
Multi-level Selective Deduplication for VM
Snapshots in Cloud Storage

Wei Zhang∗, Hong Tang†, Hao Jiang†, Tao Yang∗, Xiaogang Li†, Yue Zeng†
∗Dept. of Computer Science, UC Santa Barbara. Email:{wei, tyang}@cs.ucsb.edu
†Alibaba Inc. Email:{hongtang, haojiang, xiaogang, rachael}@alibaba-inc.com

Abstract—In a virtualized cloud computing environment, fre-
quent snapshot backup of virtual disks improves hosting reliabil-
ity but storage demand of such operations is huge. While dirtybit-
based technique can identify unmodified data between versions,
full deduplication with fingerprint comparison can remove more
redundant content at the cost of computing resources. This
paper presents a multi-level selective deduplication scheme which
integrates inner-VM and cross-VM duplicate elimination under
a stringent resource requirement. This scheme uses popular
common data to facilitate fingerprint comparison while reducing
the cost and it strikes a balance between local and global
deduplication to increase parallelism and improve reliability.
Experimental results show the proposed scheme can achieve
high deduplication ratio while using a small amount of cloud
resources.

Index Terms—Cloud storage backup, Virtual machine snap-
shots, Distributed data deduplication

I. I NTRODUCTION

In a virtualized cloud environment such as ones provided
by Amazon EC2[2] and Alibaba Aliyun[1], each instance of
a guest operating system runs on a virtual machine, accessing
virtual hard disks represented as virtual disk image files inthe
host operating system. Because these image files are stored
as regular files from the external point of view, backing up
VM’s data is mainly done by taking snapshots of virtual disk
images.

A snapshot preserves the data of a VM’s file system at a
specific point in time. VM snapshots can be backed up incre-
mentally by comparing blocks from one version to another and
only the blocks that have changed from the previous version
of snapshot will be saved [7], [17].

Frequent backup of VM snapshots increases the reliabil-
ity of VM’s hosted in a cloud. For example, Aliyun, the
largest cloud service provider by Alibaba in China, provides
automatic frequent backup of VM images to strengthen the
reliability of its service for all users. The cost of frequent
backup of VM snapshots is high because of the huge storage
demand. Using a backup service with full deduplication sup-
port [13], [20] can identify content duplicates among snapshots
to remove redundant storage content, but the weakness is that it
either adds the extra cost significantly or competes computing
resource with the existing cloud services. In addition, data
dependence created by duplicate relationship among snapshots
adds the complexity in fault tolerance management, especially
when VMs can migrate around in the cloud.

Unlike the previous work dealing with general file-level
backup and deduplication, our problem is focused on virtual

disk image backup. Although we treat each virtual disk as a
file logically, its size is very large. On the other hand, we need
to support parallel backup of a large number of virtual disks
in a cloud every day. One key requirement we face at Alibaba
Aliyun is that VM snapshot backup should only use a minimal
amount of system resources so that most of resources is kept
for regular cloud system services or applications. Thus our
objective is to exploit the characteristics of VM snapshot data
and pursue a cost-effective deduplication solution. Another
goal is to decentralize VM snapshot backup and localize
deduplication as much as possible, which brings the benefits
for increased parallelism and fault isolation.

By observations on the VM snapshot data from production
cloud, we found snapshot data duplication can be easily
classified into two categories:inner-VM andcross-VM. Inner-
VM duplication exists between VM’s snapshots, because the
majority of data are unchanged during each backup period. On
the other hand, Cross-VM duplication is mainly due to widely-
used software and libraries such as Linux and MySQL. As the
result, different VMs tend to backup large amount of highly
similar data.

With these in mind, we have developed a distributed multi-
level solution to conduct segment-level and block-level inner-
VM deduplication to localize the deduplication effort when
possible. It then makes cross-VM deduplication by excluding
a small number of popular common data blocks from being
backed up. Our study shows that common data blocks occupy
significant amount of storage space while they only take a
small amount of resources to deduplicate. Separating dedu-
plication into multi levels effectively accomplish the major
space saving goal compare the global complete deduplication
scheme, at the same time it makes the backup of different
VMs to be independent for better fault tolerance.

The rest of the paper is arranged as follows. SectionII
discusses on some background and related work. SectionIII
discusses the requirements and design options. SectionIV
presents our snapshot backup architecture with multi-level
selective deduplication SectionV presents our evaluation
results on the effectiveness of multi-level deduplicationfor
snapshot backup. SectionVI concludes this paper.

II. BACKGROUND AND RELATED WORK

In a VM cloud, several operations are provided for creating
and managing snapshots and snapshot trees, such as creating
snapshots, reverting to any snapshot, and removing snapshots.

For VM snapshot backup, file-level semantics are normally not
provided. Snapshot operations are taken place at the virtual
device driver level, which means no fine-grained file system
metadata can be used to determine the changed data. Only raw
access information at disk block level are provided.

VM snapshots can be backed up incrementally by identify-
ing file blocks that have changed from the previous version
of the snapshot [7], [17], [16]. The main weakness is that it
does not reveal content redundancy among data blocks from
different snapshots or different VMs.

Data deduplication techniques can eliminate redundancy
globally among different files from different users. Backup
systems have been developed to use content hash (finger
prints) to identify duplicate content [13], [15]. Today’s com-
mercial data backup systems (e.g. from EMC and NetApp)
use a variable-size chunking algorithm to detect duplicates
in file data [11], [8]. As data grows to be big, fingerprint
lookup in such schemes becomes too slow to be scalable.
Several techniques have been proposed to speedup searching
of duplicate content. For example, Zhu et al. [20] tackle it
by using an in-memory Bloom filter and prefetch groups of
chunk IDs that are likely to be accessed together with high
probability. It takes significant memory resource for filtering
and caching. NG et al. [12] use a related filtering technique for
integrating deduplication in Linux file system and the memory
consumed is up to 2GB for a single machine. That is still too
big in our context discussed below.

Duplicate search approximation [5], [10], [19] has been
proposed to package similar content in one location, and
duplicate lookup only searches for chunks within files which
have a similar file-level or segment-level content fingerprints.
That leads to a smaller amount of memory usage for storing
meta data in signature lookup with a tradeoff of the reduced
recall ratio.

III. R EQUIREMENTS ANDDESIGN OPTIONS

We discuss the characteristics and main requirements for
VM snapshot backup in a cloud environment. which are
different from a traditional data backup.

1) Cost consciousness.There are tens of thousands of VMs
running on a large-scale cluster. The amount of data
is so huge such that backup cost must be controlled
carefully. On the other hand, the computing resources
allocated for snapshot service is very limited because
VM performance has higher priority. At Aliyun, it is
required that while CPU and disk usage should be small
or modest during backup time, the memory footprint of
snapshot service should not exceed 500MB at each node.

2) Fast backup speed.Often a cloud has a few hours of light
workload each day (e.g. midnight), which creates an
small window for automatic backup. Thus it is desirable
that backup for all nodes can be conducted in parallel
and any centralized or cross-machine communication for
deduplication should not become a bottleneck.

3) Fault tolerance. The addition of data deduplication
should not decrease the degree of fault tolerance. It’s

not desirable that small scale of data failure affects the
backup of many VMs.

There are multiple choices in designing a backup archi-
tecture for VM snapshots. We discuss the following design
options with a consideration on their strengths and weakness.

1) An external and dedicated backup storage system.In this
architecture setting, a separate backup storage system
using the standard backup and deduplication techniques
can be deployed [20], [5], [10]. This system is attached
to the cloud network and every machine can periodically
transfer snapshot data to the attached backup system.
A key weakness of this approach is communication
bottleneck between a large number of machines in a
cloud to this centralized service. Another weakness is
that the cost of allocating separate resource for dedicated
backup can be expensive. Since most of backup data is
not used eventually, CPU and memory resource in such
a backup cluster may not be fully utilized.

2) A decentralized and co-hosted backup system with full
deduplication.In this option, the backup system runs on
an existing set of cluster machines. The disadvantage
is that even such a backup service may only use a
fraction of the existing disk storage, fingerprint-based
search does require a significant amount of memory for
fingerprint lookup of searching duplicates. This com-
petes memory resource with the existing VMs.
Even approximation [5], [10] can be used to reduce
memory requirement, one key weakness the hasn’t been
addressed by previous solutions is that global content
sharing affects fault isolation. Because a content chunk
is compared with a content signature collected from
other users, this artificially creates data dependency
among different VM users. In large scale cloud, node
failures happen at daily basis, the loss of a shared block
can affect many users whose snapshots share this data
block. Without any control of such data sharing, we can
only increase replication for global dataset to enhance
the availability, but this incurs significantly more cost.

With these considerations in mind, we propose a decen-
tralized backup architecture with multi-level and selective
deduplication. This service is hosted in the existing set of
machines and resource usage is controlled with a minimal
impact to the existing applications. The deduplication process
is first conducted among snapshots within each VM and then
is conducted across VMs. Given the concern that searching
duplicates across VMs is a global feature which can affect
parallel performance and complicate failure management, we
only eliminate the duplication of a small but popular data set
while still maintaining a cost-effective deduplication ratio. For
this purpose, we exploit the data characteristics of snapshots
and collect most popular data. Data sharing across VMs is
limited within this small data set such that adding replicasfor
it could enhance fault tolerance.

IV. M ULTI -LEVEL SELECTIVE DEDUPLICATION

A. Snapshot Service Architecture

Our architecture is built on the Aliyun platform which
provides the largest public VM cloud in China based on
Xen [4]. A typical VM cluster in our cloud environment
consists of from hundreds to thousands of physical machines,
each of which can host tens of VMs.

A GFS-like distributed file system holds the responsibilityof
managing physical disk storage in the cloud. All data needed
for VM services, which include runtime VM disk images and
snapshot backup data, reside in this distributed file system.
During the VM creation, a user chooses her flavor of OS
distribution and the cloud system copies the corresponding
pre-configured base VM image to her VM as the OS disk, and
an empty data disk is created and mounted onto her VM as
well. All these virtual disks are represented as virtual machine
image files in our underline runtime VM storage system. The
runtime I/O between virtual machine and its virtual disks is
tunneled by the virtual device driver (called TapDisk[18] at
Xen). To avoid network latency and congestion, our distributed
file system place the primary replica of VM’s image files at
physical machine of VM instance. During snapshot backup,
concurrent disk write is logged to ensure a consistent snapshot
version is captured.

Figure1 shows the architecture view of our snapshot service
at each node. The snapshot broker provides the functional
interface for snapshot backup, access, and deletion. The inner-
VM deduplication is conducted by the broker to access meta
data in the snapshot data store and we discuss this in details
in SectionIV-B. The cross-VM deduplication is conducted by
the broker to access a common data set (CDS) (will discuss in
SectionIV-C, whose block hash index is stored in a distributed
memory cache.

Fig. 1. Snapshot backup architecture of each node.

The snapshot store supports data access operations such
as get, put and delete. Other operations include data block
traverse and resource usage report. The snapshot data does not
need to be co-located with VM instances, and in fact they can
even live in a different cluster to improve the data reliability:

when one cluster is not available, we are still able to restore
its VMs from another cluster which holds its snapshot data.

Under the hood of snapshot store, it organizes and operates
snapshot data in the distributed file system. We let each virtual
disk has its own snapshot store, and no data is shared between
any two snapshot stores, thus achieve great fault isolation. For
those selected popular data that shared by many VM snapshot
stores, we could easily increase its availability by havingmore
replications.

B. Inner-VM Deduplication

The first-level deduplication is logically localized within
each VM. Such localization increases data independency be-
tween different VM backups, simplifies snapshot management
and statistics collection during VM migration and termination,
and facilitates parallel execution of snapshot operations.

Fig. 2. An example of snapshot representation.

The inner VM deduplication contains two levels of duplicate
detection efforts and the representation of each snapshot is
correspondingly designed as a two-level level index data
structure in the form of a hierarchical directed acyclic graph
as shown in Figure2. An image file is divided into a set
of segments and each segment contains hundreds of content
blocks from the bottom level. These blocks are of variable-
size, partitioned using the standard chunking technique [11]
with 4KB as the average block size. Segment metadata (called
segment recipe) records its content block hashes and data
pointers. The snapshot recipe contains a list of segments and
other meta data information.

• Level 1 Segment modification detection. If a segment is
not changed, indicated by a dirty bit embedded in the
virtual disk driver, its content blocks are not changed
as well, thus its segment recipe can be simply reused.
Operations at this level have almost no cost and most of
unmodified data are filtered here.

• Level 2 Block fingerprint comparison.If a segment is
modified, we perform fine-grained deduplication using
content blocks of this segment to compared with the
same segment in the previous snapshot (also called parent

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 100 10000 1e+06

(a) Data blocks from OS disks

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 1000 1e+06 1e+09

(b) Data blocks from data disks

Fig. 3. Number of duplicates vesus ranking

snapshot). Partial duplication within the segment can be
detected and eliminated.

We choose this two-level structure because in practice we
observe that during each backup period only a small amount
of VM data are added or modified. As the result, even
the meat data of two snapshots can be highly similar, thus
aggregating a large number of content blocks as one segment
can significantly reduce the space cost of snapshot meta data.

How can we choose the length of a segment? Instead of
using variables-sized segments, we take a simple approach
to let every segment being aligned to the page boundary of
each virtual image file. For Aliyun, each VM image file is
represented as a virtual disk file format (calledvhd at Xen)
and we use a dirty bit to capture if a page (or segment) of a
virtual disk file has been modified or not to ease the segment-
level deduplication. A dirty bit array is used to indicate which
segments have been modified or not. Each page (segment)
size in our implementation uses 2MB, which contains a large
number of content blocks.

Once level-2 deduplication is activated for those segments
that have been modified, it requires memory to load block
fingerprints from the corresponding parent snapshot’s segment.
This scheme processes one segment at time and each segment
of 2MB contains about 500 content blocks on average given
4KB is the average block size. That only takes a tiny amount
of space to hold their fingerprints.

C. Cross-VM Deduplication with CDS

The level-3 deduplication is to identify duplicated data
blocks among multiple VMs through the index cache of
common data set (CDS). CDS is the most popular content
blocks among snapshots across all VMs. Each index entry
contains the block fingerprint and a reference pointer to the
location of its real content in the snapshot content block store.

At the runtime, the CDS index resides in a distributed
memory lookup table implemented using Memcached [9] to

leverage the aggregated memory in a cluster. The usage of
memory at each machine is small and thus this scheme does
not lead to a memory resource contention with the existing
cloud services. CDS raw data stored in the distributed file
system has multiple copies in different machines for the
purpose of fault tolerance and while providing high read
throughput.

To control the size of searchable common data in this global
setting, we focus on those items that are most popular based
on the historical snapshot data and the popular analysis is
conducted periodically to ensure meta data freshness to match
the latest data access trend. There are two advantages to exploit
this. First, a smaller CDS reduces overall resource requirement
while covering most of data duplication. Second, knowing this
small set of data is shared heavily makes the fault tolerance
management easier because we can replicate more copies to
mitigate the failure.

In Aliyun’s VM cloud, each VM explicitly maintains one
OS disk, plus one or more data disks. During VM’s creation,
its OS disk is directly copied from user’s chosen base image.
Given the separation of OS disks and data disks, we study their
characteristics separately. We expect that data related toOS
and popular software installations are not frequently modified
or deleted, to facilitate analysis we call themOS-relateddata,
and the rest of data, either from OS or data disks, are called
user-relateddata.

We have studied the popularity of common blocks in the
OS and data disks from a dataset containing over 1,000
VMs, taking their first snapshots to watch the cross-VM
duplication pattern (scale of OS disk sampling is smaller due
to performance impact to user VMs). Figure3 shows the
duplicate count for unique data blocks sorted by their ranking
in terms of the duplication count.Y axis is the popularity of a
data block in a log scale measured its duplicate count among
snapshots.X axis is the identification of data blocks in a log

scale sorted by their duplicate rank. The rank number 1 is the
block with the highest number of duplicates. These two curves
exhibit that the popularity of common blocks partially follows
a Zipf-like distribution.

Base on the Zipf-like distribution pattern, many previous
analysis and results on web caching[3], [6] may apply. In
general this indicates a small set of popular data dominates
data duplication. Although we already know OS-related data
are heavily duplicated among OS disks, it still surprises usthat
user-related data follow a similar pattern. Therefore, we collect
the CDS by performing global reference counting through
map-reduce for all blocks in snapshot store, and select the
most popular ones base on the memory limitation of CDS
hash index.

The CDS collected from user-related data is generally pro-
portional to the data size. As discussed in SectionV, selecting
about 1% of data (after level 1 and level 2 deduplication) can
cover about 38% of data blocks. Consider we allow maximum
25 VMs per machine, each VM has about 30GB of user-related
data, having 10 snapshots in its snapshot store and the data
change ratio during each backup is 10%, this translates to
15GB CDS data per machine. Consider each CDS hash index
entry cost about 40 bytes and the average block size is 4KB,
this leads to a 1:100 ratio so the memory cost by CDS hash
index is about 150MB per machine. On the other hand, the
CDS from OS-related data is only relevant to the number of
OS releases. Our experiment on 7 major OS releases shows
that about 100GB of data is never modified, and we expect it
won’t grow over 200GB in the near future. So it would cost
the entire cluster 2GB of memory to store its hash index, or
20MB per machine on a 100 node cluster. On average each OS
disk has about 10GB of data that can be completely eliminated
in this way. Thus in total the CDS index size per node takes
less than 170MB in a large cluster bigger than 100 nodes,
covering over 47% of blocks in OS and data disks after inner-
VM deduplication. This memory usage is well below the limit
required by our VM services.

D. Illustration of multi-level deduplication process

We illustrate the steps of 3-level deduplication in Figure4,
which can be summarized as 5 steps:

1) Segment level checkup.As shown in Figure4 (a), when
a snapshot of a plain virtual disk file is being created,
we first check the dirty bitmap to see which segments
are modified. If a segment is not modified since last
snapshot, it’s data pointer in the recipe of the parent
snapshot can be directly copied into current snapshot
recipe (shown as the shadow area in Figure4 (b)).

2) Block level checkup.As shown in Figure4 (b), for each
dirty segment, we divide it into variable-sized blocks,
and compare their signatures with the corresponding
segment recipe in the previous snapshot (called parent
snapshot). For any duplicated block, we copy the data
pointer directly from the parent segment recipe.

3) CDS checkup.For the remaining content blocks whose
duplicate status is unknown, Figure4 (d) shows a further

Fig. 4. Illustration of snapshot deduplication dataflow.

check to compare them with the cached signatures in
the CDS by querying the CDS hash index. If there is
a match, the corresponding data pointer from the CDS
index is copied into the segment recipe.

4) Write new snapshot blocks :If a data block cannot be
found in the CDS index, this block is considered to be
a new block and such a block is to be saved in the
snapshot store, the returned data pointer is saved in the
segment recipe.

5) Save recipes.Finally the segment recipes are saved in
the snapshot block store also. After all segment recipes
are saved, the snapshot recipe is complete and can be
saved.

If there is no parent snapshot available, which happens when
a VM creates its first snapshot, only CDS-based checkup will
be conducted. Most of the cross-VM duplication, such as OS-
related data, is eliminated at this stage.

V. EVALUATION

We have implemented the snapshot deduplication scheme on
the Aliyun’s cloud platform. Objectives of our experimental
evaluation are: 1) Analyze the commonality of content data
blocks and the popularity of hot items. 2) Assess the effec-
tiveness of 3-level deduplication for reducing the storagecost
of snapshot backup. 3) Examine the impacts of CDS size on
deduplication ratio.

A. Experimental setup

At Aliyun our target is to backup cluster up to 1000 nodes
with 25 VMs on each. Based on the data studied, each VM
has about 40GB of storage data usage on average, OS disk
and data disk each takes about 50% of storage space. The
backup of VM snapshots is completed within two hours every
day, and that translates to a backup throughput of 139GB per
second, or 500TB per hour. For each VM, the system keeps

 0

 5

 10

 15

 20

 25

 30

 35

 40

(a) Overall

(b) OS disk

(c) Data disk

%
 o

f t
ot

al

after level 1
after level 1+2
after level 1+2+3

Fig. 5. Impacts of 3-level deduplication. The height of eachbar is the
data size after deduplication divided by the original data size and the unit is
percentage.

10 automatically-backed snapshots in the storage while a user
may instruct extra snapshots to be saved.

Since it’s impossible to perform large scale analysis without
affecting the VM performance, we sampled two data sets
from real user VMs to measure the effectiveness of our
deduplication scheme. Dataset1 is used study the detail impact
of 3-level deduplication process, it compose of 35 VMs from
7 popular OSes: Debian, Ubuntu, Redhat, CentOS, Win2003
32bit, win2003 64 bit and win2008 64 bit. For each OS, 5
VMs are chosen, and every VM come with 10 full snapshots
of it OS and data disk. The overall data size for this 700 full
snapshots is 17.6 TB.

Dataset2 contains the first snapshots of 1323 VMs’ data
disks from a small cluster with 100 nodes. Since inner-VM
deduplication is not involved in the first snapshot, this data set
helps us to study the CDS deduplication against user-related
data. The overall size of dataset2 is 23.5 TB.

All data are divided into 2 MB fix-sized segments and each
segment is divided into variable-sized content blocks [11],
[14] with an average size of 4KB. The signature for variable-
sized blocks is computed using their SHA-1 hash. Popularity
of data blocks are collected through global counting and the
top 1% will fall into CDS, as discussed in SectionIV-C.

B. Effectiveness of 3-level Deduplication

Figure5 shows the overall impact of 3-level deduplication
on dataset1. The X axis shows the overall impact in (a), impact
on OS disks in (b), and impact on data disks in (c). Each bar
in the Y axis shows the data size after deduplication divided
by the original data size. Level-1 elimination can reduce the
data size to about 23% of original data, namely it delivers
close 77% reduction. Level-2 elimination is applied to data
that could pass level-1, it reduces the size further to about
18.5% of original size, namely it delivers additional 4.5%
reduction. Level-3 elimination together with level 1 and 2
reduces the size further to 8% of original size, namely it

 0

 20

 40

 60

 80

 100

CentOS

RHEL

Debian

Ubuntu

W
in2003 32Bits

W
in2003 64Bits

W
in2008 64Bits

%
 o

f t
ot

al

new data
saved by level 3

saved by level 2
saved by level 1

Fig. 6. Impact of 3-level deduplication for OS releases.

delivers additional 10.5% reduction. Level 2 elimination is
more visible in OS disk than data disk, because data change
frequency is really small when we sample last 10 snapshots of
each user in 10 days. Nevertheless, the overall impact of level
2 is still significant. A 4.5% of reduction from the original data
represents about 450TB space saving for a 1000-node cluster.

Figure6 shows the impact of different levels of deduplica-
tion for different OS releases. In this experiment, we tag each
block in 350 OS disk snapshots from dataset1 as “new” if this
block cannot be deduplicated by our scheme and thus has to be
written to the snapshot store; “CDS” if this block can be found
in CDS; “Parent segment” if this block is marked unchanged
in parent’s segment recipe. “Parent block” if this block is
marked unchanged in parent’s block recipe. With this tagging,
we compute the percentage of deduplication accomplished by
each level. As we can see from Figure6, level-1 deduplication
accomplishes a large percentage of elimination, this is because
the time interval between two snapshots in our dataset is quite
short and the Aliyun cloud service makes a snapshot everyday
for each VM. On the other hand, CDS still finds lots of
duplicates that inner VM deduplication can’t find, contributing
about 10% of reduction on average.

It is noticeable that level-1 deduplication doesn’t work well
for CentOS, a significant percentage of data is not eliminated
until they reach level-3. It shows that even user upgrade his
VM system heavily and frequently such that data locality is
totally lost, those OS-related data can still be identified at
level-3.

In general we see a stable data reduction ratio for all OS
varieties, ranging from 92% to 97%, that means the storage
cost of 10 full snapshots combined is still smaller than the
original disk size. And compare to today’s widely used copy-
on-write snapshot technique, which is similar to our level-1
deduplication, our solution cut the snapshot storage cost by
64%.

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

C
ov

er
ag

e
of

 r
aw

 d
at

a
(%

)

Ranking of data blocks by popularity

Coverage of unique data (%)

Fig. 7. Cumulative coverage of popular common user data blocks.

C. Coverage of common data blocks

One of our biggest advantage is small memory footprint
for deduplication, because we only eliminate a small amount
of highly popular data. we use dataset2 to demonstrate the
coverage of popular data blocks on user-related data, as shown
in Figure 7. The X axis is the rank of common user data
blocks, andY shows how much raw data can be covered given
the size of CDS. LetSi andFI be the size and duplicate count
of the i-th block ranked by its duplicate rank. ThenY axis is
the coverage of the common dataset covering data items from
rank 1 to ranki. Namely

∑
i

i=1
Si ∗ Fi

Total data size
.

Thus with about 1% of blocks on data disks, CDS can cover
about 38% of total data blocks appeared in all data snapshots.
The corresponding CDS index uses no more than 150MB
memory per machine, which can be easily co-located with
other cloud services.

Because there are a limited number of OS releases, we study
common blocks among OS disks loaded with the same OS
release. In Figure8, we list a conservative commonality study
in 7 major OS versions supported in Aliyun. For every block
in the base image, we classify this block as “unchanged” if
this block has appeared in all snapshots of the same OS release
even they are used by different VMs. Figure8 shows that for
each OS, at least 70% of OS blocks are completely unchanged
among all snapshots of the same OS. Some latest release of
OS tends to have a higher percentage of content change while
old release tends to have more variations of content versions.
That can be interpreted as that users with very old version
of operating systems have a lower tendency to update their
OS versions and this causes a larger discrepancy among OS
snapshots of these users.

Based on the above analysis, we have selected a small set of
most popular OS blocks, which is about 100GB OS data and
its corresponding CDS index takes about 1GB memory space

 0

 20

 40

 60

 80

 100

CentOS

RHEL

Debian

Ubuntu

W
in2003 32Bit

W
in2003 64Bit

W
in2008 64Bit

P
er

ce
nt

ag
e

of
 b

as
e

im
ag

e

unchanged
changed

Fig. 8. Percentage of completely common blocks among different VMs for
the same OS release.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1 10 100 1000 10000 100000

S
pa

ce
 s

av
in

g
/ C

om
pl

et
e

de
du

pl
ic

at
io

n
sa

vi
ng

Size of CDS(GB)

Fig. 9. Relative ratio of space size compared to full deduplication when
CDS size changes.

in total. They can cover sufficiently over 70% of OS-related
data.

D. A comparison of perfect and CDS-based deduplication

After level-1 and level 2 elimination, we find that the
complete deduplication would reduce the storage cost further
by 50%. If we put all these unique data into CDS, we could
achieve complete deduplication, but fingerprint lookup in such
huge CDS hash index would become a bottleneck as discussed
in many pervious works. So we use dataset2 to evaluate how
much space saving of deduplication can be achieved when
varying the CDS size.

Figure 9 shows the relationship between CDS cache size
and relative space saving ratio compared to the full dedupli-
cation. The unit of CDS size is gigabytes. We definespace
saving ratioas the space saving of CDS method divided by
full deduplication space reduction. With a 100GB CDS data
(namely 1GB CDS index) can still accomplish about 75% of
what perfect deduplication can do.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0 5000 10000 15000 20000 25000

C
D

S
 s

iz
e

/ D
at

a
si

ze

Data Scale (GB)

60% of saving
65% of saving
70% of saving
75% of saving

Fig. 10. The relative size ratio of CDS over the data size.

With dataset2, Figure10 shows how CDS space saving ratio
compared to the full deduplication is affected by the dataset
size. In this experiment we first set out a goal of space saving
ratio completed, then watch how much data needs to be placed
in CDS cache to achieve this goal. From the graph we can see
a 75% saving ratio lead to a stable ratio between CDS size
and data size, which requires 1% of data to be placed in CDS.

When we deal with a large cluster of 1,000 nodes, we expect
that using 1% of data disks can cover more than what we have
seen from this 1323 VM dataset, assuming that the average
behavior of every subcluster with 100 machines exhibits a
similar commonality. In addition to this, CDS for OS disks
will become even more effective when there are more VMs
sharing the same collection of OS releases.

VI. CONCLUSION

In this paper we propose a multi-level selective dedupli-
cation scheme for snapshot service in VM cloud. Inner-VM
deduplication localizes backup data dependency and exposes
more parallelism while cross-VM deduplication with a small
common data set effectively covers a large amount of dupli-
cated data. Our solution accomplishes the majority of potential
global deduplication saving while still meets stringent cloud
resources requirement. Evaluation using real user’s VM data
shows our solution can accomplish 75% of what complete
global deduplication can do. Compare to today’s widely-
used snapshot technique, our scheme reduces almost two-third
of snapshot storage cost. Finally, our scheme uses a very
small amount of memory on each node, and leaves room for
additional optimization we are further studying.

ACKNOWLEDGMENTS

We would like to thank Weicai Chen and Shikun Tian from
Alibaba for their kind support, and the anonymous referees for
their comments. Wei Zhang has received internship support
from Alibaba for VM backup system development. This work
was supported in part by NSF IIS-1118106. Any opinions,
findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily
reflect the views of Alibaba or the National Science Founda-
tion.

REFERENCES

[1] Aliyun Inc. http://www.aliyun.com.
[2] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.
[3] L. A. Adamic and B. A. Huberman. Zipfs law and the Internet.

Glottometrics, 3(1):143–150, 2002.
[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization.
SIGOPS Oper. Syst. Rev., 37:164–177, Oct. 2003.

[5] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge. Extreme
Binning: Scalable, parallel deduplication for chunk-based file backup.
In Modeling, Analysis Simulation of Computer and Telecommunication
Systems, 2009. MASCOTS ’09. IEEE International Symposium on, pages
1–9, 2009.

[6] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
Caching and Zipf-like Distributions: Evidence and Implications. IN
INFOCOM, pages 126 – 134, 1999.

[7] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decentralized
deduplication in SAN cluster file systems. page 8, June 2009.

[8] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P. Strzel-
czak, J. Szczepkowski, C. Ungureanu, and M. Welnicki. HYDRAstor:
a Scalable Secondary Storage. InFAST ’09: Proccedings of the 7th
conference on File and storage technologies, pages 197–210, Berkeley,
CA, USA, 2009. USENIX Association.

[9] B. Fitzpatrick. Distributed caching with memcached.Linux J., 2004:5–,
Aug. 2004.

[10] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis, and
P. Camble. Sparse Indexing: Large Scale, Inline Deduplication Using
Sampling and Locality. InFAST, pages 111–123, 2009.

[11] U. Manber. Finding similar files in a large file system. InProceedings
of the USENIX Winter 1994 Technical Conference, pages 1–10, 1994.

[12] C.-H. Ng, M. Ma, T.-Y. Wong, P. P. C. Lee, and J. C. S. Lui. Live
deduplication storage of virtual machine images in an open-source cloud.
In Middleware, pages 81–100, 2011.

[13] S. Quinlan and S. Dorward. Venti: A New Approach to Archival
Storage. InFAST ’02: Proceedings of the Conference on File and Stor-
age Technologies, pages 89–101, Berkeley, CA, USA, 2002. USENIX
Association.

[14] M. O. Rabin. Fingerprinting by random polynomials. Technical Report
TR-CSE-03-01, Center for Research in Computing Technology, Harvard
University, 1981.

[15] S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive content-addressed
storage in foundation. InUSENIX 2008 Annual Technical Conference
on Annual Technical Conference, pages 143–156, Berkeley, CA, USA,
2008. USENIX Association.

[16] Y. Tan, H. Jiang, D. Feng, L. Tian, and Z. Yan. Cabdedupe:A causality-
based deduplication performance booster for cloud backup services. In
IPDPS, pages 1266–1277, 2011.

[17] M. Vrable, S. Savage, and G. M. Voelker. Cumulus: Filesystem backup
to the cloud.Trans. Storage, 5:14:1–14:28, Dec. 2009.

[18] A. Warfield, S. Hand, K. Fraser, and T. Deegan. Facilitating the
development of soft devices. page 22, Apr. 2005.

[19] W. Xia, H. Jiang, D. Feng, and Y. Hua. SiLo: a similarity-locality
based near-exact deduplication scheme with low RAM overhead and
high throughput. pages 26–28, June 2011.

[20] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the
data domain deduplication file system. InFAST’08: Proceedings of the
6th USENIX Conference on File and Storage Technologies, pages 1–14,
Berkeley, CA, USA, 2008. USENIX Association.

	Introduction
	Background and Related Work
	Requirements and Design Options
	Multi-level Selective Deduplication
	Snapshot Service Architecture
	Inner-VM Deduplication
	Cross-VM Deduplication with CDS
	Illustration of multi-level deduplication process

	Evaluation
	Experimental setup
	Effectiveness of 3-level Deduplication
	Coverage of common data blocks
	A comparison of perfect and CDS-based deduplication

	Conclusion
	References

