TimeCap: Methodology for comparing IT
infrastructures based on time and capacity metrics

Toni Mastelic, Ivona Brandic
Institute of Information Systems, Vienna University of Technology, Vienna, Austria
{toni, ivona} @infosys.tuwien.ac.at

Abstract—Scientific community is one of the major driving
forces for developing and utilizing IT technologies such as
Supercomputers and Grid. Although, the main race has always
been for bigger and faster infrastructures, an easier access to
such infrastructures in recent years created a demand for more
customizable and scalable environments. However, introducing
new technologies and paradigms such as Cloud computing
requires a comprehensive analysis of its benefits before the actual
implementation.

In this paper we introduce the TimeCap, a methodology for
comparing IT infrastructures based on time requirements and
resource capacity wastage. We go beyond comparing just the
execution time by introducing the Time Complexity as part of
TimeCap, a methodology used for comparing arbitrary time
related tasks required for completing a procedure, i.e., obtaining
the scientific results. Moreover, a resource capacity wastage is
compared using the Discrete Capacity, a second methodology
as part of TimeCap used for analyzing resource assignment
and utilization. We evaluate our methodology by comparing a
traditional physical infrastructure and a Cloud infrastructure
using our local IT resources. We use a real world scientific
application for calculating plasma instabilities for analyzing time
and capacity required for computation.

I. INTRODUCTION

A scientific community has always required state of the
art computing infrastructures in order to benefit from rapidly
advancing technologies. Today these infrastructures are based
on large-scale distributed systems such as TeraGRID [1] used
by 4000 users around 200 universities, and Open Science
Grid[2] hosting up to 25000 machines used for research work
in molecular bioscience, mathematics, neuroscience, physics
etc. Implementing new paradigms such as Cloud computing
on large IT infrastructures obviously requires analysis of the
current state and of the benefits that a new approach would
bring.

Comparing IT infrastructures used by scientific community
is usually all about performance [3], [4], [5], and thus notion
of Cloud with its virtualization layer becomes undesirable due
to a performance loss. However, besides prolonged execution
time, there are other time consuming prerequisites that a
scientist has to do before actually executing his application
[6], e.g., some scientific applications may not fit existing exe-
cution environments and many of them may require complete
redesigning and reprogramming in order to be run [7]. Even
after successfully adapting the application, due to constant
system upgrades, hardware changes, etc., further adaptation
may still be required [8]. Since reprogramming a modern

scientific application represents a complex task [8], this can
create even bigger time overhead than the one of a prolonged
execution time. Additionally, scaling up or down these execu-
tion environments also takes time since each node has to be
reconfigured separately.

Another aspect that is usually overlooked is resource as-
signment and utilization. IT capacity of a scientific cluster is
rarely fully utilized [9], while job queues are commonly long
[9]. This is usually due to unfair resource assignment where
certain applications do not utilize all the reserved resources,
while other applications are waiting in the queue [10].

In this paper we introduce the TimeCap, a methodology
for comparing IT computing infrastructures considering two
basic aspects important for scientific community: time and
capacity. For comparing time requirements we present the
Time Complexity (TC) methodology, a novel approach for
comparing time related tasks based on story points [11], a
methodology used by agile development teams for estimating
project complexity. In order to compare a story points abstract
metric and execution time we introduce a mapping function
that provides a generic metric for comparing time related tasks.
Moreover, we add possibility of modeling task parallelization
using the Amdahl’s law [12]. For analyzing IT capacity utiliza-
tion and assignment, we present the Discrete Capacity (DC)
methodology. DC methodology introduces intuitive resource
slicing approach that divides IT resources to smallest usable
configurations called instances. Based on these instances, a
resource assignment and utilization is analyzed.

We evaluate our TimeCap methodology by setting up and
comparing a traditional physical infrastructure with a Cloud
infrastructure using our local IT resources. As a testing
application we utilize a real-world scientific application for
calculating Weibel instabilities within a quark-gluon plasma
during particle collision like those in Large Hardon Collider
at CERN [13].

The rest of this paper is organized as follows. Section II
discusses related work. Section IIT provides two use cases
describing time and capacity issues when using a certain
type of infrastructure. Sections IV and V present two novel
comparison methodologies, the Time Complexity and the Dis-
crete Capacity methodology. Infrastructures and the execution
environment, along with monitoring tools are described in
Section VI, while the evaluation of our approach using a real-
world scientific application is presented in Section VII. Finally,
Section VIII gives the conclusion and the future work.

II. RELATED WORK

In [14], a comparison is made between in-house clusters
and clouds. However, the authors focus on public cloud,
specifically Amazon Cluster Compute Instances. Therefore,
aspects such as resource assignment and utilization are ne-
glected, as well as setup of the infrastructure. In [15], the
authors compare costs and performance issues when using
a cloud versus physical infrastructure. However, their work
focuses only on data-intensive applications using Google App
Engine, so they do not consider setup procedure nor resource
utilization. In [16], the authors analyze the performance in
a Xen-based virtual cluster environment. They consider re-
source consumption and introduce a model for measuring the
performance overhead for network latency and bandwidth.
However, utilization and assignment of these resources is
not covered. Resource consumption overhead of virtualization
technology is evaluated in [17], and the performance in [5].
The authors compare different hypervisors against bare metal
execution by benchmarking the three environments. However,
only performance and resource overheads are measured, while
resource dependance are neglected. The authors in [18] com-
pare different public clouds with a local infrastructure focusing
on deployment, performance and cost efficiency. They measure
deployment time only for public clouds without comparing
them to a local setup, since their measurement is based
on actual time. Also, they do not compare all time related
tasks such as execution time. Moreover, resource utilization is
neglected. [19] presents a methodology for trade-off analysis
when moving scientific applications to Cloud based on four
models: complexity, performance, resource and energy. How-
ever, models do not provide a methodology for comparing
setup procedure and the execution time, nor do they consider
dependance between the resource types.

III. USE CASES

We consider two use cases concerning two major issues
when executing a scientific application on an IT infrastructure.

TIME use case: Scientists A and B want to deploy their
applications on an already existing execution environment (i.e.,
Grid) that is usually implemented as bag of tasks (BoTs),
workflows or Message Passing Interface (MPI) applications,
as shown in Figure 1.

Scientist A

Scientist B
o)

e oot
|
I CApps) CApp:)
! ((Env,) ((Envy)
i PM,
I

Fig. 1. Time consuming tasks required before executing an application.

Scientist A has developed his application targeting the
existing environment, and thus only has to deploy it on an
infrastructure. However, due to some changes and updates
on the environment, scientist A will still have to adapt his
application in order to run it.

On the other hand scientist B requires completely different
execution environment. Instead of rewriting his application to
fit the existing environment, the scientist decides to create
a new execution environment spreading over dozens of ma-
chines. Obviously, he has to configure all the machines to
support his application. However, in case he has to scale up
or down his environment, he has to manually reconfigure all
extra machines. This also includes software upgrades that have
to be done on each node separately as well.

Utilizing Cloud technologies such as virtualization would
provide standard execution environments such as one used by
scientist A, as well as fully customizable environments fitted
for a specific application required by scientist B, where no
adaptations or compensations are required. Both environments
would be extremely scalable, simply by shutting down existing
and deploying new virtual machines [20]. Finally, managing
an environment would require managing a single virtual
image. However, due to a virtualization overhead, a scientist
can expect longer execution times, where he can perhaps lose
all the benefits of a quicker deployment.

CAPACITY use case: A scientist A wants to deploy his
application on a cluster composed of 4 servers with 4 cores and
8 GB each, as shown in Figure 2. In the meanwhile, scientists
B and C are already running their applications on the cluster.
On the one hand scientist B is utilizing 2 machines at 100% of
the cpu and only 6 GB of memory per each machine. On the
other hand, scientist C is utilizing only 3 out of 4 cores on each
of those two machines, and also only 50% of memory due to
limitations of his application. Although, the cpu utilization of
the cluster is only 75% with 4 unused cores, and only 62,5% of
memory that equals to 12 GB of unused memory, scientist A
is unable to run his application as there are no free machines.

Scientist B Scientist C

(_App; (@ (Apnc (_Appc

na@@><nal@><@@@o><ma-o
((sc8 ((ecs

CPUs:

Memory: () 268 268]

Not usable

Has to wait

App,

Scientist A

Fig. 2. Resource assignment use case.

Better assignment of these resources could be done using
a virtualization, where each scientist could be assigned a

TABLE I
COMPLEXITY SCALE FOR GRADING TASKS, FOLLOWED BY MAPPED
GRADES DEPENDING ON UNCERTAINTY FACTOR x.

Task Complexity
Register on the site 13
Login to the site 2
Configure your profile and design 50

perfect-fit size virtual machines [21]. Not only that a resource
utilization would improve, it would also improve resource
assignment and lower the waiting queues. However, if ap-
plications are optimized for a targeted environment such as
the application of the scientist B, and thus use almost all the
resources reserved for them, resource consumption overhead
due to a virtualization layer can finally lead to an even greater
resource wastage. Additionally, it is incorrect to assume that
by running two additional VMs in order to use those 4 GB
that are currently not being used by the scientist B is of no
purpose, since no spare cpu cycles are available that could
utilize those RAMs.

IV. TIME COMPLEXITY

Traditional approach when estimating time needed for per-
forming scientific tests usually only includes execution time of
the application. However, as shown in the Time use case, time
required to obtain scientific test results should also include all
prerequisites before the actual execution, such as application
development or adaptation, input data formatting, environment
setup, etc. Prerequisites will depend on a scenario.

In order to support and compare different scenarios, an
unified metric has to be used that is able to describe all
the tasks required for obtaining scientific results. Thus, we
present the Time Complexity (TC) methodology based on the
story points [11], a methodology widely used in agile software
development for estimating project complexity. Story points
break the procedure (i.e., a story) to a number of points, which
we refer to as tasks. Each task is assigned with a complexity
grade that abstractly describes the (1) complexity, (2) effort
and (3) uncertainty for executing a certain task. Grades are
represented with integers defined relatively to one another
and are defined by a team making the estimate. Moreover,
story points guidelines suggest that grades should have a steep
increase, since higher grades assume more (1) complex tasks
that require more (2) effort and finally have more (3) uncertain
deadline. For example, if we have story points grades 2, 13
and 50, we can use them to relatively describe complexity of
tasks listed in Table 1.

However, story points provides an abstract comparison
metric defined as a task complexity that cannot be directly
compared with execution time, which is on the other hand
measured in seconds. Additionally, some tasks can be done in
parallel, and thus would require less time than initially shown
by a story point complexity metric. Both issues are discussed
and solved in following two subsections IV-A and I'V-B.

A. Mapping function

In order to compare task’s complexity with time, a mapping
function is required that can map time deadline with a specific

complexity grade, while still preserving the characteristics of
a story points.

Table II in column real time contains complexity scale
defined by following the guidelines of a story points method-
ology previously described. However, instead of choosing
arbitrary complexity grades, we built a complexity scale us-
ing number of minutes, followed by a user-friendly naming
convention as shown by column name in Table II. Number
of minutes for a grade is defined as a maximum number of
minutes until the next grade, e.g., hours is set to 1440 minutes
or 24 hours, which equals to one day that is represented by
a following grade days. Days is defined as 10080 minutes or
7 days, which equals to one week that is represented by a
following grade weeks, and so fort. This way, when a certain
task takes, for example, 5 hours, it is referred to as hours,
which follows the standard use of an English language.

With such direct mapping the grade’s characteristics (1)
complexity and (2) effort are preserved. However, (3) uncer-
tainty is lost since we can now exactly determine a deadline
for a certain task since grades are directly mapped to time.
In order to preserve (3) uncertainty of a story points grades,
but still be able to map them with time, two goals have to
be achieved: (a) lower resolution of the grades, i.e., one grade
should map to several time moments, i.e., a time interval; (b)
those time intervals should overlap following the nature of
story points methodology, i.e., distance between the grades
should tend to be smaller.

e = xlog(timet) (1)

We achieve this by introducing a mapping function (1) with
a customizable uncertainty factor x ranging from 10 to 1,
where mapped values are referred to as TC grades and are
shown in Table II for our complexity scale. 10 represents a
direct one-to-one mapping between TC grades and real time,
which indicates complete certainty, e.g., if we are traveling
by hypothetically most punctual train, then a time distance
between two stations could be graded with the TC grade 2 if
the real time is actually two hours.

By reducing the uncertainty factor x, resolution of the TC
grades goes down and thus a single TC grade maps to a
time interval due to rounding of a TC grade as an integer.
Additionally, distance between the TC grades becomes smaller
as shown in Figure 3 as the uncertainty factor x gets reduced.

100%
80% weeks
60% days
hours
40% g minutes

20% ™ seconds

0%

Fig. 3. By reducing the uncertainty factor x TC grades start to overlap by
becoming more and more closer to each other.

TABLE I
COMPLEXITY SCALE FOR GRADING TASKS, FOLLOWED BY MAPPED VALUES, I.E., TC GRADES WITH UNCERTAINTY FACTOR z.

TC grades with uncertainty factor x
Real time
Name (min) x =10 r=9 r =38 x =17 r=6 | x=5|x=4|xz=3|zxz=2|x=1
seconds 1 1 1 1 1 1 1 1 1 1
minutes 60 60 50 40 24 17 12 7 3 1
hours 1440 1440 1032 712 467 287 161 80 32 9 1
days 10080 10080 6611 4126 2417 1304 628 257 81 16 1
weeks 40320 40320 24819 14428 7800 3835 1656 593 158 24 1
months 483840 483840 | 265818 | 136081 | 63699 | 26519 | 9407 2646 516 51 1
Therefore uncertainty factor 1 would be all-to-one mapping, C. Usage

where all grades have the same value and thus represent com-
plete uncertainty, e.g., trying to compare building construction
with searching for a new planet in the Solar system. Although,
both tasks could be underway, uncertainty of the latter makes
it impossible to predict which one will finish sooner since
comparison is relative to one another. Therefore, uncertainty
factor x is always selected for the most uncertain task in the
process.

Since TC methodology is still based on story points, it
is important to notice that the final output of the mapping
function is not actual time, but rather an abstract metric
referred to as TC (time complexity). Thus, it is not advisable to
use the TC methodology to estimate time needed to complete
certain tasks, but only to compare different approaches that
relate to some deadlines.

B. Parallelization

Calculating a TC of a task ¢ that has to be repeated n times
can be done using the Equation (2).

C’t:n*ct (2)

However, if a task can be partly parallelized, than the TC
output of the Equation (2) is not realistic. In order to describe
scenarios where parts of a task can be parallelized, we extend
the Equation (2) using Amdahl’s law [12], which states that
in parallelization, if P is the proportion of a system or a
program that can be made parallel, and 1 — P is the proportion
that remains serial, then the maximum speedup that can be
achieved using N number of processors is equal to Equation

(3).

1

_— 3
1-P)+% @

Although this law relates to systems and programs, it can
be used in our scenario as well. After defining parallelization
factor P for a certain task ¢ with time complexity ¢, total
time complexity C; for performing this task n times would
be equal to Equation (4), where N from Equation (3) is equal
to n, assuming that all tasks can be parallelized at the same
time.

C’t:((l—P)—Fg)*n*ct 4)

TC methodology can be used for arbitrary scenarios where
a procedure can be broken into smaller serial tasks, where re-
peatable tasks may or may not be parallelized. More generally,
TC methodology can be used for any scenario where relative
time comparison between two approaches is necessary.

For the purpose of comparing different IT infrastructures
for executing scientific applications, additional overheads are
included such as the execution time overhead of the “slower”
infrastructure, e.g., if an execution time on an infrastructure
A is 168 hours (7 days), and on an infrastructure B is 170
hours (7 days and 2 hours), both execution times would get
the same TC grade days from Table II. Thus, it would look
like that both execution times are equal. For this reason, only
an overhead is taken that equals 2 hours for the infrastructure
B, and thus infrastructure B has the additional overhead in
range of hours.

V. DISCRETE CAPACITY

When it comes to the IT resource consumption, common
review of virtualization technology usually focuses only on a
resource consumption overhead created by a hypervisor. More-
over, unused resources of physical machines described in our
Capacity use case are usually overlooked and not considered
as wasted, while benefits of virtualization technology such
as increased utilization due to a better resource assignment
possibilities are somehow neglected.

We present Discrete Capacity (DC) methodology that takes
these issues into account and provides more realistic view
of resource usage and utilization. DC methodology considers
utilization U of a specific resource as a ratio of used resources
Ry seq and reserved resources Ryeserved @S defined by the
Equation (5) [19].

U= Rused (5)

Rreserved
However, in order to model dependence between resource
types described in the Capacity use case in Section III, a
systematic approach is required on based which a utilization
U can be calculated, as well as the resource wastage.

A. Discretization

DC methodology slices down IT resources to a smallest
usable configurations called instances composed of four main
type of resources: cpu, memory, disk and network, similar to
Amazon instances [22]. Figure 4 shows example of how IT

equipment composed of 2 physical servers could be sliced if a)
bare physical machines are used, and if b) a Cloud paradigm
is applied. A single instance represents a reserved amount of
all types of resources for a single application, assuming that
resource reservation is done on an instance basis.

a) Physical infrastructure
PM 1 PM 2

b) Cloud infrastructure
PM 1 PM 2

VM 1 [
VM 2 [
VM 3 [

{VM 5
<l

o
VM 6

(0}
@

S}
VM 7

(&) & &
(o]

(= 8w N[(-]
0o

Central
i node

2 instances 8 instances

Fig. 4. Slicing the IT capacity to a discrete instances.

B. Wastage

As shown in Figure 4, the Cloud scenario includes resource
consumption overhead on all instances due to a hypervisor
(e.g., Domain 0 in Xen hypervisor [23]) and virtualization
overhead, as well as the central node running Cloud manage-
ment system (e.g., OpenStack central node [24]). Combining
the data on overheads and the resource utilization we can
calculate resource wastage W using the Equation (6).

Ruse - Rover ea
W=1~— d head (6)

Rresemed

C. Usage

DC methodology is used for comparing IT resource assign-
ment and wastage between different infrastructures. After slic-
ing the resources to a smallest usable instances for a targeted
infrastructure, instances are assigned to users and/or different
execution environments. Applications are then analyzed for
their resource consumption and matched to the instances
in order to estimate resource utilization. Finally, using the
utilization data and resource overheads, total resource wastage
is calculated using Equation (6).

VI. INFRASTRUCTURE

Evaluation of our TimeCap methodology is done by com-
paring the physical and Cloud infrastructure using our local
cluster (called Haley) consisting of 8 machines listed in Table
III. We focus here only on cpu and memory resources, but
the same approach applies on network and disk resources.
Both for physical and virtual machines we use Ubuntu Server
12.04 [25] as an operating system. Futhermore, for cloud
infrastructure we use OpenStack[24] as a cloud management
system and Xen [23] for a virtualization layer, which uses a
paravirtulization technology. Xen is automatically deployed on
all physical nodes using a dodai-deploy puppet [26].

Requirements over the IT infrastructure are given by the
groups using the cluster and are listed in Table IV. Student
group uses their resources only during a semester, while all
other groups use their resources all the time. Our evaluation

TABLE III
HALEY CLUSTER.

Clock | RAM
No. | CPU model Cores | (GHz) (GB)
1, 2 | Intel Xeon E31240 4 3,3 4
3,4 | Intel Xeon X3430 4 2,4 8
5,6 | Intel Xeon E31220 4 3,1 8
7,8 | AMD Opteron 4130 4 2,6 8

follows the Physics department group that will be running their
application on the Haley cluster.

A. M4Cloud monitoring tool

For monitoring resource and energy consumption we use an
improved version of our M4Cloud monitoring tool [27] with
an agent-server architecture. It consists of three main com-
ponents as shown in Figure 5. Application Deployer is used
for deploying applications and plugins for additional metrics.
It also registers a deployed application within a monitoring
system. Metric Plugin Container supports the concept of a
dynamic plugin loader for additional metrics. It is implemented
within a lightweight agent running on a monitored machine,
while server runs on a separate machine. Application Level
Monitoring component serves as a central component and is
implemented within a server. It manages all the agents and
stores the metric data within a database.

]
: M4Cloud
| Application Testiter flaval :
1 Deployer D App |cat.|on. eve —— !
: (AD) Monitoring |
1 (ALM) :
: component 1
1 £ :
! k7
i = Mlt' Pl . :
a5 etric Plugin i
: 3 dTEI?: Container 1
| of @ e (MPC)]
1 a 1
b e]

1 Monitor
Application

Cloud infrastructure

Fig. 5. Architecture of the M4Cloud monitoring tool showing its components.

B. Quark-gluon plasma simulator

In order to correctly asses what type of execution environ-
ment should be set up on an IT infrastructure, it is important
to understand the types of applications that will be running
on it. Here we focus on a single scientific application used
for creating a real-world scenario based on our use cases in
Section III. We explain the implementation and the attributes
of our test application for simulating instabilities of a specific
plasma type.

The simulation [28] is based on Boltzmann-Vlasov equa-
tions for color electric and magnetic fields. The evolution of
instabilities is solved in three dimensional configuration space
which is discretized on a grid. The contribution of particle
distributions is furthermore discretized for each grid point in
a two-dimensional velocity space. Therefore the simulation

TABLE IV
RESOURCE REQUIREMENTS BY GROUPS USING THE CLUSTER.

Group Requirements Instances
Students At least four instances for testing distributed environment 4+
Scientist A One instance for programming and compiling 1
Scientist B One dedicated machine for energy consumption measurements 1 PM
Physics department | As much cpu cores as possible 1+

covers effectively a five-dimensional space which means that
memory requirements scale accordingly with increasing sys-
tem size. In order to deal with the large memory requirements,
the application is parallelized using the MPI library. Execution
time of the simulation depends on the number of steps
the simulation should calculate before terminating, which is
defined with a parameter ST EP. For a comparison reference
the ST EP parameter is set to provide an execution time of
exactly 10 days when running on a faster infrastructure of
those that are being compared. Additionally, size of the sim-
ulated system is defined with the internal parameter NUMT'.
Number if MPI workers depends directly on this parameter,
where number of workers w should not exceed NUMT + 1.
We use NUMT parameter for creating different application
requirements/limitations.

VII. EVALUATION
A. Discrete capacity results

Based on the user requirements from Table IV, we assign
resources as shown in Figure 6: a) on physical infrastructure
students get their minimum of 4 instances as requested. Scien-
tists A and B are assigned with machines 7 and 8 respectively.
Finally, physics department is left with machines 5 and 6. b)
on Cloud infrastructure students get machines 1 and 2, running
total of 4 instances as requested. Scientist B is assigned with
a full machine for energy consumption measurements, while
scientist A gets one out of two instances on the machine 7.
At last, physics department is left with total of 5 instances, 4
on machines 3 to 6, and a smaller one on machine 7. Latter
is selected as a central node for OpenStack and thus won’t be
used for running the application.

a) Physical infrastructure

B

7 8
(e}l |
B
B
b) Cloud infrastructure
S —Students A —Scientist A
P — Physic department B — Scientist B

Fig. 6. Resource assignment of the Haley cluster.

It is important to notice that the student group and sci-
entist A use their instances for programming and running

non-intensive applications. Hence, their machines are always
underutilized, below 40% for all types of resources on a
bare physical machines. Therefore, there is no performance
loss when sliced to smaller instances on Cloud infrastructure.
Moreover, extra resource consumption overhead created by the
central node on the Cloud infrastructure is avoided, since those
resources were already unutilized on the physical infrastruc-
ture, and thus were already considered as wasted.

In order to evaluate resource wastage of the scientific
application, internal parameter NUMT described in Section
VI-B is used. By changing this parameter, we created scenarios
where a single instance can run 1 to 10 workers, going thus
from the lowest to the highest utilization. Number of maximum
10 workers is obtained by evaluating the application’s per-
formance with different number of workers per machine/cpu.
Both for physical and Cloud infrastructure the application
performs best with 10 workers per PM, or 2.5 workers per cpu
as shown in Figure 7. Obviously, although running in parallel,
not all workers consume cpu cycles all the time.

160

[un
w
o

.
>
o

ey
w
o

Execution time [sec]
=
N
o

[y
[
o

[any
o
o

8(2)

9(2,25)
Workers per PM (workers per CPU)

10(2,5) 11(2,75) 12(3)

@ Phyiscal infrastructure -®-Cloud infrastructure - 1 VM per PM

Fig. 7. Average execution time for different application parameters.

Figures 8 and 9 show different cpu and memory utilization
scenarios for both infrastructures where one instance runs 1 to
10 MPI workers. Running the application in the smaller size
instances using the virtualization is done so the performance
is not affected, i.e., execution time on the Cloud infrastructure
does not fall below reference times shown in Figure 7. Ob-
viously, resource wastage is greater on physical infrastructure
when there is lower resource demand (1 to 5 workers) due
to a bigger instances, while the Cloud infrastructure is unable
to provide full amount of the machine’s capacity due to its
virtualization overhead. However, in our case the application
does not actually use the entire cpu or memory capacity, thus
resource wastage is equal for both infrastructures even for a
greater resource demand (6 to 10 workers).

100
90
80
70
60
50
40
30
20
10

[0 o o o e L A B e e o o B e B e B e e R
1 2 3 4 5 6 7 8 9 10

Number of workers

mm unutilized
W overhead
utilized

CPU utilization []%

Fig. 8. CPU utilization and wastage for physical (left column) and cloud
(right column) infrastructures.

100
90
80
70
60
50
40
30
20
10

[e e e L B A B o o e B o o e B B o |
1 2 3 4 5 6 7 8 9 10

Number of workers

HH unutilized
MW overhead
utilized

Memory utilization []1%

Fig. 9. Memory utilization and wastage for physical (left orange column)
and cloud (right blue column) infrastructures.

B. Time complexity results

In order to compare which infrastructure requires more
time to obtain simulation results, we must consider time
required for setting up an infrastructure and the execution
environment, as well as the execution time. Therefore, we
consider two scenarios: (a) initial setup for the semester, and
(b) reconfiguration after the semester.

(a) Initial setup is performed by slicing the resources as
described in Section VII-A. Table V lists the tasks required
for building both physical and Cloud infrastructure on these
machines. As shown in Figure 11, initial setup of the Cloud
infrastructure takes longer due to installation of CMS and
hypervisor. However, as shown in Figure 10, Cloud infras-
tructure performes more than 2 times better than the physical
infrastructure, due to a better resource slicing capabilities.
Taking that the reference execution time is 10 days as defined
in Section VI-B, execution time for physical infrastructure
would be slightly over 20 days, which makes the overhead
of 10 days. Applying the TC grade it would make it in range
of days. Therefore, total time needed for obtaining simulation
results was much shorter on a Cloud infrastructure as shown
by Figure 11.

Physical (2 PMs)
Cloud (4 PMs)

—

0 50 100 150 200 250 300
Execution time [sec]

Fig. 10. Average execution time for different scenarios on both infrastruc-
tures.
800 Execution time
overhead
_g' 600 M Deploy and run
2
=3 M Execution
g 400 environment
o .
o — Hypervisor
£ 200
= m CMS
0 - w - - W OS and drivers

Cloud Physical
During semester

Cloud Physical
After semester

Fig. 11. Comparison of Time complexity for running the scientific application
on the Haley cluster.

(b) In order to get the same amount of resources on a
physical as on a Cloud infrastructure, physics department has
to wait the end of the semester in order to use additional
machines 1 to 4. However, before using them, they have to
reconfigure them first, which includes tasks 2, 5 and finally 6
for running the application. On the other hand, on a Cloud
infrastructure, scientists only have to shut down VMs on
machines 1 to 4, and run already existing VM image, using
a CMS from a central node, which requires a single task
6. However, when using the same amount of resources, a
Cloud infrastructure gives 2.58% longer execution time than
the physical infrastructure, as shown in Figure 7. With a
reference execution time of 10 days, a Cloud infrastructure
would provide execution time of 10 days and 6,19 hours,
making a time overhead in range of hours by using TC grades.
Due to a small number of instances that had to be reconfigured,
total time required for obtaining simulation results was shorter
on a physical infrastructure as shown in Figure 11. Obviously,
for a bigger cluster where much larger number of instances
would have to be reconfigured, setup time would exceed
the execution time overhead of the Cloud infrastructure. On
the other hand, for multiple experiments the execution time
overhead would be multiplied by number of experiments made.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduced the TimeCap, a methodology
for analyzing benefits and trade-offs of introducing new tech-
nologies and paradigms on an IT infrastructure. We focused
on the time needed to obtain scientific results that includes all
tasks prior to the actual execution of the application, as well
as the execution time. We achieved this by developing a novel
Time Complexity methodology that can be used for comparing

TABLE V
LIST OF TASKS AND THEIR TC GRADES WITH UNCERTAINTY FACTOR & = 5, INCLUDING PARALYZATION FACTOR P. TOTAL TIME COMPLEXITIES ARE
SHOWN FOR TWO SCENARIOS FOR BOTH INFRASTRUCTURES.

Uncertainty factor x = 5 During semester After semester
Cloud Physical Cloud Physical
Task P ct n | Ci n | Ci n | Cy n | Ci
OS and drivers 0,6 17 9 [714 8 | 64,6 - - 4 1374
Hypervisor 0,8 17 7 37,4 - - - - - -
Cloud management system 0 161 1 161 - - - - - -
Execution environment 0 17 1 17 2 20,4 - - 4 | 272
Deploy and run 1 1 4 1 1 1 2 1 1 1
Execution time overhead - - - - 1 628 1 161 - -
TOTAL 287,8 714 162 65,6

any time related tasks. By customizing the time complex-
ity scale, TC methodology can be adapted to any scenario.
Additionally, we introduced a Discrete Capacity methodology
for analyzing IT resource assignment and utilization. As we
demonstrated on a single application, the same approach would
be used for plethora of applications using a statistical data of
the cluster.

For our future work we plan to extend the methodology by
adding a cost analysis of different approaches, including public
clouds. This would provide a comprehensive methodology that
could be used for general purposes, and not only for scientific
applications.

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

REFERENCES

C. Catlett, “TeraGrid: A Foundation for US Cyberinfrastructure,” in
Network and Parallel Computing (H. Jin, D. Reed, and W. Jiang, eds.),
vol. 3779 of Lecture Notes in Computer Science, ch. 1, p. 1, Berlin,
Heidelberg: Springer Berlin / Heidelberg, 2005.

R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy,
P. Avery, K. Blackburn, T. Wenaus, F. Wrthwein, I. Foster, R. Gardner,
M. Wilde, A. Blatecky, J. McGee, and R. Quick, “The open science
grid,” Journal of Physics: Conference Series, vol. 78, no. 1, p. 012057,
2007.

Y. El-Khamra, H. Kim, S. Jha, and M. Parashar, “Exploring the perfor-
mance fluctuations of hpc workloads on clouds,” in Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International
Conference on, pp. 383 =387, 30 2010-dec. 3 2010.

M. Ahmadi and D. Maleki, “Performance evaluation of server virtual-
ization in data center applications,” in Telecommunications (IST), 2010
5th International Symposium on, pp. 638 —644, dec. 2010.

A. Younge, R. Henschel, J. Brown, G. von Laszewski, J. Qiu, and
G. Fox, “Analysis of virtualization technologies for high performance
computing environments,” in Cloud Computing (CLOUD), 2011 IEEE
International Conference on, pp. 9 —16, july 2011.

P. Kang, E. Tilevich, S. Varadarajan, and N. Ramakrishnan, “Maintain-
able and reusable scientific software adaptation: democratizing scientific
software adaptation,” in Proceedings of the tenth international confer-
ence on Aspect-oriented software development, AOSD 11, (New York,
NY, USA), pp. 165-176, ACM, 2011.

C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud
computing: A view of scientific applications,” in Pervasive Systems,
Algorithms, and Networks (ISPAN), 2009 10th International Symposium
on, pp. 4 —16, dec. 2009.

B. Konning, C. Engelmann, S. Scott, and G. Geist, “Virtualized envi-
ronments for the harness high performance computing workbench,” in
Farallel, Distributed and Network-Based Processing, 2008. PDP 2008.
16th Euromicro Conference on, pp. 133 —140, feb. 2008.

The National Energy Research Scientific Computing Center
(NERSC), “NERSC - cluster statistics, utilization graphs.”
http://www.nersc.gov/users/computational-systems/pdst/cluster-
statistics/utilization-graphs/, 2013.

G. Stiehr and R. Chamberlain, “Improving cluster utilization through
intelligent processor sharing,” in Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International, p. 8 pp., april 2006.

(11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

[22]

(23]
[24]

[25]
[26]

[27]

(28]

M. Cohn, Agile Estimating and Planning. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2005.

G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, spring joint computer conference, AFIPS *67 (Spring), (New York,
NY, USA), pp. 483-485, ACM, 1967.

CERN, “LHC - large hadron collider..” http://public.web.cern.ch/public/,
2012.

Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen, “Cloud versus in-house
cluster: Evaluating amazon cluster compute instances for running mpi
applications,” in High Performance Computing, Networking, Storage and
Analysis (SC), 2011 International Conference for, pp. 1 —10, nov. 2011.
A. Angabini, N. Yazdani, T. Mundt, and F. Hassani, “Suitability of cloud
computing for scientific data analyzing applications; an empirical study,”
in P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2011
International Conference on, pp. 193 =199, oct. 2011.

K. Ye, X. Jiang, S. Chen, D. Huang, and B. Wang, “Analyzing and
modeling the performance in xen-based virtual cluster environment,” in
High Performance Computing and Communications (HPCC), 2010 12th
IEEE International Conference on, pp. 273 -280, sept. 2010.

Y. Jin, Y. Wen, and Q. Chen, “Energy efficiency and server virtualization
in data centers: An empirical investigation,” in Computer Communi-
cations Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on,
pp. 133 —138, march 2012.

E. Roloff, M. Diener, A. Carrisimi, and O. A. N. Philippe, “High
performance computing in the cloud: Deployment, performance and cost
efficiency,” in CloudCom 2012, IEEE 4th International Conference on
Cloud Computing Technology and Science, 2012.

T. Mastelic, D. Lucanin, A. Ipp, and I. Brandic, “Methodology for trade-
off analysis when moving scientific applications to cloud,” in 77?2, 2012.
Y. Simmhan, C. van Ingen, G. Subramanian, and J. Li, “Bridging the
gap between desktop and the cloud for escience applications,” in Cloud
Computing (CLOUD), 2010 IEEE 3rd International Conference on,
pp. 474 —481, july 2010.

F. Chang, J. Ren, and R. Viswanathan, “Optimal resource allocation in
clouds,” in Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pp. 418 —425, july 2010.

Amazon - Web Services, ‘“Amazon ec2
http://aws.amazon.com/ec2/instance-types/, 2013.
I. Citrix Systems, “Xen - hypervisor..” http://xen.org/, 2012.
OpenStack, “OpenStack - open source software for building private and
public clouds..” http://www.openstack.org/, 2012.
Canonical, “Ubuntu - debian based
http://www.ubuntu.com/, 2012.

N. L. of Informatics Cloud Team, “dodai-deploy - software management
tool..” https://github.com/nii-cloud/dodai-deploy/wiki, 2012.

T. Mastelic, V. Emeakaroha, M. Maurer, and I. Brandic, “M4cloud -
generic application level monitoring for resource-shared cloud envi-
ronments,” in CLOSER 2012, 2st International Conference on Cloud
Computing and Services Science, 2012.

A. Ipp, A. Rebhan, and M. Strickland, “Non-abelian plasma instabilities:
Su(3) versus su(2),” Phys. Rev. D, vol. 84, p. 056003, Sep 2011.

instance types.”

linux distribution.”

