Multi-level Selective Deduplication for VM
Snapshots in Cloud Storage

Wei Zhang, Hong Tand, Hao Jiand, Tao Yang, Xiaogang Li, Yue Zeng
*Dept. of Computer Science, UC Santa Barbara. Enjaiki, tyang @cs.ucsb.edu
fAlibaba Inc. Email:{hongtang, haojiang, xiaogang, racHa@hlibaba-inc.com

Abstract—In a virtualized cloud computing environment, fre- disk image backup. Although we treat each virtual disk as a
quent snapshot backup of virtual disks improves hosting réhbil- file |ogically, its size is very large. On the other hand, wede
ity but storage demand of such operations is huge. While distbit- to support parallel backup of a large number of virtual disks

based technique can identify unmodified data between versis, . loud dav. One k - t f t Alibab
full deduplication with fingerprint comparison can remove more In a cloud every day. Une key requirement we tace at Alibaba

redundant content at the cost of computing resources. This Aliyun is that VM snapshot backup should only use a minimal
paper presents a multi-level selective deduplication schee which amount of system resources so that most of resources is kept

integrates inner-VM and cross-VM duplicate elimination under for regular cloud system services or applications. Thus our
a stringent resource requirement. This scheme uses popular objective is to exploit the characteristics of VM snapshated

common data to facilitate fingerprint comparison while reducing - S .
the cost and it strikes a balance between local and global and pursue a cost-effective deduplication solution. Aeoth

deduplication to increase parallelism and improve reliabiity. goal is to decentralize VM snapshot backup and localize
Experimental results show the proposed scheme can achievededuplication as much as possible, which brings the benefits

high deduplication ratio while using a small amount of cloud for increased parallelism and fault isolation.
resl?]léré(;(e?erms—(:loud storage backup, Virtual machine snap- By observations on the VM snapshot_ da_ta from productiqn
shots, Distributed data deduplication cloud, we found snapshot data duplication can be easily
classified into two categoriesiner-VM andcross-VM Inner-
|. INTRODUCTION VM duplication exists between VM'’s snapshots, because the
In a virtualized cloud environment such as ones providedajority of data are unchanged during each backup period. On
by Amazon EC2J] and Alibaba Aliyun[l], each instance of the other hand, Cross-VM duplication is mainly due to widely
a guest operating system runs on a virtual machine, acgesdised software and libraries such as Linux and MySQL. As the
virtual hard disks represented as virtual disk image filethén result, different VMs tend to backup large amount of highly
host operating system. Because these image files are stigeilar data.
as regular files from the external point of view, backing up With these in mind, we have developed a distributed multi-
VM’s data is mainly done by taking snapshots of virtual diskevel solution to conduct segment-level and block-levekin
images. VM deduplication to localize the deduplication effort when
A snapshot preserves the data of a VM's file system atpassible. It then makes cross-VM deduplication by exclgdin
specific point in time. VM snapshots can be backed up incra-small number of popular common data blocks from being
mentally by comparing blocks from one version to another adicked up. Our study shows that common data blocks occupy
only the blocks that have changed from the previous versisignificant amount of storage space while they only take a
of snapshot will be savedT], [17]. small amount of resources to deduplicate. Separating dedu-
Frequent backup of VM snapshots increases the reliakillication into multi levels effectively accomplish the rogj
ity of VM's hosted in a cloud. For example, Aliyun, thespace saving goal compare the global complete deduplicatio
largest cloud service provider by Alibaba in China, progidescheme, at the same time it makes the backup of different
automatic frequent backup of VM images to strengthen théMs to be independent for better fault tolerance.
reliability of its service for all users. The cost of freqien The rest of the paper is arranged as follows. Sectidn
backup of VM snapshots is high because of the huge storatjscusses on some background and related work. Seldtion
demand. Using a backup service with full deduplication suphscusses the requirements and design options. Sectibn
port [13], [20] can identify content duplicates among snapshofsesents our snapshot backup architecture with multitHleve
to remove redundant storage content, but the weakness is thaelective deduplication SectionV presents our evaluation
either adds the extra cost significantly or competes comgutiresults on the effectiveness of multi-level deduplicatfon
resource with the existing cloud services. In addition,adasnapshot backup. Sectiok'l concludes this paper.
dependence created by duplicate relationship among soispsh
adds the complexity in fault tolerance management, eskhecia
when VMs can migrate around in the cloud. In a VM cloud, several operations are provided for creating
Unlike the previous work dealing with general file-levebnd managing snapshots and snapshot trees, such as creating
backup and deduplication, our problem is focused on virtushapshots, reverting to any snapshot, and removing sniagpsho

II. BACKGROUND AND RELATED WORK

For VM snapshot backup, file-level semantics are normalty no
provided. Snapshot operations are taken place at the Virtua
device driver level, which means no fine-grained file system

not desirable that small scale of data failure affects the
backup of many VMs.

metadata can be used to determine the changed data. Only ralWhere are multiple choices in designing a backup archi-

access information at disk block level are provided.

tecture for VM snapshots. We discuss the following design

VM snapshots can be backed up incrementally by identifgptions with a consideration on their strengths and weaknes

ing file blocks that have changed from the previous version
of the snapshot7], [17], [16]. The main weakness is that it 1)
does not reveal content redundancy among data blocks from
different snapshots or different VMs.

Data deduplication techniques can eliminate redundancy
globally among different files from different users. Backup
systems have been developed to use content hash (finger
prints) to identify duplicate contenfLf], [15]. Today’s com-
mercial data backup systems (e.g. from EMC and NetApp)
use a variable-size chunking algorithm to detect duplgate
in file data [L1], [8]. As data grows to be big, fingerprint
lookup in such schemes becomes too slow to be scalable.
Several techniques have been proposed to speedup searching
of duplicate content. For example, Zhu et at(] tackle it
by using an in-memory Bloom filter and prefetch groups of 2)
chunk IDs that are likely to be accessed together with high
probability. It takes significant memory resource for filhgr
and caching. NG et all}] use a related filtering technique for
integrating deduplication in Linux file system and the meynor
consumed is up to 2GB for a single machine. That is still too
big in our context discussed below.

Duplicate search approximatiors][[10], [19] has been
proposed to package similar content in one location, and
duplicate lookup only searches for chunks within files which
have a similar file-level or segment-level content fingerisri
That leads to a smaller amount of memory usage for storing
meta data in signature lookup with a tradeoff of the reduced
recall ratio.

IIl. REQUIREMENTS ANDDESIGN OPTIONS
We discuss the characteristics and main requirements for
VM snapshot backup in a cloud environment. which are
different from a traditional data backup.
1) Cost consciousnesghere are tens of thousands of VMs
running on a large-scale cluster. The amount of data

An external and dedicated backup storage systarthis
architecture setting, a separate backup storage system
using the standard backup and deduplication techniques
can be deployed’[]], [5], [1(]. This system is attached

to the cloud network and every machine can periodically
transfer snapshot data to the attached backup system.
A key weakness of this approach is communication
bottleneck between a large number of machines in a
cloud to this centralized service. Another weakness is
that the cost of allocating separate resource for dedicated
backup can be expensive. Since most of backup data is
not used eventually, CPU and memory resource in such
a backup cluster may not be fully utilized.

A decentralized and co-hosted backup system with full
deduplicationlIn this option, the backup system runs on
an existing set of cluster machines. The disadvantage
is that even such a backup service may only use a
fraction of the existing disk storage, fingerprint-based
search does require a significant amount of memory for
fingerprint lookup of searching duplicates. This com-
petes memory resource with the existing VMs.

Even approximation], [10] can be used to reduce
memory requirement, one key weakness the hasn’t been
addressed by previous solutions is that global content
sharing affects fault isolation. Because a content chunk
is compared with a content signature collected from
other users, this artificially creates data dependency
among different VM users. In large scale cloud, node
failures happen at daily basis, the loss of a shared block
can affect many users whose snapshots share this data
block. Without any control of such data sharing, we can
only increase replication for global dataset to enhance
the availability, but this incurs significantly more cost.

is so huge such that backup cost must be controlledWith these considerations in mind, we propose a decen-
carefully. On the other hand, the computing resourcéslized backup architecture with multi-level and selezti
allocated for snapshot service is very limited becauskeduplication. This service is hosted in the existing set of
VM performance has higher priority. At Aliyun, it is machines and resource usage is controlled with a minimal
required that while CPU and disk usage should be smathpact to the existing applications. The deduplicationcess

or modest during backup time, the memory footprint a6 first conducted among snapshots within each VM and then
shapshot service should not exceed 500MB at each nodeconducted across VMs. Given the concern that searching
Fast backup spee@ften a cloud has a few hours of lightduplicates across VMs is a global feature which can affect
workload each day (e.g. midnight), which creates gparallel performance and complicate failure managemeat, w
small window for automatic backup. Thus it is desirablenly eliminate the duplication of a small but popular data se
that backup for all nodes can be conducted in parallghile still maintaining a cost-effective deduplicatiortica For

and any centralized or cross-machine communication fthris purpose, we exploit the data characteristics of srapsh
deduplication should not become a bottleneck. and collect most popular data. Data sharing across VMs is
Fault tolerance. The addition of data deduplicationlimited within this small data set such that adding replifas
should not decrease the degree of fault tolerance. litscould enhance fault tolerance.

2)

3)

IV. MULTI-LEVEL SELECTIVE DEDUPLICATION when one cluster is not available, we are still able to restor
its VMs from another cluster which holds its snapshot data.
Under the hood of snapshot store, it organizes and operates
Our architecture is built on the Aliyun platform whichsnapshot data in the distributed file system. We let eachalirt
provides the largest public VM cloud in China based odisk has its own snapshot store, and no data is shared between
Xen [4]. A typical VM cluster in our cloud environmentany two snapshot stores, thus achieve great fault isolafion
consists of from hundreds to thousands of physical machintésose selected popular data that shared by many VM snapshot
each of which can host tens of VMs. stores, we could easily increase its availability by havimaye
A GFS-like distributed file system holds the responsibibity replications.
managing physical disk storage in the cloud. All data needed
for VM services, which include runtime VM disk images and®- Inner-VM Deduplication
snapshot backup data, reside in this distributed file systemThe first-level deduplication is logically localized withi
During the VM creation, a user chooses her flavor of O&ach VM. Such localization increases data independency be-
distribution and the cloud system copies the correspondiigeen different VM backups, simplifies snapshot management
pre-configured base VM image to her VM as the OS disk, arghd statistics collection during VM migration and termioat
an empty data disk is created and mounted onto her VM asd facilitates parallel execution of snapshot operations
well. All these virtual disks are represented as virtual hiae
image files in our underline runtime VM storage system. The
runtime 1/O between virtual machine and its virtual disks iS snapsnot recipes
tunneled by the virtual device driver (called TapDisH[at
Xen). To avoid network latency and congestion, our distedu - ;
file system place the primary replica of VM’s image files at
physical machine of VM instance. During snapshot backup, — — — — — — — — - — -
concurrent disk write is logged to ensure a consistent $1Idps Segment recipes
version is captured. ok fngert
Figurel shows the architecture view of our snapshot service T
at each node. The snapshot broker provides the functional S—
interface for snapshot backup, access, and deletion. He#-in — — — — — —
VM deduplication is conducted by the broker to access meta Datablocks
data in the snapshot data store and we discuss this in details e e e a L L
in SectionlV-B. The cross-VM deduplication is conducted by
the broker to access a common data set (CDS) (will discuss in
SectionlV-C, whose block hash index is stored in a distributed Fig. 2. An example of snapshot representation.
memory cache.

A. Snapshot Service Architecture

Segment fingerprint
Offset
Size

Data pointer

Segment 2 Segment 2'

The inner VM deduplication contains two levels of duplicate
detection efforts and the representation of each snapshot i
correspondingly designed as a two-level level index data

P CDS Hash Index (\ structure in the form of a hierarchical directed acyclicpdra
[—J<? Distributed as shown in Figure. An image file is divided into a set
Device — Cache of segments and each segment contains hundreds of content

P priver | Broker \) blocks from the bottom level. These blocks are of variable-

—
"
\ size, partitioned using the standard chunking technidui¢ [
—>

Memory

Storage Access

with 4KB as the average block size. Segment metadata (called

] DiStgi‘ieUtEd segment recipe) records its content block hashes and data
Runtime VM Disk |, System pointers. The snapshot recipe contains a list of segmeits an
(__snepshotstore | (GFS-like) other meta data information.

Host OS

o Level 1 Segment modification detectidiha segment is
not changed, indicated by a dirty bit embedded in the
virtual disk driver, its content blocks are not changed
Fig. 1. Snapshot backup architecture of each node. as well, thus its segment recipe can be simply reused.
Operations at this level have almost no cost and most of
The snapshot store supports data access operations suchunmodified data are filtered here.
as get put and delete Other operations include data block « Level 2 Block fingerprint comparisonf a segment is
traverse and resource usage report. The snapshot dataatoes n modified, we perform fine-grained deduplication using
need to be co-located with VM instances, and in fact they can content blocks of this segment to compared with the
even live in a different cluster to improve the data relidypil same segment in the previous snapshot (also called parent

le+07 T T T le+09 T T T
1e+06 | . ler08 1 ’
1e+07 b
100000 = R -
- 1e+06 [= E
10000 |- \\ 1 100000 |- 1
1000 F i 10000 |- -
1000 B
100 B
100 R
10 . 0k i
l 1 1 1 . 1 1 1 -
1 100 10000 le+06 1 1000 1le+06 le+09
(a) Data blocks from OS disks (b) Data blocks from data disks

Fig. 3. Number of duplicates vesus ranking

snapshot). Partial duplication within the segment can beverage the aggregated memory in a cluster. The usage of
detected and eliminated. memory at each machine is small and thus this scheme does
We choose this two-level structure because in practice wet lead to a memory resource contention with the existing
observe that during each backup period only a small amowh@ud services. CDS raw data stored in the distributed file
of VM data are added or modified. As the result, evesystem has multiple copies in different machines for the
the meat data of two snapshots can be highly similar, thpgrpose of fault tolerance and while providing high read
aggregating a large number of content blocks as one segmi@reughput.

can significantly reduce the space cost of snapshot meta dataro control the size of searchable common data in this global
How can we choose the length of a segment? Instead ffiting, we focus on those items that are most popular based
using variables-sized segments, we take a simple approaghthe historical snapshot data and the popular analysis is
to let every segment being aligned to the page boundary @fnducted periodically to ensure meta data freshness tchmat
each virtual image file. For Aliyun, each VM image file ishe latest data access trend. There are two advantagedait exp
represented as a virtual disk file format (calllad at Xen) this. First, a smaller CDS reduces overall resource remsre
and we use a dirty bit to capture if a page (or segment) ofughile covering most of data duplication. Second, knowirig th
virtual disk file has been modified or not to ease the segmesinall set of data is shared heavily makes the fault tolerance
level deduplication. A dirty bit array is used to indicateioth management easier because we can replicate more copies to
segments have been modified or not. Each page (segmenitigate the failure.

size in our implementation uses 2MB, which contains a IargeIn Aliyun’s VM cloud, each VM explicitly maintains one

nugnber ?f ccl)r;tedntdblolt.:ksi_ . tivated for th 0OS disk, plus one or more data disks. During VM's creation,
nce level-2 deduplication 1S activated for those Segmeiys g sk js directly copied from user’'s chosen base image.
that have been modified, it requires memory to load blo

e ints f th di : hot' iven the separation of OS disks and data disks, we study thei
Ingerprints from the corresponding parent snapshot's segm characteristics separately. We expect that data relatédSto

Tp|stsghemf proce; sets 508]; segtmetnélat tll(me and each Sggg}?&npopular software installations are not frequently riedi
0 contains abou content blocks on average givih deleted, to facilitate analysis we call thed$-relateddata,

4KB is the average plo_ck SIze. That only takes a tiny amoug}]d the rest of data, either from OS or data disks, are called
of space to hold their fingerprints. user-relateddata

C. Cross-VM Deduplication with CDS We have studied the popularity of common blocks in the

The level-3 deduplication is to identify duplicated dat®S and data disks from a dataset containing over 1,000
blocks among multiple VMs through the index cache o¥Ms, taking their first snapshots to watch the cross-VM
common data set (CDS). CDS is the most popular contahiplication pattern (scale of OS disk sampling is smallez du
blocks among snapshots across all VMs. Each index entoy performance impact to user VMSs). FiguBeshows the
contains the block fingerprint and a reference pointer to tleplicate count for unique data blocks sorted by their nagki
location of its real content in the snapshot content blookest in terms of the duplication counY. axis is the popularity of a

At the runtime, the CDS index resides in a distributedata block in a log scale measured its duplicate count among
memory lookup table implemented using Memcach@dt¢ snapshotsX axis is the identification of data blocks in a log

scale sorted by their duplicate rank. The rank number 1 is the
block with the highest number of duplicates. These two cairve
exhibit that the popularity of common blocks partially folls

a Zipf-like distribution.

Base on the Zipf-like distribution pattern, many previous
analysis and results on web cachiflg[[6] may apply. In
general this indicates a small set of popular data dominates
data duplication. Although we already know OS-related data
are heavily duplicated among OS disks, it still surprisethas
user-related data follow a similar pattern. Therefore, aléect
the CDS by performing global reference counting through
map-reduce for all blocks in snapshot store, and select the

@ | \ \ \

1. Segment level
check-up @

oL Wz 077777 Sﬂgﬁéxi“gn
e
o NN 777772 N1 V777777
3.CDS
_ check-up @ Cross-VM
(d) Duplication

Write Down

most popular ones base on the memory limitation of CDS
hash index.

The CDS collected from user-related data is generally pro-
portional to the data size. As discussed in Sectipselecting
about 1% of data (after level 1 and level 2 deduplication) can
cover about 38% of data blocks. Consider we allow maximum
25 VMs per machine, each VM has about 30GB of user-related
data, having 10 snapshots in its snapshot store and the data
change ratio during each backup is 10%, this translates to
15GB CDS data per machine. Consider each CDS hash index
entry cost about 40 bytes and the average block size is 4KB,
this leads to a 1:100 ratio so the memory cost by CDS hash
index is about 150MB per machine. On the other hand, the,
CDS from OS-related data is only relevant to the number of
OS releases. Our experiment on 7 major OS releases shows
that about 100GB of data is never modified, and we expect it
won't grow over 200GB in the near future. So it would cost
the entire cluster 2GB of memory to store its hash index, org
20MB per machine on a 100 node cluster. On average each OS
disk has about 10GB of data that can be completely eliminated
in this way. Thus in total the CDS index size per node takes
less than 170MB in a large cluster bigger than 100 nodes
covering over 47% of blocks in OS and data disks after inner-
VM deduplication. This memory usage is well below the IimiE1
required by our VM services.

Snapshot Block Store

Fig. 4. lllustration of snapshot deduplication dataflow.

check to compare them with the cached signatures in
the CDS by querying the CDS hash index. If there is
a match, the corresponding data pointer from the CDS
index is copied into the segment recipe.

Write new snapshot blockslf a data block cannot be
found in the CDS index, this block is considered to be
a new block and such a block is to be saved in the
shapshot store, the returned data pointer is saved in the
segment recipe.

Save recipesFinally the segment recipes are saved in
the snapshot block store also. After all segment recipes
are saved, the snapshot recipe is complete and can be
saved.

'If there is no parent snapshot available, which happens when
VM creates its first snapshot, only CDS-based checkup will
e conducted. Most of the cross-VM duplication, such as OS-
related data, is eliminated at this stage.

D. lllustration of multi-level deduplication process

We illustrate the steps of 3-level deduplication in Figdre
which can be summarized as 5 steps: We have implemented the snapshot deduplication scheme on
1) Segment level checkups shown in Figuret (a), when the Aliyun’s cloud platform. Objectives of our experimenta
a snapshot of a plain virtual disk file is being created@valuation are: 1) Analyze the commonality of content data
we first check the dirty bitmap to see which segmentocks and the popularity of hot items. 2) Assess the effec-
are modified. If a segment is not modified since ladlveness of 3-level deduplication for reducing the storegst
snapshot, it's data pointer in the recipe of the pareff snapshot backup. 3) Examine the impacts of CDS size on
snapshot can be directly copied into current snapst#gduplication ratio.
recipe (shown as the shadow area in Figlir)). ,
Block level checkupAs shown in Figurel (b), for each A. Experimental setup
dirty segment, we divide it into variable-sized blocks, At Aliyun our target is to backup cluster up to 1000 nodes
and compare their signatures with the correspondimgth 25 VMs on each. Based on the data studied, each VM
segment recipe in the previous snapshot (called parédmats about 40GB of storage data usage on average, OS disk
shapshot). For any duplicated block, we copy the daséamd data disk each takes about 50% of storage space. The
pointer directly from the parent segment recipe. backup of VM snapshots is completed within two hours every
CDS checkupFor the remaining content blocks whoselay, and that translates to a backup throughput of 139GB per
duplicate status is unknown, Figut€d) shows a further second, or 500TB per hour. For each VM, the system keeps

V. EVALUATION

2)

3)

40 new data mm— saved by level 2 zzzzz
mzZ after level 1 saved by level 3 === saved by level 1 E==3
= after level 1+2
m— after level 1+2+3 100

80 - -

% of total
% of total

Fig. 5. Impacts of 3-level deduplication. The height of edwdr is the Fig. 6. Impact of 3-level deduplication for OS releases.
data size after deduplication divided by the original date sind the unit is
percentage.

10 automatically-backed snapshots in the storage whilen ugelivers additional 10.5% reduction. Level 2 eliminatic i
may instruct extra snapshots to be saved. more visible in OS disk than data disk, because data change
Since it's impossible to perform large scale analysis withofrequency is really small when we sample last 10 snapshots of
affecting the VM performance, we sampled two data se®ach user in 10 days. Nevertheless, the overall impact ef lev
from real user VMs to measure the effectiveness of odriS Still significant. A 4.5% of reduction from the originadth
deduplication scheme. Dataset1 is used study the detaidmp'ePresents about 450TB space saving for a 1000-node cluster

of 3-level deduplicatio_n process, it compose of 35 VMs from Figure 6 shows the impact of different levels of deduplica-
7 popular OSes: Debian, Ubuntu, Redhat, CentOS, Win20fgh for different OS releases. In this experiment, we taghea
32bit, win2003 64 bit and win2008 64 bit. For each OS, Bjock in 350 OS disk snapshots from dataset1 as “new” if this
VMs are chosen, and every VM come with 10 full snapshofiock cannot be deduplicated by our scheme and thus has to be
of it OS and data disk. The overall data size for this 700 ful{ritten to the snapshot store; “CDS” if this block can be fdun
shapshots is 17.6 TB. in CDS; “Parent segment” if this block is marked unchanged

Dataset2 contains the first snapshots of 1323 VMs’ daf@ parent's segment recipe. “Parent block” if this block is
disks from a small cluster with 100 nodes. Since inner-Viharked unchanged in parent’s block recipe. With this tagigin
deduplication is not involved in the first snapshot, thisadsdt e compute the percentage of deduplication accomplished by
helps us to study the CDS deduplication against user-telaieach level. As we can see from Figuiidevel-1 deduplication
data. The overall size of dataset2 is 23.5 TB. accomplishes a large percentage of elimination, this ialse

All data are divided into 2 MB fix-sized segments and eadRe time interval between two snapshots in our dataset i qui
segment is divided into variable-sized content blocksl],[short and the Aliyun cloud service makes a snapshot everyday
[14] with an average size of 4KB. The signature for variablgor each VM. On the other hand, CDS still finds lots of

sized blocks is computed using their SHA-1 hash. Populariyplicates that inner VM deduplication can't find, conttibg
of data blocks are collected through global counting and th@out 10% of reduction on average.

top 1% will fall into CDS, as discussed in SectitwC.)] o
It is noticeable that level-1 deduplication doesn’t workilwe

B. Effectiveness of 3-level Deduplication for CentOS, a significant percentage of data is not elimthate

Figure 5 shows the overall impact of 3-level deduplicatiorﬁmtII they reach level-3. |t shows that even user upgrade his

on datasetl. The X axis shows the overall impact in (a), imp VM system heavily and frequently such that data locality is

on OS disks in (b), and impact on data disks in (c). Each é{grtally lost, those OS-related data can still be identified a

in the Y axis shows the data size after deduplication dividela%vel_s'

by the original data size. Level-1 elimination can reduce th In general we see a stable data reduction ratio for all OS
data size to about 23% of original data, namely it deliverarieties, ranging from 92% to 97%, that means the storage
close 77% reduction. Level-2 elimination is applied to datzost of 10 full snapshots combined is still smaller than the
that could pass level-1, it reduces the size further to abauriginal disk size. And compare to today’s widely used copy-
18.5% of original size, namely it delivers additional 4.5%n-write snapshot technique, which is similar to our lelel-
reduction. Level-3 elimination together with level 1 and 2ieduplication, our solution cut the snapshot storage cgst b
reduces the size further to 8% of original size, namely &4%.

Coverage of unique data (%)
le-07 1le-06 1le-05 0.0001 0.001 0.01 0.1 1 10 100
T T T T T T T T T

100 e changed

mmmmm unchanged

80 -

80

6° /

w© d

60 [

40 |-

Percentage of base image

Coverage of raw data (%)

20

1 10 100 1000 10000 100000 1e+06 1e+07 1le+08 1e+09 ‘?v’@/, 67@/
Ranking of data blocks by popularity

@/.

Fig. 7. Cumulative coverage of popular common user datakbloc Fig. 8. Percentage of completely common blocks among diife/Ms for
the same OS release.

C. Coverage of common data blocks

One of our biggest advantage is small memory footprint
for deduplication, because we only eliminate a small amouét
of highly popular data. we use dataset2 to demonstrate tE\e o
coverage of popular data blocks on user-related data, amshca
in Figure 7. The X axis is the rank of common user datag
blocks, andy” shows how much raw data can be covered giveh
the size of CDS. Lef; and F; be the size and duplicate countg

of the i-th block ranked by its duplicate rank. Théhaxis is 5 *°f
the coverage of the common dataset covering data items frcﬁm

09

0.7

rank 1 to ranki. Namely 05
S S Fy ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
= 1 . - 0.001 0.01 0.1 1 10 100 1000 10000 100000
Total data size Size of CDS(GB)

Thus with about 1% of blocks on data disks, CDS can COVEr 9. Relative ratio of space size compared to full dedapibn when
about 38% of total data blocks appeared in all data snapsh@t@s size changes.
The corresponding CDS index uses no more than 150MB
memory per machine, which can be easily co-located with
other cloud services. in total. They can cover sufficiently over 70% of OS-related
Because there are a limited number of OS releases, we stddya.
common blocks among OS disks loaded with the same OS
release. In Figuré, we list a conservative commonality studyP- A comparison of perfect and CDS-based deduplication
in 7 major OS versions supported in Aliyun. For every block After level-1 and level 2 elimination, we find that the
in the base image, we classify this block as “unchanged”dbmplete deduplication would reduce the storage costdurth
this block has appeared in all snapshots of the same OSeeldas 50%. If we put all these unique data into CDS, we could
even they are used by different VMs. Fig8eshows that for achieve complete deduplication, but fingerprint lookuptints
each OS, at least 70% of OS blocks are completely unchangredie CDS hash index would become a bottleneck as discussed
among all snapshots of the same OS. Some latest releasenahany pervious works. So we use dataset2 to evaluate how
OS tends to have a higher percentage of content change whilech space saving of deduplication can be achieved when
old release tends to have more variations of content vessiowarying the CDS size.
That can be interpreted as that users with very old versionFigure 9 shows the relationship between CDS cache size
of operating systems have a lower tendency to update thaird relative space saving ratio compared to the full dedupli
OS versions and this causes a larger discrepancy among éa%on. The unit of CDS size is gigabytes. We defapmce
shapshots of these users. saving ratioas the space saving of CDS method divided by
Based on the above analysis, we have selected a small sdufifdeduplication space reduction. With a 100GB CDS data
most popular OS blocks, which is about 100GB OS data afiamely 1GB CDS index) can still accomplish about 75% of
its corresponding CDS index takes about 1GB memory spaghat perfect deduplication can do.

0.01

= 7swofsaving Fe— this material are those of the authors and do not necessarily

—k— 70% of saving i

0009 [i gseofsaung — 1 reflect the views of Alibaba or the National Science Founda-
0.008 | /F’// | tion.

0007 | /// . REFERENCES

0.006 - // g [1] Aliyun Inc. http://www.aliyun.com.

[2] Amazon Elastic Compute Cloud. http://aws.amazon.ec2y.

b [3] L. A. Adamic and B. A. Huberman. Zipfs law and the Internet
Glottometrics 3(1):143-150, 2002.

[4] P.Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A, R. Neuge-
bauer, |. Pratt, and A. Warfield. Xen and the art of virtudlza
SIGOPS Oper. Syst. Re@7:164-177, Oct. 2003.

R [5] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge. xéEeme

Binning: Scalable, parallel deduplication for chunk-lzhse backup.

In Modeling, Analysis Simulation of Computer and Telecomoatiain

Systems, 2009. MASCOTS '09. IEEE International Symposiipages

0 5000 10000 15000 20000 25000 1-9, 2009.

0.005

0.004 -

CDS size / Data size

0.003

0.002 -

0.001

Data Scale (GB) [6] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. 8enWeb
Caching and Zipf-like Distributions: Evidence and Impticas. IN
Fig. 10. The relative size ratio of CDS over the data size. INFOCOM, pages 126 — 134, 1999.

[7]1 A. T. Clements, |I. Ahmad, M. Vilayannur, and J. Li. Decetized
deduplication in SAN cluster file systems. page 8, June 2009.
. . . . [8] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. KiligrP. Strzel-
With dataset2, Figur&0 ShO_WS _hOW CDS space saving ratio” ~ czak, J. Szczepkowski, C. Ungureanu, and M. Welnicki. HY BEok
compared to the full deduplication is affected by the ddtase a Scalable Secondary Storage. RAST '09: Proccedings of the 7th

size. In this experiment we first set out a goal of space saving %‘X‘fﬂgfezgggﬁﬁsagﬂl;ﬂigg;gggzo'ogipages 197-210, Berkeley,

.ratio completed, then. WatCh_ how much data needs to be placﬁj B. Fitzpatrick. Distributed caching with memcachednux J, 2004:5—,
in CDS cache to achieve this goal. From the graph we can see Aug. 2004.

a 75% saving ratio lead to a stable ratio between CDS si28l M- Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, GTrezis, and
P. Camble. Sparse Indexing: Large Scale, Inline Deduicat/sing

and data size, which requires 1% of data to be placed in CDS. sampling and Locality. IFAST pages 111-123, 2009.
When we deal with a large cluster of 1,000 nodes, we expétt] U. Manber. Finding similar files in a large file system. Rroceedings
that using 1% of data disks can cover more than what we hZY of the USENIX Winter 1994 Technical Conferenpages 1-10, 1994.
&

. . C.-H. Ng, M. Ma, T.-Y. Wong, P. P. C. Lee, and J. C. S. Luiivd
seen from this 1323 VM dataset, assuming that the aver deduplication storage of virtual machine images in an cgmree cloud.

behavior of every subcluster with 100 machines exhibits a In Middleware pages 81-100, 2011.

i ; it i ; 13] S. Quinlan and S. Dorward. Venti: A New Approach to Archi
similar Commonahty' In addition to this, CDS for OS dISké Storage. INFAST '02: Proceedings of the Conference on File and Stor-

will become even more effective when there are more VMs age Technologiespages 89-101, Berkeley, CA, USA, 2002. USENIX

sharing the same collection of OS releases. Association.
[14] M. O. Rabin. Fingerprinting by random polynomials. fMaial Report
V1. CONCLUSION TR-CSE-03-01, Center for Research in Computing Technoldigyvard

)))) University, 1981.
In this paper we propose a multi-level selective deduplit5] S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensiveentatidressed

cation scheme for snapshot service in VM cloud. Inner-vM storage in founda_mon. IUSENIX 2008 Annual Technical Conference

L. . on Annual Technical Conferencpages 143-156, Berkeley, CA, USA,
deduplication localizes backup data dependency and egpose ,n0s USENIX Association.
more parallelism while cross-VM deduplication with a smalti6] Y. Tan, H. Jiang, D. Feng, L. Tian, and Z. Yan. Cabdedupeausality-
common data set effectively covers a large amount of dupli- F;S‘;dsdpe;g“é’s“claztg’g pertarmance hoaster for cloud backoyices. In
cated data. Ol.JI’ splutlon _accomF_’I'She.S the ma]or'_ty of [I(an [17] M. Vrable, S. Savage, and G. M: Voelker. Cumulus: Fieyn backup
global deduplication saving while still meets stringertuc to the cloud. Trans. Storage5:14:1-14:28, Dec. 2009.
resources requirement. Evaluation using real user's V\a d4tél A. Warfield, S. Hand, K. Fraser, and T. Deegan. Fadilitatthe

. . % of what | development of soft devices. page 22, Apr. 2005.

shows our 50!”“9” can accomplish 75% of wha comp €] W. Xia, H. Jiang, D. Feng, and Y. Hua. SiLo: a similariggality
global deduplication can do. Compare to today's widely- based near-exact deduplication scheme with low RAM ovetead

used snapshot technigue, our scheme reduces almost do-thj nigh throughput. pages 26-28, June 2011.
P que, B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottézk in the

. 20
of snapshot storage cost. Fma”y’ our scheme uses a v & data domain deduplication file system. FAST’'08: Proceedings of the
small amount of memory on each node, and leaves room for 6th USENIX Conference on File and Storage Technologieges 1-14,

additional optimization we are further studying. Berkeley, CA, USA, 2008. USENIX Association.

ACKNOWLEDGMENTS

We would like to thank Weicai Chen and Shikun Tian from
Alibaba for their kind support, and the anonymous referees f
their comments. Wei Zhang has received internship support
from Alibaba for VM backup system development. This work
was supported in part by NSF 11S-1118106. Any opinions,
findings, and conclusions or recommendations expressed in

	Introduction
	Background and Related Work
	Requirements and Design Options
	Multi-level Selective Deduplication
	Snapshot Service Architecture
	Inner-VM Deduplication
	Cross-VM Deduplication with CDS
	Illustration of multi-level deduplication process

	Evaluation
	Experimental setup
	Effectiveness of 3-level Deduplication
	Coverage of common data blocks
	A comparison of perfect and CDS-based deduplication

	Conclusion
	References

