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Abstract—Cloud providers, like Amazon, offer their data
centers’ computational and storage capacities for lease to paying
customers. High electricity consumption, associated with running
a data center, not only reflects on its carbon footprint, but
also increases the costs of running the data center itself. This
paper addresses the problem of maximizing the revenues of
Cloud providers by trimming down their electricity costs. As
a solution allocation policies which are based on the dynamic
powering servers on and off are introduced and evaluated. The
policies aim at satisfying the conflicting goals of maximizing
the users’ experience while minimizing the amount of consumed
electricity. The results of numerical experiments and simulations
are described, showing that the proposed scheme performs well
under different traffic conditions.

I. INTRODUCTION

In recent years large investments have been made to build
data processing centers, purpose-built facilities composed of
thousands of servers and providing storage and computing
services within and across organizational boundaries. Whether
used for scientific or commercial purposes, the energy and
ecological costs (apart from the electricity, a typical data center
drawing 15 MW of power consumes about 1,400 cubic meters
of water per day [1]) required to operate these computing
platforms has already reached very high values, e.g., in 2006,
data centers used 1.5% of all the electricity produced in the
US [2]. Apart from the carbon footprint, the high energy
consumption negatively affects the cost of computations itself,
especially in the presence of the constantly growing price for
electricity1.

Nowadays, it is becoming clear that the next logical step
in the development of data centers is building ‘green’ data
centers, i.e., data centers that are energy efficient. Currently
most researchers are focusing on optimizing the energy effi-
ciency on the hardware level. Also, a lot of similar research
has been done in the area of power constrained mobile and
portable computing devices, such as laptops, smartphones,
PDAs, etc. However, another method, which has not been
studied to the same extent, is based on dynamic turning on and
off servers ‘on demand’. In the context of Cloud providers,
which offer services like Platform-as-a-Service (PaaS), it is
important to ensure its stable operation, which eventually will
lead to building a reputation of a dependable PaaS provider.
Thus, for the PaaS providers it is important to meet customers’

1http://www.eia.doe.gov/

requirements in terms of both availability and performance.
Unfortunately, there is no easy solution to this problem, as
a large portion of expenses for running a data center is
constituted by electricity costs. Therefore, Cloud providers are
facing the problem of choosing the right number of servers
to run in order to avoid over-provisioning, as it is a major
contributor to excessive power consumption, while meeting
availability and performance requirements.

In this paper we propose and evaluate energy-aware al-
location policies that aim to maximize the average revenue
received by the provider per unit time. This is achieved by
improving the utilization of the server farm, i.e., by powering
excess servers off. The policies we propose are based on (i)
dynamic estimates of user demand, and (ii) models of system
behaviour. The emphasis of the latter is on generality rather
than analytical tractability. Thus, we use some approximations
to handle the resulting models. However, those approximations
lead to algorithms that perform well under different traffic
conditions and can be used in real systems.

The rest of the paper is organized as follows. Relevant
related work is discussed in Section II. Section III describes
the system model. The mathematical analysis and the resulting
policies for server allocation are presented in Section IV.
Section V introduces a model for estimating the amount of
power consumed by servers under different loading conditions,
while a number of experiments where the allocation policies
are compared under different traffic conditions are reported in
Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

In the last decade researchers have started to focus on
improving the power consumption of computer and communi-
cation systems. However, the problem of data centers energy
efficiency is relatively new. All the efforts in this area can be
categorized in the following way:
• Intensive – optimizing power consumption of a server,

e.g., by means of managing CPU voltage/frequency;
• Extensive – minimizing power consumption for a server

pool, e.g., by switching servers on/off;
• Hybrid – combining the intensive and extensive methods

together.
Most of the intensive approaches have tried to minimize

the power consumption when the number of servers is fixed.
While Google engineers have called for systems designers
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to develop servers that consume energy in proportion to the
amount of computing work they perform [3] and Microsoft
engineers have been working on better power management
on the operating system layer [4], servers still consume as
much as 65% of their peak power when idle [5]. Elnozahy et
al. [6] and Sharma et al. [7] investigated the potential benefits
of scaling down the CPU voltage/frequency (and consequently
power consumption) according to the offered load. The results
showed that savings can be as big as 20-29%.

As for extensive approaches, most of the research consid-
ered scenarios where the number of running servers can be
controlled at runtime. Thus, the server farm’s energy require-
ments are reduced by switching some servers off whenever it
is justified by demand conditions. Changes in the pool size are
made in a reactive and/or proactive manner. Reactive methods
change the size of the server pool according the changes
in the load, while proactive algorithms try to determine the
number of the servers beforehand using demand forecasting
mechanisms [8], [9].

Running too many servers increases the electricity con-
sumption, as even in the idle mode the servers consume a
significant amount of electricity. On the other hand, having too
few servers switched on requires running those servers’ CPUs
at higher frequencies, which consequently increases the energy
usage. Therefore, hybrid approaches (e.g., [6], [8]) attempt to
find a rational tradeoff between the number of servers switched
on and the voltage/frequency of the CPU on each server.

Another approach which stands out, as opposed to the
previously discussed ones, was proposed by Qureshi et al.
[10]. In that paper, the authors address the problem of min-
imizing the electricity costs in Content Delivery Networks
(CDN). Given that CDNs have their content replicated in each
CDN center and the price for electricity varies depending
on the geographical region and time, the authors propose to
dynamically re-routing incoming traffic to the locations with
the lowest electricity prices.

III. THE MODEL

The provider has a cluster of S identical processors/cores
(servers, from now on), n running and (S − n) switched off.
The provider offers each server for a lease, and a customer
who rents a server (e.g., by running a virtual machine on it)
is essentially creating a job. The size of the job is the length
of the lease, and since the client decides when to terminate
the lease, the job size is not known a priori. Servers are not
shared, so each server can handle at maximum one job at any
given time (as it will be described in Section V, since the
power drained by each CPU is a linear function of the load,
the model we propose here can be applied to a scenario where
multiple virtual machines are running on a physical CPU). If,
once a server has finished processing a request, no other jobs
enter the system, the server begins to idle (i.e., it consumes
energy without generating any revenue).

The contract that regulates the provisioning contract states,
among the other things, that for each job a user pays a
charge which is proportional to the job size, while the cost

the provider bears for running a server is c $ per unit time.
Determining the amount of charge is outside the scope of this
paper. Besides, this could also include the charges related to
the use of storage space or network bandwidth. Finally, an
arrival finding all n servers busy is blocked and lost, without
affecting future arrivals, see Figure 1, while running servers
consume energy, which costs r $ per kWh.
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Fig. 1. System model for cloud providers.

Within the control of the provider is the ‘resource allocation’
policy, which decides how many servers to run. The objective
is to find the optimal number of servers, n, that should be
switched on in order to optimize the provider’s profit. The
extreme values, n = 0 and n = S, correspond to switching
respectively off, or on, all available servers.

Unfortunately, because of the random nature of user de-
mand, static policies would under-perform, as servers would
be under-utilized when the traffic is low – wasting energy
and reducing the provider’s revenues – and overloaded during
peak hours, missing the profit opportunities. In order to tackle
these issues the provider should be able to dynamically change
the number of running servers in response to changes in user
demand. The problem is how to do that in a sensible manner.

During the intervals between consecutive policy invocations,
the number of running servers remains constant. Those in-
tervals, which will be referred to as ‘observation windows’,
are used by the controlling software to collect traffic statistics
and obtain current estimates of the average arrival rate (λ)
and service time (1/µ) as well as the squared coefficients
of variation of the above values (the variance divided by the
square of the mean), ca2 and cs2 respectively. These values
are used by the allocation policy at the next decision epoch.

It is assumed that the time it takes to change the state
of a server is negligible compared to the size of the obser-
vation windows. That assumption let us neglect the amount
of time/energy wasted by servers during reconfigurations.
Moreover, in a practical implementation, a decision to switch a
server off does not necessarily have to take effect immediately.
If a job is being served at that time, it is allowed to complete
before the server is turned off.

N.B The assumption that the power up/down operations are
instantaneous can be relaxed, at the expenses of complicating



the allocation policy. We deliberatively opted not to do so as
introducing a short power up/down interval has a little effect
on the optimal number of servers to run. On the other hand,
if the time it takes to power a server up/down is about the
same as the configuration interval (i.e., 10 and 30 minutes),
than the energy wasted during system reconfigurations should
be explicitly taken into account.

While different metrics can be used to measure the perfor-
mance of a computing system, as far as the service provider
is concerned, the performance of the system is measured by
the average revenue, R, earned per unit time. That value can
be estimated as

R =
c

µ
T − rP , (1)

where c/µ is the average charge paid by a customer for having
his/her job run, T is the system’s throughput, and P is the total
average power consumed by the running servers (servers that
are currently switched off do not consume anything).

Please note that, although we make no assumption regarding
the relative magnitudes of charges and costs parameters, the
most challenging case is when they are close to each other. If
the charge for executing a job is much higher than the cost
paid by the provider to run a server, one could guarantee a
positive (but not optimal) revenue by switching on all servers,
regardless of the load. On the other hand, if the charge is
smaller than the cost, than it would be better to switch all
servers off. Finally, the above model can be easily extended
in a number of different ways. For example, one might include
the cost for tearing servers up and down, as well as the cost for
a smaller mean time between failures (MTBF) of the hardware.
However, it is important to to note that the proposed approach
can be used in scenarios when the price for electricity is not
constant and depends on the time of the day, week, month,
etc. In this case, during each reconfiguration a different value
for c should be used.

IV. POLICIES

In order to develop a meaningful framework for energy
consumption control, it is necessary to have a quantitative
model of user demand and service provision. Assuming that
jobs enter the system according to an independent Poisson
process with rate λ, we model the number of jobs inside the
system, for a fixed number of servers n, as the number of
jobs in an Erlang loss (or Erlang-B) system with n trunks and
traffic intensity ρ = λ/µ.

Thus, we can treat the resulting system as an M/GI/n/n
queuing model (the ‘M’ stands for Markovian arrivals), which
has independent and identically distributed (i.i.d.) service
times with a general distribution (the ‘GI’) and independent of
the arrival process, n servers, and no extra waiting spaces (e.g.,
if all servers are busy, further jobs are lost), augmented with
the economic parameters introduced in Section III. Since the
Erlang-B model is insensitive to the distribution of job sizes,
we do not need to worry about the distribution of job lengths.
In other words, the blocking probability is independent of

the service time distribution beyond its mean; thus, the state
probabilities of this system are the same as that of the
corresponding purely Markovian M/M/n/n system where
the service times are exponentially distributed. This model
ignores the time-dependence sometimes found in job arrival
processes. However, this time-dependence often tends to be
not too important over short time intervals.

When ρ = n, the system is critically loaded in the limit,
and is said to be in the Quality and Efficiency-Driven (QED)
regime, also known as Halfin-Whitt regime [11]. In this paper,
we focus on heavily loaded server farms where ρ ∼ n, as
our aim is to switch off servers in excess while serving as
many customers as possible. Moreover, we assume that the
number of running servers increases if the arrival rate grows,
i.e., n → ∞ as λ → ∞, while the service time distribution
does not change with n. Under these circumstances, there is
a clear separation of time scales [12]: as n increases, arrivals
and completions occur more and more quickly (i.e., in a fast
time scale), while the experience of individual jobs does not
change (i.e., in a slow time scale).

Under the Erlang loss model, the number of jobs inside the
system can be modeled as a Birth-and-Death process with a
finite state space, {0, 1, . . . , n}. An arriving job that finds j
(j < n) jobs being served causes a transition to state (j+1) at
rate λj = λ. A completing job at state j (j = 1, . . . , n) causes
a transition to state (j − 1) at rate µ, and thus jobs leave the
system at rate µj = jµ. Denote by pj the stationary probability
that there are j jobs in the M/GI/n/n queue, j = 0, 1, . . . , n.
After some algebraic manipulations, the balance across the
cuts can be expressed in the form

pj =
ρj

j!
p0 . (2)

Steady-state for this Birth-and-Death process exists if, and
only if, Equation (2) can be normalized, i.e., if

∑n
j=0 pj = 1.

Under this model, the steady-state always exists, and from the
normalization condition, we obtain [13]

p0 =

 n∑
j=0

ρj

j!

−1 . (3)

The probability of losing a job, i.e., the probability pn to
be in state n, is given by the Erlang-B formula

pn = B(n, ρ) =
ρn

n!
p0 . (4)

Because of the factorial and large power elements, Equa-
tion (4) is very difficult to calculate directly from its right-hand
side when n and ρ are large. However, it can be computed
efficiently using the following iterative scheme [14] B(0, ρ) = 1

B(n+ 1, ρ) =
ρB(n, ρ)

n+ 1 + ρB(n, ρ)

. (5)

If the arrival process is not Poisson, then the insensitivity
property is lost, and the appropriate queueing model becomes



G/GI/n/n, for which there is no exact solution. However,
an acceptable approximation for the blocking probability is
provided by the formula (see Whitt, [15])

pn = B
(n
z
,
ρ

z

)
, (6)

where z is the asymptotic peakedness of the arrival process,
defined as the variance divided by the mean of the steady-state
queue length in the associated G/GI/∞ model (see [15] for
more details). That value can be computed using the following
formula

z = 1 + (ca2 − 1)η, (7)

where η is defined as

η = µ

∫ ∞
0

[1−G(t)]2dt, (8)

and G(t) is the cumulative distribution function (CDF) of the
service time distribution with mean 1/µ and variance σ2

s .
Given the limited amount of information available, evalu-

ating G(t) is very challenging. Thus, we distinguish between
three cases:

Case 1: ca2 = 1. The interarrival intervals are exponentially
distributed, and z evaluates to 1. Thus, Equation (6) reduces
to Equation (4).

Case 2: ca2 6= 1 and cs2 = 1. The service times are
exponentially distributed, η = 1/2 and therefore z is

z = 1 +
(ca2 − 1)

2
. (9)

Case 3: ca2 6= 1 and cs2 6= 1. We use a normal
approximation to solve Equation (7). Denoted by N(m,σ2)
a normal random variable with mean m and variance σ2.
We approximate the distribution G(t) by the distribution of
N(1/µ, σ2

s), and compute the integral in Equation (8) using
the Legendre-Gauss integration method.

Finally, since the service time distribution might change
over the time, it may be convenient to periodically recompute
the peakedness factor. Denoted by zk the peakedness at
decision epoch k. At time (k+1), the new peakedness can be
estimated as

zk+1 = 1 + (zk − 1)ηk+1/ηk. (10)

Having defined the stationary distribution of the number of
jobs present, the average number of jobs entering the system
(and completing service) per unit time is

T = λ(1− pn), (11)

with (1−pn) being the probability that an incoming job finds
an idle server.

The above expressions, together with (5), enable the aver-
age revenue R to be computed efficiently and quickly, e.g.,
B(100000, ρ) can be evaluated in about 0.2 seconds using an
Intel Core Duo processor. When that is done for different set

of parameter values, it becomes clear that R is a unimodal
function of n, i.e., it has a single maximum, which might
be n = S, or n = 0, see discussion in Section III (this
does not depend on the assumption that the electricity cost is
constant over the time). We do not have a mathematical proof
of this proposition, but have verified it in several numerical
experiments. Since the cost for evaluating R is domininated
by the computation of Equations (5) and (8) (where the latter
has to be computed only once), one can search for the optimal
number of servers to run by evaluating R for consecutive
values of n, stopping either when R starts decreasing or, if that
does not happen, when the revenue increase becomes smaller
than some value ε. This can be justified by arguing that the
revenue is a concave function with respect to n. Intuitively,
the economic benefits of switching on more servers become
less and less significant as n increases. On the other hand, the
loss of potential revenues become more and more significant
as n decreases. Such behavior is an indication of concavity.
One can therefore assume that any local maximum reached is,
or is close to, the global maximum.

The allocation policy described above, which will be ref-
ferred to as ‘Optimal’ policy, requires the evaluation of Equa-
tions (5) and (8). It may therefore be desirable to have simpler
heuristics that allow decisions to be taken faster and with less
information.

A. Adaptive Heuristic

Deciding on the number of servers to run requires to bal-
ance between the server farm’s utilization and service quality
(availability). High utilization is typically obtained at the cost
of lower availability. Therefore, it is a common belief that high
utilization and good service quality can not coexist. However,
the behaviour of large server farms working in QED regime
differs from that of Kingman’s Law (i.e., delays/job losses
are very common under heavy load) in that service quality is
carefully balanced with server efficiency.

Thus, we propose the following ‘Adaptive’ heurisitc. From
the statistics collected during a window, estimate the arrival
rate, λ, and average service time, 1/µ. For the duration of the
next window, allocate the servers according to

n = dρ+ β
√
ρe , (12)

where the quantity β
√
ρ is used for dealing with stochastic

variability, and −1 ≤ β ≤ 1.

B. Predictive Heuristic

One can observe that the previously discussed policies
simply adapt to the changes in user demand by assuming that
the traffic during the next window will be the same as that of
the previous window. The realism of that assumption can be
disputed, as the load typically follows certain patterns (daily,
weekly, etc.). Thus, is might be desirable to design a policy
which tries to predict the user demand.

Denoted by ρk is the estimated load at window k. Instead
of simply adapting to the observed load and assuming that
ρk = ρk+1, one can try to forecast and estimate what ρk+1



will be using the historical data. Thus, a simple and efficient
heuristic using a double exponential smoothing to estimate the
future arrival rate can be employed. For any time period k, the
smoothed value Sk is found by solving the following system
of equations{

Sk = αλ + (1− α)(Sk−1 + bk−1)
bk = γ(Sk − Sk−1) + (1− γ)bk−1

. (13)

The first equation adjusts the smoothed value Sk adding
bk−1 to the last smoothed value, Sk−1, while the second
equation updates the trend. In this work we used the least
squared method in order to find the best values for α and γ.

Having computed the smoothed and the trend values at time
k, the forecast for the arrival rate at time (k + 1), λFk+1, is
computed as λFk+1 = Sk + bk.

V. SERVER POWER USAGE ESTIMATION

The amount of electricity drawn by servers depends on
several factors. Moreover, realistic cost models should take
into account wasted energy such as power conversion losses
and the power used for cooling purposes. Different algorithms
can be employed to estimate the energy requirements of a data
center, the simplest one assuming that the power usage of a
server is constant, while the most complex models using also
disk metrics gathered from some operating system tools such
as iostat, in addition to the CPU utilization, or performance
counters [16].

Since most of the Cloud applications are most likely web
applications, we conducted an experiment aiming at finding
the dependency between the energy consumption and CPU
utilization for a common web application. In order to avoid
biased applications, i.e., with high CPU consumption per job,
we have chosen Wordpress2 as a study case. This application
runs on top of the LAMP stack (i.e., Linux, Apache, MySQL
and PHP), and thus represents a significant fraction of the
applications running not only in the Cloud but in the Internet
as well. Moreover, Wordpress jobs are not completely CPU
bound, as the application uses a database as a backend,
whose operations are I/O bound. Unfortunately, the default
configuration of LAMP is far from being optimized for high
throughput under heavy load. Therefore, we had to perform
a number of tune ups, including installing XCache – which
caches the compiled PHP code, thus preventing re-compiling
the same code for every arrival – and tuning the TCP stack,
the Linux kernel and the Apache configuration.

The server was hosted on a machine with Dual Xeon Dual
Core CPUs running at 2.8 Ghz, 2 Gb of RAM, 7200 RPM hard
drive and 1 Gbps network card. The power consumption was
measured every minute in the presence of an increasing work-
load, which was generated by Tsung 1.3.23. The workload
consisted of clients arriving according to a Poisson process at
an increasing rate. Each client replayed a prerecorded session,

2Wordpress is a popular open source application which implements a blog,
see http://wordpress.org/

3http://tsung.erlang-projects.org/

which included checking the front page, browsing the posts
with some specific tags, as well as searching in the blog.
Surprisingly, most of the HTTP requests were serving dynamic
content, as the static content, which consisted from CSS files
and JavaScript libraries, was cached on client’s side after the
first client’s request.
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Fig. 2. Measured energy consumption.

Figure 2 demonstrates the relationship between power con-
sumption and CPU utilization. In the idle mode, the energy
consumption stayed at the steady 140 W. As shown in Figure
2, the power consumption grows linearly with the increase
of CPU utilization. Noise in the power consumption can be
attributed to noise in the CPU utilization due the irregularity
in the request traffic. Besides, the fluctuations in the CPU
utilization require dynamic usage of the cooling fans, which in
turn amplifies the fluctuations in the power consumption. The
power consumption peeks at 220 W when the CPU utilization
reaches values higher than 375%. Due to the lack of space,
we do not present the behavior of the response time, which
stayed under one second for loads up to 70%.

Therefore, the average power consumed by a data center
per unit time, P , can be estimated as

P = ne1 + m̄(e2 − e1), (14)

where e1 is the energy consumed per unit time by idle servers,
e2 is the energy drawn by each busy server, and m̄ is the
average number of servers running jobs (m̄ ≤ n)

m̄ =

⌈
T

µ

⌉
. (15)

We have carried out some tests with some other models, and
found that the estimate given by Equation (14) gets within 10%
of the one using performance counters.

VI. PERFORMANCE EVALUATION

Various experiments were carried out, with the aim of
evaluating how the proposed policies affect the maximum
achievable revenues. We assume a server farm with a Power



Usage Effectiveness (PUE) of 1.7 [5]. The PUE is one of the
metrics used to measure the efficiency of data centers, and it is
computed as the ratio between the total facility power and the
IT equipment power. Also, to reduce the number of variables,
if not otherwise stated, the following features and assumptions
were held fixed:
• The data center is composed of 25,000 machines, config-

ured as in Section V. Therefore, S = 100, 000.
• The power consumption of each Xeon machine ranges

between 140 and 220 W, see Figure 2. In other words,
each server (e.g., core, fans, disk and network interface)
has a direct consumption between 35 and 55 W. Since
the server farm has a PUE factor of 1.7, the minimum
and maximum power consumption are approximately e1
= 59 and e2 = 94 W per server.

• The cost for electricity, r, is 0.1 $ per kWh [17].
• The average job size, 1/µ, is set to 50 minutes.
• Completed jobs generate an amount of income of 0.085

$/hour. Charges are proportional to the job length, and
therefore each job is worth on average 0.071 $.

• Jobs are not completely CPU bound. Instead, when a
server is busy, the average CPU utilization is 70%. In
other words, busy servers draw 69.58 Wh, and thus each
job costs, for electricity, 0.0058 $ on average.

To make the results more realistic we take indirect costs
into account as well. These include the cost of capital and
equipment amortization (servers as well as power generators,
transformers, UPS systems, etc.), and account for twice the
cost of consumed electricity.

The first experiment is purely numerical. In Figure 3 we
examine how the number of running servers affects the av-
erage earned revenue per unit time under different loading
conditions. The potential offered load is increased from 30%
to 90% by increasing the rate at which new jobs enter the
system, from 36,000 to 108,000 jobs per hour.
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The figure illustrates the following points:
1) In each case there is an optimal number of servers that

should be switched on;

2) The heavier is the load, the higher is the optimal number
of servers as well as the maximum achievable revenue;

3) When n > nopt, the system under-performs because the
cost of running idle servers erodes revenues;

4) When n < nopt, the system under-performs because it
misses potential revenues.

Next, we evaluate the performance of the proposed policies
via event-driven simulation. For comparison reasons, two
versions of the ‘Static’ policy, a policy which runs always
the same amount of servers, is also displayed. One runs
n = S/2 = 50, 000 servers, while the other n = S = 100, 000.
We vary the load between 5% and 99.5% by varying the arrival
rate, i.e., λ = 6, 000, . . . , 119, 400 jobs/hour. Each point in
the figure represents one run lasting 264 hours (i.e., 11 days),
while reconfigurations occur every 2 hours. During each run,
between 1.6 (low load) and 35 million (high load) jobs arrive
into the system (the number of jobs admitted into the system is
a bit smaller under heavy load). Samples of achieved revenues
are collected approximately every 24 hours and are used at the
end of each run to compute the corresponding 95% confidence
interval, which is calculated using the Student’s t-distribution.
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The most notable feature of the graph plotted in Figure 4 is
that the performance of the ‘Static’ policies produce negative
revenues under light load (because of the servers running
idle), while the one with parameter n = S/2 performs poorly
when the load increases, because too many jobs are lost.
On the other hand, the ‘Adaptive’ heuristic (with parameter
β = 0.2) produces revenues that grow with the offered
load, and almost as high as those obtained by the more
computationally expensive ‘Optimal’ algorithm. This suggests
that the ‘Adaptive’ heuristic might be a suitable choice for
practical implementation.

Figure 4 does not allow to see a comprehensive picture, but
it shows that the policies we propose perform better than the
static ones, it does not provide any insight about the optimality
of the algorithms. Therefore, in Figure 5 we show the ratio
between busy and running servers: a value close to 1 means
that the policy performs very well, while a value close to 0



means that the algorithm does not behave properly. The figure
shows that the ‘Adaptive’ heuristic is always very close to
1. The percentage of lost jobs obtained by those policies is
always very low, thus ensuring a good user experience.
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Finally, Figure 6, which depicts the average power con-
sumption, clearly shows that the dynamic policies run servers
only when needed, thus reducing the electricity bill and
improving the provider’s profits.
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Next, we depart from the assumption that the traffic is
Markovian in order to evaluate the effect of interarrival and
service time variability on performance. The average values
are kept the same as before, however both the interarrival
and service times are generated according to a Log-Normal
distribution. The corresponding squared coefficient of variation
are ca2 = 2 and cs2 = 20. The high variability in job size
distribution was deliberately chosen to reflect the different kind
of cloud users.

It is legitimate to expect the performance to deteriorate
when the traffic variability increases, since the system becomes
less predictable and it is more difficult to choose the best n.
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Fig. 7. Observed revenues for different policies, ca2 = 2 and cs2 = 20.

In fact, Figure 7 shows that the achieved revenues are indeed
lower than those achieved when the traffic is Markovian.

In the next series of the experiments we evaluate the
performance of the proposed policies under non stationary
loading conditions. Unfortunately, there is no publicly avail-
able data describing the demand for Cloud resources, and thus
we extrapolated it from the available Wikipedia traces [18].
Therefore the increase/decrease in the Wikipedia traffic would
correlate with the general increase/decrease of the request rate
for the resources. The arrival rate behavior has a general trend,
with monthly, weekly and daily patterns, as well as unexpected
spikes, which are hard to predict. We believe that such a
workload is unbiased and thus will not provide advantages for
any specific approach. We assume that jobs enter the system
arriving according to a Poisson process with a certain rate λ
which changes every hour, while the system is reconfigured
every 30 minutes.

As it has been pointed out above, the QED algorithm
performs almost as good as the optimal allocation policy.
Therefore, the next set of experiments are conducted using
the QED algorithm. We evaluate the performance of QED
with adaptive and predictive heuristic, and, for comparison
reasons, we also include a static allocation policy that runs all
the available servers, and an ‘Oracle’ policy that knows the
exact value of λ for the next time interval, and thus allocates
the optimal number of servers. Figure 8 shows that the static
allocation policy achieves 55%-80% utilization, while the
dynamic policies use a smaller amount of servers for handling
the load, thus the achieved utilization is significantly higher.

Since fewer servers are needed for handling the same load,
the resulting power consumption is also markedly smaller [fig.
9]. It is interesting to observe that despite the difference in the
prediction mechanisms, all QED variations demonstrate almost
identical results in terms of achieved cumulative revenue, see
Figure 10. This can be attributed to the fact the load fluctuation
within the reconfiguration intervals is rather small and hard to
predict.
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Fig. 9. Cumulative power consumption measured over one month
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Fig. 10. Cumulative revenue measured over one month.

VII. CONCLUSIONS

We have introduced and throughly evaluated easily imple-
mentable policies for dynamically adaptable cloud provision.

We have demonstrated that decisions, such as how many
servers are powered on, can have a significant effect on the
revenue earned by the provider. Moreover, those decisions are
affected by the contractual obligations between clients and
provider. The experiments we have carried out showed that the
proposed polices work well under different traffic conditions,
and that the ‘Adaptive’ heuristic would be a good candidate
for practical implementation.

Possible directions for future research include taking into
account the time and energy consumed during systems recon-
figurations, trade offs between the number of running servers
and the frequency of the CPUs, and the power consumed by
the networking equipment (i.e., switches).
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