
A semantic scheduler architecture for federated
hybrid clouds

Idafen Santana-Pérez
Ontology Engineering Group

Universidad Politécnica de Madrid

Madrid, Spain

Email: isantana@fi.upm.es

Marı́a S. Pérez-Hernández
Ontology Engineering Group

Universidad Politécnica de Madrid

Madrid, Spain

Email: mperez@fi.upm.es

Abstract—Cloud computing is one the most relevant computing
paradigms available nowadays. Its adoption has increased during
last years due to the large investment and research from business
enterprises and academia institutions. Among all the services
cloud providers usually offer, Infrastructure as a Service has
reached its momentum for solving HPC problems in a more
dynamic way without the need of expensive investments. The
integration of a large number of providers is a major goal as it
enables the improvement of the quality of the selected resources
in terms of pricing, speed, redundancy, etc.

In this paper, we propose a system architecture, based on
semantic solutions, to build an interoperable scheduler for
federated clouds that works with several IaaS (Infrastructure as
a Service) providers in a uniform way. Based on this architecture
we implement a proof-of-concept prototype and test it with two
different cloud solutions to provide some experimental results
about the viability of our approach.

I. INTRODUCTION

According to [1], cloud computing is a “massively scalable
distributed computing paradigm driven by economics of scale
that can be abstracted to deliver different level of services and
can be dynamically configured and delivered”.

The great expansion of cloud provider market has meant that

users have a broader range of resources to choose among. Due

to this variety, the task of selecting the most suitable resource,

usually a virtual machine in the case of IaaS providers, has

become a complex process as the user has to deal with diffe-

rent APIs and technologies, different vocabularies for naming

products, non standard pricing models, etc. In a worlwide

market with several public providers, such as Amazon EC2

[2], ElasticHosts [3], GoGrid [4] or CloudSigma [5] (among

many others), and private cloud solutions like OpenNebula [6],

Nimbus [7] or Eucalyptus [8], an automated mean of managing

each one correctly and several of them in a coordinated manner

is required. This way the scalability and reliability increase

while cost can be reduced [9]. This composition of private and

public clouds in a uniformed way is known as cloud federation.

Virtual appliances are a widespread way for describing

computational resources. They consist on a virtual machine,

or a set of them, with a specific hardware configuration and

a set of applications already installed on it. This is the basic

resource IaaS providers usually offer to their clients. In this

paper we describe our approach for integrating different cloud

providers into a scheduling process. The main goal of our work

is to define an architecture that integrates a scheduling system

capable of allocating computational tasks in the most suitable

resource regardless what clouds are part of the federation, what

APIs they use or how they define the means of charging the

users.

For this purpose we will use semantic technologies, which

bring us a set of tools and mechanisms to describe the infor-

mation of the cloud and the data describing the state of each

resource they offer in a formal way. We will define a model

by means of ontologies which encapsulates the necessary and

relevant terms and relationships of each provider and then

we will define a way of integrating them for carrying out

the scheduling process. Besides we will discuss the use of

SPARQL (SPARQL Protocol and RDF Query Language[10])

and its integration within the model as a powerful mean to

define complex equivalences between terms of the model.

We will also aim to provide some experimental results about

the performance and interoperability of our architecture by

implementing and evaluating a proof-of-concept system based

on its principles.

In this paper we will describe the state of the art in section

II. To achieve the goal of building a semantic scheduling

system we propose an architecture in section III and define

a scheduling process in section IV. In section V we test the

performance of our proof-of-concept system and analyze the

results. Section VI contains conclusions and an outlook to

future work.

II. RELATED WORK

One of the most common ways to deal with cloud hete-

rogeneity is the definition of standards interfaces that each

provider can implement so the users have a well defined way to

access and use the features specified by the interface. Among

all already available cloud interfaces standardisation efforts

we highlight the Open Cloud Computing Interface (OCCI

[11]), as it is one of the pioneering initiatives in the area,

and Unified Cloud Interface (UCI [12]), as it defines not only

an interface but also provides several ontologies describing

cloud infrastructures. Although these kinds of solutions are

becoming more used in some public and private clouds, most

of them are not willing to change the way they define their

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.43

384

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.43

384

interfaces. This may leave several providers out of the scope

of a user working with one of these interfaces.

Semantics have been proposed and used as a solution

for dealing with heterogeneous resources in the grid field

and nowadays there are several initiatives that work with

semantic technologies applied to cloud federations problems.

An important contribution to the state of the art is described

in [13] and [14]. The former shows the use of semantics

technologies to deal with heterogenous enterprise cloud envi-

ronments, introducing RDF [15] and collaborative annotations

for describing cloud resources. The second one describes an

ontology-based framework for finding the optimal resource

configuration based on functional requirements, preferences

and prices. We aim to take those ideas one step further

by combining them into a system capable of selecting the

most suitable resource based not only in the user preferences,

defined as job requirements in our approach, but also taking

into account the state of the system.

Another work done in this field is exposed in [16], where

an ontology-based discovery system is used to fill the gap

between user and provider’s notation. To achieve this, they

translate user requirements and virtual appliances to the well

known Open Virtualization Format (OVF) [17] to filter which

virtual appliances fulfill those requirements. This resource

discovery process highly relies on the OVF format, assuming

that most of providers and cloud solutions support, or will

support in the future, this standard, but, as we argued with

interface specifications, depending on a particular format may

lead to a highly dependent system which could not work with

clouds not supporting it. Instead of this, we aim to describe

as many formats as possible, from specific ones like Amazon

Machine Images [18] to more generic ones like the mentioned

OVF standard, and relate them to the cloud solutions they can

work with.

An interesting initiative in this area is the mOSAIC [19]

project, which also proposes, as we do in this work, a network

of ontologies and a set of APIs for solving federated clouds

interoperability. Although they have released a first implemen-

tation of their API, at the time of writing this paper, there

is no any available ontology. Our approach also differs from

this project in that we add a system that not only describes

the resources but also uses this information in a semantic

scheduling process.

Unlike all these initiatives we explore the use of SPARQL

queries within the model, adding a more expressive way

to define complex relations and equivalences between cloud

concepts and also enabling the addition of knowledge about

how to calculate derived information from basic information.

III. ARCHITECTURE

As previously mentioned the purpose of this work is to

illustrate an architecture for job scheduling using semantics.

This architecture is depicted in figure 1 and all its components

are explained in more detail throughout this section. We also

explain in this section the information model, that is, how the

information about the system is stored and used.

For our proof-of-concept system implementation we have

chosen Condor [20] as our job management system, which al-

lows us to send jobs to the chosen resources and to track them,

retrieving the information that will be stored and processed by

means of the ontologies.

A. Information model

We have created an ontology network1, which is a col-

lection of ontologies joined together through a variety of

different relationships, about job scheduling, cloud providers

and solutions. This network is divided into two abstraction

levels, generating two different types of ontologies plus a

matching ontology relating concepts from both abstraction

levels and describing the behavior and components of each

cloud provider using their own vocabularies.

At the highest level of the model we have the scheduling

ontology, corresponding to the scheduler module. This onto-

logy contains the relevant scheduling terms of a generic cloud

provider and the description of the jobs we want to send to

it. It represents the model that scheduler will use to have an

integrated view of the state of the global infrastructure when

retrieving system information. The lower level ontologies

describe each specific cloud provider and its properties, so we

will have an ontology for any cloud solution we want to work

with. As explained later on this section our proof-of-concept

system supports Amazon EC2 public cloud and a private cloud

based on OpenNebula and therefore we have developed two

different ontologies for describing them.

The equivalences between terms from the generic cloud

ontology to the specific ones are described in the matching

ontology. Using this ontology network scheduler is able to

access the information of every cloud on the system without

having any specific knowledge of any of them.

1) Ontologies: To develop our cloud ontologies we have

reused and modified the UCI project ontologies2. On the basis

of the uci.owl ontology we have implemented our Cloud.owl
and OpenNebula.owl ontologies, adding some specific terms

to define the generic cloud components and the OpenNebula

specific ones. For the EC2.owl ontology we have modified and

added some classes and relationships to the existing ec2.owl
ontology.

To describe the rest of the model we have used an ontology

for describing a generic virtual machine capabilities [21]

(in terms of CPU, RAM memory, Disk capacity, OS, etc.)

and developed a job ontology for describing the Condor[20]

environment and features.

2) Ontology Matching: Having several ontologies for des-

cribing each part and process of the system allows us to

describe its behavior in a proper way, although in order to

integrate them into a coherent and useful model we have to

establish some relationships among terms of them that are

equivalents even when they have different names or not the

same exact meaning. For example, the term ECU, which stands

1http://www.oeg-upm.net/files/metaplanificador/cloudontologies.tar.gz
2http://code.google.com/p/unifiedcloud/source/browse/trunk/ontologies/

385385

Fig. 1. Components and interactions of our system architecture

for EC2 Compute Unit in the Amazon public cloud domain,

represents the basic unit of measurement for computational

power of their instances. Although these concepts are not ex-

actly the same, in our scheduling domain an ECU is equivalent

to the amount of CPU frequency of a Virtual Machine in the

Cloud ontology.

Defining these equivalences between all the relevant terms

of the different domains we are working with allows the

scheduling process to retrieve information about the hybrid

cloud environment by using the generic cloud ontology model,

without having to deal with any of the specific vocabularies.

3) SPARQL Queries: Some of the equivalences that we

have to define for our process are not as simple as a direct

mapping between terms of two ontologies. Sometimes it is

necessary to state relationships involving several terms and

taxonomies, in such way that direct mappings can not be es-

tablished. One way for solving this could be to define abstract

classes that encapsulate the set of classes and relationships

involved in both models, and then setting an equivalence

relationship between them. From a formal modeling point of

view this is a valid solution, but it is useless in an automatic

process for retrieving information, as these abstract classes can

not be instantiated and referenced.

Moreover these relationships only allow to define equiva-

lences at a term level. If we also want to define and perform

some data transformation process we need a more powerful

tool. In this work we propose the use of SPARQL queries

within the model to achieve it. At the mappings ontology we

define not only equivalences between ontology terms but also

queries to obtain data from each specific model and relate

those queries to the classes and relations of the ontology.

To define these queries we use the SPIN Rules [22] voca-

bulary, which brings us a way to write SPARQL queries into

RDF and, therefore, to use them as part of our model. For a

better understanding of this equivalence process we illustrate

it by an example. Figure 2 depicts two pieces belonging to the

OpenNebula and the EC2 model. This set of classes represent

how a virtual appliance unit (Virtual Machine or EC2 Instance)

is related to its computational power.

The way of calculating the CPU capacity of a running

virtual machine is similar but not the same in each domain. In

OpenNebula it is the result of multiplying the frequency value

associated to a FrequencyRate by the server cpu power of the

server running the cloud. In the case of EC2 cloud this value

is calculated by multiplying the number of ECU by a constant

that Amazon defines as a reference of an estimated value of

and ECU (about 1.0-1.2 GHz 2007 Opteron or 2007 Xeon

processor). Although they are different processes and different

concepts the result of it calculus is conceptually equivalent.

In this work we explore the use of SPARQL, as it is

a standard and expressive way of querying and retrieving

information stored in RDF, to carry out processes like the

mentioned above. We argue that using queries is a more

understandable and maintainable mechanism to define the

knowledge of these processes. For our example we define the

queries listed in 1 and 2 and store it using SPIN vocabulary,

where ?arg1 is the parameter that represents the name of the

individual corresponding to a virtual machine. Each one of

these queries is related to the terms involved in the process

it models, so our system can retrieve the ontology concepts

corresponding queries.

To relate queries to their corresponding concepts the map-

pings ontology defines the querySource and queryTarget prop-

erties, that link each query to the object we are asking for and

the value we want to obtain. In our example the queries are

related to the VirtualMachine and EC2Instance concepts by the

querySource property and to the frequency and numberOfEcu
data type properties by queryTarget.

386386

Fig. 2. Subsets of virtual appliance ontologies

SELECT ((xsd:float(?frec)*xsd:float(?power)) AS ?res)
WHERE {

?arg1 opennebula:isBasedOn ?template .
?template opennebula:definesCPU ?cpu .
?cpu opennebula:hasFrequencyRate ?fr .
?fr opennebula:frequency ?frec .
?arg1 opennebula:belongs_to_cloud ?cloud .
?cloud opennebula:runningOnServer ?server .
?server opennebula:server_cpu_power ?power .
}

Listing 1. SPARQL query for OpenNebula

As we mention before we can express that an ECU is con-

ceptually equivalent to the frequency concept of OpenNebula

domain by using an OWL [23] equivalent relation, but if we

want to go one step further and describe a complex equivalence

and perform certain transformation in the data describing the

system we can use SPARQL queries as part as the overall

model.

SELECT((xsd:float(?ecu)*xsd:float(?power)) AS ?res)
WHERE {

?arg1 ec2instances:basedOnAmi ?ami .
?ami ec2instances:couldBeBasedOn ?itype .
?itype ec2instances:numberOfEcu ?ecu .
?arg1 ec2instances:belongs_to_cloud ?cloud .
?cloud ec2instances:referenceCPUPower ?power .
}

Listing 2. SPARQL query for Amazon EC2

B. System architecture

Our architecture is model driven, so we have built our

system based on the information model described before.

This information model breaks up into generic and specific

representations of the generic and specific levels. This model

is represented by a set of ontologies written in OWL, one

ontology to define the terms of the cloud using a generic

vocabulary and one ontology per each cloud solution we want

to add to the system using their own vocabularies. Because

of this two-level model we have chosen an adapter pattern

approach [24], using adapters to provide a common interface

to the meta-scheduler. The use of semantics allows us to build

lightweight adapters as it brings a shared model to store the

data making it explicit for all the components of the system

[25]. We will describe the components of our system through

the following subsections.

As a proof-of-concept of this architecture we have chosen

Amazon EC2 and OpenNebula as our IaaS public and private

cloud solutions. The first one is probably the most popular and

widespread provider and one of the first business initiatives for

selling virtualized resources on a worldwide scale. The second

one is one of the leading open source project for building

private cloud systems, which nowadays integrates tools for

working with many hypervisors and public clouds.

1) Manager Subsystem: To coordinate all the components

of the system and to handle user requests a central component

is defined. The Manager Subsystem is in charge of requesting

the scheduler for the most suitable resource or set of resources

to allocate the jobs sent by the user. Once it obtains the list of

those resources it sends a request to the adapters so they can

create the resources and attach the jobs to then.

It also receives requests from users to add new Virtual

Appliance descriptions and to store them in the catalog,

updating its information and the necessary files to run them.

In order to publish the state of a certain resource or some of

the features of it, or an overall view of the current state of

the system, the manager exposes an interface to query it and

obtain this information in RDF.

2) Information System: The Information System is in

charge of retrieving and storing all the information about the

system. This information is stored in RDF triples using the

vocabulary defined in our ontologies. All the information is

created and written by the adapters of the system, so it is

generated using only the lowest level specific ontologies. As

explained before the rest of the components of the system

can access this information even when they do not know the

vocabulary used to create it. Information System deals with the

translation of the generic terms and queries into the specific

ones by using the relations defined in out ontology network.

We propose the use of Jena [26] API to manage the

ontologies and the data generated from them working with

a MySQL [27] database to store both, models and generated

data.

387387

3) Virtual Appliance Catalog: Virtual Appliance Catalog

consists on a set of descriptions about the features and charac-

teristics of the resources that can be deployed in the available

clouds, using the ontology modeling the cloud solution these

appliances are related to, which could be more than one, as

in the case of standard virtual appliances formats that are

supported by several providers.

This catalog exposes an SPARQL interface to the rest of

the components to enable an integrated access to the stored

information.

4) Ontology Repository: The purpose of the Ontology

Repository is to maintain an up to date version of each

ontology of the system and the equivalence relationships,

which may vary quite often specially when we add a new

cloud provider to our catalog and, therefore, we add its related

model to the repository.

5) Adapters: Splitting our architecture in different levels of

abstraction allows to build a more lightweight components, as

they only have to deal with certain parts of the environment

we are using. Thus, those components will be more modular

and easy to maintain.

The Adapters correspond to the lowest level of our architec-

ture and the rest of the components work based on the results

of the work done by them. We define one adapter per cloud

solution we want to deal with. In a system like the one we

implement in this work we have two different adapters, one

for OpenNebula and another for EC2 cloud. Even if we want

to run several instances of a cloud, like for example having

several servers running several instances of an OpenNebula

cloud, we only have so set up one adapter for these clouds. The

adapter component is able to guess how many cloud instances

are available by querying the information system and work

with each one of them. However more than one replica can

be run to ensure that the system keeps working if one adapter

fails.

The purpose of the Adapters is to expose an homogeneous

interface to the Manager component, so it can perform the

necessary actions over the clouds according to the decisions

taken by the Scheduler. Also, all the information generated

about the system and the state of the resources is produced by

the adapters and stored in the Information System.

6) Scheduler: The Scheduler plays a key role in our system.

It is in charge of making decisions about creating virtual

resources, sending jobs to them or an already existing one,

removing unused resources, etc. As explained before in this

document these decisions are taken based in the data generated

by the Adapters and the models describing the environment.

Using this information the scheduling process is carried out,

according to the defined policies, and the output result of this

process is sent to the Manager System so it can execute the

corresponding actions. The scheduler does not know if these

actions are committed or not. That is, it does not assume the

changes resulting from these actions until the corresponding

adapter reflects them.

In the following section we describe the scheduling policies

and the process the scheduler performs for our proof of

concept system.

IV. SCHEDULING PROCESS

We have developed a proof of concept scheduler process to

work with the rest of the system and test the validity of our

approach. It is based on a policy that focuses on reducing the

starting time of the job and the cost of a virtual appliance,

trying to reduce the cost of the global execution by providing

the cheapest available and suitable virtual appliance for each

job sent by a user. The following steps, depicted also in figure

3, define our case study scheduling algorithm, however it is

just one implementation among the many possible ones that

could be performed in our system.

1) The scheduler extracts requirements from the description

of the job.

2) The scheduler queries the Information System looking

for an already running resource.

3) If there are running resources the scheduler filters those

which fulfill job requirements.

4) Among resultant resources the Scheduler chooses the

cheapest one.

5) If there are no available running resources it filters the

virtual appliances capable of running the job consulting

the Virtual Appliance Catalog.

6) It sorts the list of capable virtual appliances by their

prices, from the cheapest to the most expensive one.

7) In case of a set of virtual appliances with same prices

it sorts them according to their CPU capacity and then

by their RAM.

8) The scheduler traverses this list checking if each virtual

appliance can be deployed on its associated clouds.

9) Once the scheduler finds an available cloud to run the

virtual appliance or a running resource it returns its

identifier to the Manager.

10) If there is no available resource or appliance the sched-

uler sends a failure notification to the Manager and it

adds the job to a waiting queue.

Although this algorithm can be improved in several ways

and implement totally different policies, it provides a consis-

tent procedure for testing our approach. Rather than providing

an advance scheduling process the goal of this work is to

describe and implement an architecture that allows efficient

schedulers to work properly by means of semantics.

V. EVALUATION

In this work we both describe an architecture for interoper-

able federated clouds in a theoretical way and provide some

experimental results that allow to validate the viability of the

system and to test its performance.

Based on the algorithm explained above we have designed

and run an evaluation process which generates a set of jobs

for image processing. We have chosen the well known POV-

Ray CPU benchmark [28] to generate the workload to be sent

to the system. This program renders scenes to generate three-

dimensional graphics by using the ray-tracing technique. It

reads the objects and lighting information of the scene from

388388

Fig. 3. Flow chart representing the scheduling process

OpenNebula EC2
CPU QEMU Virtual CPU version 0.9.1 Intel(R) Xeon(R) CPU

CPU Frec. 2133.46 MHz 2266.74 MHz
RAM 2060924 KB 1757212 KB

TABLE I
VIRTUAL APPLIANCE TECHNICAL CHARACTERISTICS

a text file and generates an image representing that scene. We

create a set of 25 condor jobs running the benchmark POV-Ray

configuration3 with an Antialias Depth value of 4 to increase

the CPU load of each job.

To run this experiment we have registered two different

virtual appliances, belonging to the clouds we manage, with

Condor and POV-Ray installed on them and whose technical

characteristics are compared in table II. As we can see they

are similar though the OpenNebula instance has more RAM

and the Amazon instance is more powerful in terms of CPU.

As we are working with a CPU benchmark it is expected that

the EC2 machine behaves better than the other one.

To validate our approach we will test two different aspects.

First of all we validate that the system is able to work

seamlessly with one public or private cloud solution, or with

both of them. And the second one tests that using our system

does not affect the performance of the execution in terms of

time.

3http://www.povray.org/download/benchmark.ini

To validate the former we are running the set of 25 jobs in

one cloud provider each time and then in both at the same time.

Our clouds have some limitations: the OpenNebula server can

run no more than 14 virtual machines due RAM limitations

and because of account restrictions imposed by Amazon we

can run only 20 instances at the same time. These limitations

bring us the chance of testing how our system create new

resources dynamically and also how it reuses the existent ones.

When combining both we test that the system can handle

two different cloud implementations at the same time without

impact on the execution time.

In order to test the second one we are comparing our

semantic scheduling system with a static scheduling process.

This process performs a predefined static resource allocation

which is equivalent to the result of our scheduling process. It

creates a set of resources and sends jobs to them. We measure

the resultant times and compare them to the results of the

execution performed using the scheduler systems.

To avoid sporadic results due to an exceptional load of the

virtualization server or timely failures that can occur in an

almost overloaded cloud we have executed each evaluation

several times. The results shown in this section are the mean

of the ten executions performed for each evaluation. Figure

4 shows the total time spent in executing each job, that is,

the time since the systems begins the scheduling process until

the job finishes its execution. We have set up three different

evaluation configuration: one in which only the OpenNebula

cloud is available, other one with only the EC2 cloud and a

third one in which the system has access to both of them. At

the beginning of each evaluation process there are no resources

running.

As we see in the graphic the Amazon EC2 evaluation

exposes better results than the OpenNebula one, which it is

a coherent result, as Amazon cloud is much more powerful

than OpenNebula and their machines do not take so much time

to boot. However the EC2 instances have an associated cost

so the execution of these jobs is more expensive than in the

private cloud, which is free. As the Amazon pricing model

uses the hour as its basic unit for charging each instance,

running the necessary 15 instances for around 44 minutes

and 5 of them (the ones which execute 2 jobs) for one and a

half hour means 25 hours running instances. Those instances,

which run a Linux OS, cost $0,17 per hour, so the resultant

cost of the execution of all the jobs is $4,25. That is the

amount of money we have to spend for executing our jobs

and means that we have to spend $0,28 for each hour a job

is running. Our scheduling policy tries to reduce the cost of

the execution, which can be seen in the hybrid configuration.

This configuration enables the execution of all jobs without

having to add any job to the waiting queue, reducing this way

the execution time. It runs only 5 Amazon instances, reducing

the cost of the execution, which is $0,85, as it only have to

pay for 5 hours of computing resources. If we compare the

total amount of both executions we can observe a reduction

of 80% on the cost.

As a result of these tests we can check how our scheduling

389389

Fig. 4. Results of OpenNebula, EC2 and Hybrid configurations

OpenNebula EC2 Hybrid
Mean time 8376 3449,52 5497,52
Total cost $0 $4,25 $0,85

TABLE II
EVALUATION MEAN TIMES AND TOTAL COST

system works with a federated hybrid cloud, increasing the

amount of available resources and enabling a lower cost

solution, as pointed out in [9].

To prove not only our scheduler is able to manage several

different clouds but also that it does not add a significant

overhead to the process we perform a comparison of the per-

formance of our system working with the hybrid configuration

against the static scheduling process explained before. Those

results are shown on figure 5, where we can see how both

evaluations behave in a similar way, even though the semantic

scheduling system introduces an overhead at the beginning of

the execution because the static scheduling process does not

needs time to decide which virtual machines it has to run.

This advantage becomes a disadvantage for the latest jobs

because the virtualization server is overloaded, as it is trying

to boot all the virtual machines at the same time, accessing

disk to read their image files and affecting their execution.

The semantic scheduler approach takes more time to decide

about the resources an therefore does not try to run all the

machines at the same time, which reduces their booting time

and benefits the jobs.

With a mean overhead of 135,55 seconds per job and taking

into account that the mean time per job in both evaluations

is 4836 and 4884 seconds, the overhead represents around the

2,8% of the time, which is an acceptable extra time taking into

account all the process performed by the scheduling system

and the benefits it exposes.

VI. CONCLUSION AND FUTURE WORK

Renting computing and/or storage resources from external

providers is starting to be a more and more common practice

in nowadays computing scenarios. A very good quality-price

and a higher ease of administration are two of the most

noticeable advantages of this pay-as-go model, exhibited in

cloud solutions.
Nevertheless, many clients have computing or economic

demands which could not be fulfilled by only one cloud

infrastructure. In this context, hybrid clouds or federation

of different clouds seem to be the most appropriate alter-

native. However, interoperability problems can arise due to

the intrinsic differences between the large variety of cloud

environments.
Our work consists in the definition of a semantic archi-

tecture that paves the way to an interoperable federation of

clouds, focusing on the problem of providing efficient jobs

scheduling.
In this proposal we describe in an explicit way: (i) the

information of the cloud by using different ontologies that

define the relevant terms and relationships of each provider

and (ii) the integration of these concepts in order to enable

an efficient scheduling process. Apart from ontologies and

mapping between ontologies, SPARQL is also used as a

powerful method to define complex equivalences between

terms. All these ideas are examined and discussed based on

the results of an evaluation carried out on a proof-of-concept

system.
As a result of the evaluation performed, we have demon-

strated that our system makes interoperable the use of a public

and a private cloud infrastructures. Additionally, we have also

proved that the benefits obtained by the interoperability does

not affect the performance.
As future work we are planning to introduce new cloud

computing providers and solutions into our architecture, so we

will design and implement their corresponding ontologies (or

390390

Fig. 5. Semantic and Static comparison

reuse the existing ones if possible) and wrapping their APIs.

It would be also interesting to study the integration of the

architecture exposed on this work with other domains such

as grids, where semantics have been also used as a way to

deal with interoperability problems. Considering the use of our

scheduler system for handling other cloud resources different

from computing ones, such as storage or network capacity, is

another open issue we want to study in the future. Also adding

new scheduling policies which takes into account other aspects

like the priority of the jobs or the geographical area they must

be executed in is a key task for future research.

ACKNOWLEDGMENT

This work has been supported by the R&D project España

Virtual, funded by DEIMOS and CDTI under the R&D

programme Ingenio 2010.

REFERENCES

[1] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and
Grid Computing 360-Degree Compared,” in 2008 Grid Computing
Environments Workshop. IEEE, Nov. 2008, pp. 1–10. [Online].
Available: http://dx.doi.org/10.1109/GCE.2008.4738445

[2] “Amazon Elastic Compute Cloud: Amazon EC2.” [Online]. Available:
http://aws.amazon.com/ec2

[3] “Elastichosts: Flexible servers in the cloud,” Feb. 2011. [Online].
Available: http://www.mosaic-cloud.eu/dissemination/deliverables/FP7-
256910-D1.1-1.0.pdf

[4] “Gogrid,” Nov. 2011. [Online]. Available: http://www.gogrid.com/
[5] “Cloudsigma,” Nov. 2011. [Online]. Available: http://cloudsigma.com/
[6] “OpenNebula: The open source toolkit for cloud computing,” Jun.

2010. [Online]. Available: http://www.opennebula.org
[7] “The nimbus project,” 2011. [Online]. Available:

http://www.nimbusproject.org/
[8] “Eucalyptus cloud computing software,” Nov. 2011. [Online]. Available:

http://www.eucalyptus.com/
[9] M. Mihailescu and Y. M. Teo, “Dynamic resource pricing on federated

clouds,” in Cluster, Cloud and Grid Computing (CCGrid), 2010 10th
IEEE/ACM International Conference on, may 2010, pp. 513 –517.

[10] “Sparql query language for rdf,” Jan. 2008. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query/

[11] “Open Cloud Computing Interface - OCCI,” Online: http://occi-wg.org/,
2011.

[12] “Unified cloud interface,” Mar. 2009. [Online]. Available:
http://code.google.com/p/unifiedcloud/

[13] P. Haase, T. Mathäß, M. Schmidt, A. Eberhart, and U. Walther, “Se-
mantic technologies for enterprise cloud management,” in International
Semantic Web Conference (2), 2010, pp. 98–113.

[14] S. Haak and S. Grimm, “Towards custom cloud services - using semantic
technology to optimize resource configuration,” in ESWC (2), 2011, pp.
345–359.

[15] F. Manola and E. Miller, Eds., RDF Primer, ser. W3C Recommendation.
World Wide Web Consortium, February 2004. [Online]. Available:
http://www.w3.org/TR/rdf-primer/

[16] A. V. Dastjerdi, S. G. H. Tabatabaei, and R. Buyya, “An effective
architecture for automated appliance management system applying
ontology-based cloud discovery,” in Cluster, Cloud and Grid Computing
(CCGrid), 2010 10th IEEE/ACM International Conference on, may
2010, pp. 104 –112.

[17] “Open virtualization format white paper,” Jan. 2010. [Online].
Available: http://www.dmtf.org/sites/default/files/standards/documents/
DSP0243 1.1.0.pdf

[18] “Amazon machine images (amis),” 2011. [Online]. Available:
http://aws.amazon.com/amis

[19] “mosaic: D1.1 ? architectural design of mosaic?s api and platform,”
Feb. 2011. [Online]. Available: http://www.elastichosts.com/

[20] “Condor: High Throughput Computing.” [Online]. Available:
http://www.cs.wisc.edu/condor

[21] R. Garcı́a-Castro, “D4.2 seals metadata,” in SEALS-Project, feb 2010,
pp. 33 –39.

[22] “Spin - modeling vocabulary,” Feb. 2011. [Online]. Available:
http://spinrdf.org/spin.html

[23] “Owl web ontology language,” Feb. 2004. [Online]. Available:
http://www.w3.org/TR/owl-features/

[24] O. Wldrich, P. Wieder, and W. Ziegler, “A meta-scheduling service
for co-allocating arbitrary types of resources,” in Parallel Process-
ing and Applied Mathematics, ser. Lecture Notes in Computer Sci-
ence, R. Wyrzykowski, J. Dongarra, N. Meyer, and J. Wasniewski,
Eds. Springer Berlin / Heidelberg, 2006, vol. 3911, pp. 782–791,
10.1007/11752578 94.

[25] P. Missier, P. Wieder, and W. Ziegler, “Semantic support for meta-
scheduling in grids,” in Knowledge and Data Management in GRIDs,
D. Talia, A. Bilas, and M. D. Dikaiakos, Eds. Springer US, 2007, pp.
169–183.

[26] “Jena: A semantic web framework for java,” Dec. 2010. [Online].
Available: http://jena.sourceforge.net/

[27] “Mysql,” 2011. [Online]. Available: http://www.mysql.com/
[28] “Benchmarking with pov-ray,” Feb. 2011. [Online]. Available:

http://www.povray.org/download/benchmark.php

391391

