a Possible Binding Situation for DC
Services.

At a first glance, this additional specification step for the
data cloud bindings complicates the process execution. How-
ever, from an optimization perspective, this novel specifica-
tion step enables several possibilities to adjust the process
execution regarding different objectives. One objective could
be, for example, to reduce the overall cost for the process
execution. In this case, all services with a runtime binding
opportunity get a binding with the data cloud that produces
the lowest costs.

Depending on the optimization objective, we are able to
distinguish two strategies for the specification step: (i) static
specification and (ii) dynamic specification. The previous
cost objective can be easily realized by a static specification
under the same circumstances. The optimization objective
of performance is surely an example for a dynamic speci-
fication, with the opportunity to react to different workload

Final edited form was published in "IEEE 3rd International Conference on Cloud Computing. Miami 2010", S. 19-26, ISBN 978-1-4244-8207-8
https://doi.org/10.1109/CLOUD.2010.56

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

scenarios in the data clouds. In this case, an autonomous
advisor could check the current load situation in the different
available data clouds. If the service is invoked, the advisor
initializes the data layer with the best data cloud instance
available for the service. This enables the whole system to
ship the data to the service as fast as possible. The advisor
could also use other quality-of-service parameters, not only
the workload situation; however, this and the strategy as a
whole are only possible if the runtime environment allows
such kind of configuration and workload observation.

The detailed technical preparation of the specification step
regarding several optimization objectives is our next research
topic. The focus of this paper was to present the overall
concept. The specification of the data cloud binding for a
number of DC services is one necessary step in the direction
of process execution, but a further step has to be made. In
this next step, data mediator services have to be integrated
in the process definition when data cloud changes between
consecutive DC services take place. Again, those data media-
tor services are responsible for the data propagation between
several heterogeneous data clouds. To determine the position
within the process definition, we use the explicitly available
BPEL data transitions and the derived binding specification.
Based on the specification strategy, the positions of the data
mediators within the process could be determined either
statically or dynamically. A possible executable process for
our depicted example process of Figure 7 is illustrated in
Figure 8. As we can see, DataCloud2 is utilized as the
main data storage system for all DC services except for
WS1. Furthermore, after WS1, a data mediator service is
interlaced in the process definition to propagate the output
data of WS1 in the data cloud DataCloud2. In this case,
we assume that a corresponding data mediator is available
and configurable to execute the desired task.

Figure 8. Executable Process Definition for Example Process from
Figure 7.

If we compare this approach with the pursued concept
of Data-Grey-Box Web services [4], several similarities and
differences are observable. In order to tackle the heterogene-
ity of storage systems, Data-Grey-Box Web services use
explicit data propagation tasks with a mediator technique
at all points. We describe their approach as data shipping,
because the data is always propagated to the function. With
our proposed approach in this paper, we are able to ship
the function to the data by configuring the functional aspect

Figure 9. Process Execution Runtimes.

(function shipping). However, if this function shipping is
impossible due to certain circumstances, we have to propa-
gate the data to the function as well. In those situations, we
adopt the proposed mediator technique of Data-Grey-Box
Web services, where these mediators are interlaced in the
process definition. Based on this function shipping property,
we are able to derive physically executable processes from
user-defined process definitions. These executable processes
can be optimized regarding different objectives. From our
point of view, this novel capability for the process domain
offers a lot of research opportunities.

VI. EVALUATION

According to the conducted evaluation in [4] and [7],
we have chosen a similar evaluation strategy. We utilize as
evaluation process our sample data analysis scenario from
Section IV. In this experiment, we measured the runtime
of the whole processes by varying the data size to be
processed. The results are illustrated in Figure 9, whereas
we measured the execution runtime for (i) the classical
process execution using SOAP messages (SOAP approach),
(ii) BPELDT execution where each Data-Grey-Box Web
services has its own storage system (DB-Approach), and (iii)
our new cloud-aware execution using one single data cloud
for all Web services (Cloud-Approach). In all experiments,
each participating service in the process ran on its own
server. For the Data-Grey-Box Web service approach, an
open-source database system was installed on the same
service server. In the case of our cloud execution, we utilized
a HadoopDB [10] instance as central storage system for all
services. As we can see in Figure 9, our new cloud-aware
process execution outperforms the rest. In contrast to the
BPELDT approach, we save the whole time for the explicit
data propagation.

VII. SUMMARY AND OUTLOOK

In this paper, we presented an approach to optimize data-
intensive service applications using data cloud technologies.
Examples of data-intensive service applications are data ana-
lytics processes, which can be found in various domains. The
optimization of such processes is always an ongoing research

Final edited form was published in "IEEE 3rd International Conference on Cloud Computing. Miami 2010", S. 19-26, ISBN 978-1-4244-8207-8
https://doi.org/10.1109/CLOUD.2010.56

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Figure 10. Enhanced Abstract Data Cloud Layer Approach.

topic. Our proposed solution consists of an enhanced Web
service concept called Data Cloud Web services, and each
Data Cloud Web service works in tight combination with a
commonly shared data cloud as storage and data processing
unit. Based on this property, we are able to replace every
explicit data propagation with exchanged data references
as pointers in the cloud. As a second step, we described
the execution of comprehensive process logics. Third, we
proposed an approach to abstract from concrete cloud imple-
mentations that offers more flexibility regarding the service
and process execution. Our abstraction approach enables us
to ship functions to the data instead of shipping data to the
functions, as it is the preferred standard method in service-
oriented environments. Our complete proposed approach is
realized within our Open Service Process Platform 2.0 [13],
whereas we are able to utilize the Amazon SimpleDB [9] or
HadoopDB [10] as data clouds for our approach.

Our next research topics are manifold. One research
direction focuses on the detailed technical preparation of the
specification step regarding several optimization objectives
as described in Section V. However, we consider these works
only as one step in the right direction to efficiently utilize the
full power of cloud technologies in combination with SOA
technologies. A major drawback of our current approach
is our limited READ-WRITE interface to access heteroge-
neous data clouds. Today, several developed data processing
standards on top of specialized data clouds exist. The most
common ones are Map/Reduce [14] and PigLatin [15] with
several assets and drawbacks. In further research work, we
are going to enhance our Abstract Data Cloud Layer with
those standards. As depicted in Figure 10, DC services are
implemented against our abstract enhanced interface, and
our cloud layer is able to derive different concrete cloud-
aware implementations. Thus, our overall approach is no
longer restricted to the data handling, and we include the

efficient data processing in our consideration. Then, we are
able to ship the function to the data and we can adjust the
implementation of the function.

REFERENCES

[1] T. Erl, Service-Oriented Architecture (SOA): Concepts, Tech-
nology, and Design. Prentice Hall PTR, 2005.

[2] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and
D. F. Ferguson., Web Services Platform Architecture : SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Prentice Hall PTR, 2005.

[3] K. Chiu, M. Govindaraju, and R. Bramley, “Investigating
the limits of soap performance for scientific computing.” in
Proceedings of the 11th IEEE International Symposium on
High Performance Distributed Computing, 2002, pp. 246–
254.

[4] D. Habich, S. Preißler, W. Lehner, S. Richly, U. Aßmann,
M. Grasselt, and A. Maier, “Data-grey-box web services in
data-centric environments,” in Proc. of ICWS, 2007, pp. 976–
983.

[5] A. Ng, “Optimising web services performance with table
driven xml,” in Proc. of ASWEC, 2006.

[6] R. van Engelen, “Pushing the soap envelope with web services
for scientific computing.” in Proceedings of the International
Conference on Web Services, 2003, pp. 346–352.

[7] D. Habich, S. Richly, M. Grasselt, S. Preißler, W. Lehner, and
A. Maier, “BpelDT - data-aware extension of bpel to support
data-intensive service applications.” in Proc. of WEWST,
2007, pp. 111–128.

[8] A. Simitsis, “Modeling and managing etl processes,” in Pro.
of PhD-VLDB, 2003.

[9] A. W. Services, “Amazon SimpleDB,” http://aws.amazon.
com/simpledb/, 2009.

[10] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin,
and A. Silberschatz, “Hadoopdb: An architectural hybrid of
mapreduce and dbms technologies for analytical workloads,”
PVLDB, vol. 2, no. 1, pp. 922–933, 2009.

[11] D. Habich, T. Wächter, W. Lehner, and C. Pilarsky, “Two-
phase clustering strategy for gene expression data sets,” in
Proc. of SAC, 2006, pp. 145–150.

[12] T. Anstett, F. Leymann, R. Mietzner, and S. Strauch, “Towards
bpel in the cloud: Exploiting different delivery models for the
execution of business processes,” in Proc. of IWCS, 2009, pp.
670–677.

[13] D. Habich, S. Richly, A. Ruempel, W. Buecke, and
S. Preissler, “Open service process platform 2.0,” in SER-
VICES I, 2008, pp. 152–159.

[14] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in OSDI, 2004, pp. 137–150.

[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig latin: a not-so-foreign language for data processing,” in
Proc. of SIGMOD, 2008, pp. 1099–1110.

Final edited form was published in "IEEE 3rd International Conference on Cloud Computing. Miami 2010", S. 19-26, ISBN 978-1-4244-8207-8
https://doi.org/10.1109/CLOUD.2010.56

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	ADPAA1C.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Dirk Habich, Sebastian Richly, Uwe Assmann, Wolfgang Lehner
	Using Cloud Technologies to Optimize Data-Intensive Service Applications

	ADP79E3.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Dirk Habich, Sebastian Richly, Uwe Assmann, Wolfgang Lehner
	Using Cloud Technologies to Optimize Data-Intensive Service Applications

