
Data Replication for Distributed Graph Processing
Li-Yung Ho

Institute of Information Science
Academia Sinica,

Department of Computer Science and
Information Engineering

National Taiwan University
Taipei, Taiwan

Email: lyho@iis.sinica.edu.tw

Jan-Jan Wu
Institute of Information Science,

Research Center for
Information Technology Innovation

Academia Sinica,
Taipei, Taiwan

Email: wuj@iis.sinica.edu.tw

Pangfeng Liu
Department of Computer Science

and Information Engineering,
Graduate Institute of

Networking and Multimedia,
National Taiwan University

Taipei, Taiwan
Email: pangfeng@csie.ntu.edu.tw

Abstract—We present a data replication framework for dis-
tributed graph processing. First we partition a graph and store
each partition in a machine. Then we replicate all partitions and
assign replicas to machines, where each machine can store only a
limited number of replicas. The goal is to replicate the partitions
so that each partition has at least a certain number of replicated
copies, and the cost is minimized. The cost is defined as the
data traffic needed to run general graph processing algorithms.
The cost metric is theoverall transmission cost of all machines,
and the maximum transmission cost of a single machine. We
propose an optimal algorithm based on linear programming to
solve the problem of minimizing the overall transmission cost.
We also propose an optimal algorithm to solve a special problem
of minimizing the maximum transmission cost of a node.

Index Terms—algorithm, data replication, binary integer pro-
gramming, minimum cost flow, totally unimodular, social net-
works

I. I NTRODUCTION

Graph is a general model to represent the relationships
among objects. For instance, the links among websites, the
network among machines or the relations among data are
representative examples. The relation of data described by
a graph, also known asgraph data, have been extensively
studied recently [1], [2], [3].

The main driving forces of graph data are the popularity
of various social applications. Facebook [4], Twitter [5] and
Youtube [6] have become the most popular social applications.
The data stored on these social websites have different formats
and are highly related. For example, one may tag a friend on
a photo or twitter a message to friends. It is natural to model
a social network with a graph. A node in the graph is a person
in the social network, and an edge in the graph represents the
relationship between two persons. Furthermore, queries on a
social network can be easily described as graph traversals. As
a result, how to efficiently process graph data has drawn much
attention both in the academia and in the industry.

In recent years, a number of graph processing systems have
been proposed to tackle the challenge of large scale graph
processing. For example, Microsoft proposes an in-memory
graph processing system named Trinity [2]. They claim that
Trinity can handle billions of graph nodes. Google proposed
Pregel [1], a bulk synchronization model to process large scale

graph data, that targets at off-line graph analytic applications.
Facebook uses Tao [7] to manage a social network containing
over 800 million people. These works all propose a distributed
graph processing system in order to handle big graph data
that a standalone machine cannot process. These systems have
different designed goals and target different applications and
queries. Nevertheless, these systems must address the common
issues in how to partition a graph for distributed processing,
and how to replicate data to achieve fault tolerance and data
availability.

Due to the large amount of data and limited capability of
a single machine, the graph data are partitioned over multiple
machines. Each partition is stored in a machine of a cluster.
The first approach to partition a graph is to use ahash function.
The system hashes a vertex ID to a machine ID, and store
the vertex to the corresponding machine. Pregel, Trinity and
Pegasus all use hashing to partition a graph. The second
approach to partition a graph is to use METIS [8], which
minimizes the number of edges that connect different partitions
while balancing the amount of data among partitions. Systems
use METIS to partition the graph data including [9], [10], [11].
Ho et al. [12] show that METIS achieves better data locality
than hashing on real-world social networks.

Figure 1 illustrates an example of graph partition and
the edges between two partitions. The graph in Figure 1 is
partitioned into 4 parts separated by the blue dotted lines. The
graph data of each part are stored in a machine. However,
there are edges crossing different partitions (red line), which
are called thecut edges. In distributed graph processing, the
graph data are transmitted according to the topology of the
graph. As a result, acut edgemeans the data have to be
transmitted across different partitions. Replicating the data of
a partition can eliminate such data transmission. For example,
if we replicate the data of partition 2 to the machine stored the
data of partition 1, we can access the data of both partitions
locally, without any remote access through the two cut edges
between partition 1 and partition 2.

Data replication plays an important role in a large scale
distributed system. Commodity server cluster has become the
basic building block for cloud system nowadays. In such a
system, failure is inevitable because the system consists of

Fig. 1. A graph in four partitions

a large amount of machines and software components. A
cloud system must replicate data to prevent data corruption
or unavailability, in order to provide nonstop services.

We consider the following graph processing in this paper.
We first partition a graph into several parts and store each part
in a different machine. We refer to this copy as theprimary
copyof a partition. We assume that each partition has similar
number of nodes and edges, which can be done by either
hashing or METIS [8]. Then we replicate the primary copy
into severalsecondary copiesto achieve high availability and
reliability. Note that how to partition a large graph is out of
the scope of this paper. We do not discuss graph partitioning
in this paper.

We study adata replication problemfor distributed graph
processing. We are interested in the following problem: how
do we assign secondary copies to machines, so that the copies
stored on the same machine are highlyconnected? Here we
define the connectivity of two partitions to bethe number of
edgesbetween these two partitions. If the partitions stored in
a machine are highly connected, we will be able to access the
neighbors of a node locally most of the time. This improves
data locality of distributed graph processing and reduces the
traffic to remote machines.

Formally, we partition a graph intoN partitions, and store
the i-th partition on thei-th machine. Then we replicate
each partition ask replicas, where each replica is stored in
a machine. We also assume that each machine can storeat
most l partitions. That is, we assignN · k partitions toN
machines so that each machine has no more thanl partitions,
and a specified objective function is optimized.

We consider two objective functions for our data replication
problems. The first objective function is thetotal costs of
remote access of all machines. The second objective function
is the maximum remote access cost among all machines.
That is, we want toreduce the total remote access cost of
all machines, orbalance the remote access cost among all
machines.

To quantify these objectives, we define communication cost
as the number of edgesbetween two partitions. For example,
if we replicate thei-th partition on thej-th machine, which
already has thej-th partition, we can eliminate the remote
communication cost for any query that traverses between
the i-th and thej-th partitions. We will formalize the data
replication problem and the objective functions in Section III.

Data replication has been extensively studied in distributed
system [13], [14], [15], [16], [17], [18]. However, we are

not aware of any discussion on data replication of a graph.
Moreover, the inherent connection among partitions increases
the complexity of data replication. That is, one partition
prefers to co-locate with specified partitions because they
are well connected. This property complicates the partition
assignment.

We present a unifiedbinary integer programmingmodel to
discuss the above two data replication problems for distributed
graph processing. The contributions of this paper are as
follows.

• To our knowledge, this work is the first effort to study
data replication problem for distributed graph processing.

• We develop an unified model to formulate two data repli-
cation problems crucial to distributed graph processing.

• We propose two polynomial-time optimal algorithms to
solve these two data replication problems.

The rest of the paper are organized as follows. We review
the related previous works in section II. We describe the
data replication problems and two optimal algorithms to solve
them in Section III. We conduct experiments to evaluate the
effectiveness of the optimal algorithms in Section IV. Finally,
we conclude this paper in Section V.

II. RELATED WORKS

Data replication is a common technique to achieve reliability
and improve the performance of data retrieval in a distributed
system. However, a data replication system must enforce
the consistency among multiple copies of data, and retrieve
data efficiently from multiple sites. Previous works mainly
focus on how to minimize the response time of retrieving
data [16], [17] and balance the load of machines storing the
replications [15], [14], [13]. In contrast we consider a more
general and complicated problem in which the replicated data
have preferences to each other. We will describe the major
differences between previous works and ours below.

Chen and Rotem [16] propose an optimal algorithm to
retrieve a set of replicated data, such that the response time
is minimized, by multiple runs of maximum flow algorithm.
They assume that the response time of a machine is pro-
portional to the amount of data retrieved from that machine.
Therefore given the set of data to retrieve, one must determine
which replica to retrieve, so that the maximum amount of data
retrieved from any machine is minimized. Nihat et al. [17]
improves the flow algorithm by Chen and Rotem [16] by
eliminating the multiple runs of maximum flow algorithm.

Xu et al. [15] consider the problem of retrieving blocks of
a file on Hadoop File System [19]. A file on HDFS consists
of multiple blocks, and each block is replicatedk times and
each replica is stored on a machine of the Hadoop cluster. To
retrieve a file the system needs to gather its blocks. We will do
so by assigning a machine to retrieve a block. Since a block
is replicated on multiple machines, we have to decide which
replica should be retrieved by that machine. The amount of
replicas to be retrieved should be evenly distributed among all
machines. They defineevenlyas the case that the numbers of
blocks assigned to retrieved by any two machine will differ by

at most 1. If a machine is assigned to retrieve a replica that
it does not have, then we refer to this retrieval as “remote”.
The goal of this problem is to minimize the total number of
remote retrievals, so that the network traffic is reduced.

Our system model differs from those of Chen and
Rotem [16], Nihat et al. [17], and Xu et al. [15]. We consider
the cost ofreplication so that we need to consider all replicas
on all machines. In contrast the algorithms in previous models
in [16], [17], [15] considerretrieval cost, which is the cost of
retrieving asingle replica.

Shivakumar and Widom [18] considered user profile repli-
cation in a Personal Communication Servicesystem. The
replication problem is formulated as a network flow problem.
The network consists of user profile nodes and database nodes.
A link from a user profile node to a database node indicates
the profile is replicated on the database. A user profile must
be replicated at a fixed number of databases, and a database
can only hold a limited number of user profiles. Although the
system model is the same as the model in our data replication
problem, we take a completely different algebraic approach to
solve the problem instead of using maximum flow minimum
cost algorithm to solve it. In addition, we also considerthe
maximum costobjective function in a unified framework,
instead of only thethe total costobjective function as in [18],
[15].

In summary, we propose a general and unified model for
the data replication problem in the context of distributed graph
processing. The previous works are either special cases of our
data replication problem or only consider a subset of objective
functions we considered.

III. D ATA REPLICATION PROBLEM

We definedata replication problemas to find the mostcost
effectiveway to replicate a set of data on a set of machines. We
will define and discuss various cost metrics for data replication
problem in the following subsections. We also propose two
polynomial time algorithms that finds the optimal solutions
for two data replication problems with different objective
functions.

A. System Model

We model a data replication system as a directed bipartite
graphG = (V1∪V2, E). V1 andV2 are sets of vertex, andE is
the set of edges.V1 represents the set of data andV2 represents
the set of machines. To replicate a datau on a set of machines
δu ⊆ V2, we add an edge fromu to every vertex inδu. As a
result every edge goes from a vertex inV1 to a vertex inV2

soG is bipartite. Formally, for each edgee = (u, v), we have
u ∈ V1 andv ∈ V2. Also note that we replicatek copies of a
data object for fault tolerance and data availability, therefore
the cardinality ofδu is k, i.e., |δu| = k.

A machinev may store a limited amount of replicas from
different data. Letσv denote the set of data that were replicated
on machinev. Formally, σv = {u|v ∈ δu,∀u ∈ V1}. We
assume that each machine has a capacityl such that a machine
can hold at mostl data replicas, therefore we have|σv| ≤ l.

We use a functionΓ to denote the cost to replicate a data
on a machine. FormallyΓ function maps an edge, which is
from a data to a machine, to a cost, i.e.,Γ : E 7→ R.

With the cost functionΓ we can associate a replication cost
to a datau or a machinev. We denote the cost of a datau as
cu, and is defined as the sum of cost to store all replicas of
this data. Formallycu is the sum of edges adjacent to datau,
as indicated by Equation 1. Similarly, we denote the cost of
a machinev ascv, and is defined as the sum of cost to store
all replicas on a machine. Formallycv is the sum of edges
adjacent to machinev, as indicated by Equation 2.

cu =
∑

∀v∈δu

Γ(euv) (1)

cv =
∑

∀u∈σv

Γ(euv) (2)

B. Objective Functions

We now consider theobjective functionsof the data replica-
tion problem in this paper. An objective function is the metric
to evaluate a data replication algorithm. After the replication
algorithm replicates data to machines, we calculate thecost
according to the objective function so that we can determine
the effectiveness of the algorithm. The goal is to minimize the
cost according to a particular objective function.

We consider two objective functions. The first objective
function is the sum of the cost, and we denote it asθ1.
Formallyθ1 =

∑
∀u∈V1

cu. Note that this definition is from the
viewpoint of data. Equivalently we can also defineθ1 from the
viewpoint of machine, since

∑
∀u∈V1

cu =
∑

∀v∈V2
cv. The

second objective function isthe maximum of the cost, and we
denote it asθ2. Formally θ2 = max cw, wherew ∈ V1 ∪ V2.
That is, we consider the maximum of all costs for every data
and machine.

Both objective functions have their merits.θ1 indicates the
total coststo replicate data to machines. Usually the cost is
measured as data traffic and workload. By minimizing the total
costs, we minimize the total data traffic and workload among
all machines and data sources. On the other hand,θ2 measures
the cost of the most expensive node. By minimizing the cost
of the most expensive node, webalancethe data traffic and
workload among all machines and data sources.

C. Problem Definition

We now formally define thedata replication problem(DRP)
as follows.

Definition 1: Given a bipartite graphG = (V1 ∪ V2, E), a
replication factork, a capacity constraintl, and a objective
function θ, we want to find an assignmentδu for each node
u ∈ V1, such thatθ is minimized, given the following two
constraints. The first constraint indicates that every data must
be replicated atk different machines, and the second constraint
indicates that every machine will not have more thanl data
replicas.

|δu| = k, ∀u ∈ V1

|σv| ≤ l, ∀v ∈ V2

In the following subsections We propose efficient algorithms
that gives optimal mappings forDRP with objectiveθ1, and
for a special case ofDRP with objectiveθ2.

D. Minimize the overall costs

To solve DRP with the minimum total costs, we first
transform it into abinary integer programming problemand
we show how to solve it optimally. We would like to minimize
the following objective function.

θ1 =
∑

xuv · Γ(euv) (3)

The minimization of Equation 3 is subject to the following
constraints. We usexuv to denote whether datau selects
machinev to store a replica – If so we setxuv to 1, otherwise,
we set it to 0.

∑

∀v∈V2

xuv = k, ∀u ∈ V1 (4)

∑

∀u∈V1

xuv ≤ l. ∀v ∈ V2, (5)

xuv ∈ {0, 1} (6)

We now re-write Equation 3 into Equation 7. Letγ be a
constant vector of dimension|E|, γi be thei-th element of
γ, andei be thei-th element ofE. Then we defineΓ(ei) to
be the cost of edgeei. Also we useX to denote the vector
consisting of allxuv, where thei-th element of ofX is the
i-th edge inE. That is,X is a 0 − 1 vector of dimension
|E|, and thei-th element indicates whether thei-th edge is
selected. It is clear that the total costs are the summation of
cost of those edges(u, v) wherexuv is 1, as in Equation 7.

θ1 = X · γ (7)

The minimization of Equation 7 is abinary integer pro-
gramming, which is in general an NP-hard problem. However,
we will show that we can solve the data replication problem
in this case optimally in polynomial time, since Equation 3
has a property calledtotal unimodularity. Before we introduce
unimodularity we first define theincidence matrix.

Definition 2: An incidence matrixI of a graphG = (V,E)
is a matrix with |V | rows and|E| column. Let aij be the
element ofi-th row andj-th column of matrixI. We define
aij as follows.

aij =

{
1 if the i-th vertex is incident to thej-th edge.

0 otherwise

We now re-write Equation 4, and 5 with the incidence ma-
trix I. The constraints in Equation 4 and 5 are now combined
into Equation 8. Recall thatX is the vector consisting of all

xuv. b is a vector of dimension|V | and the elements ofb are
either k or l, wherek is the replication factor andl is the
capacity constraint of a machine.

I ·X ≤ b b ∈ {k, l}|V | X ∈ {0, 1}|E| (8)

We can use a linear programming solver to derive a lower
bound on the minimization objective for a binary integer
programming. In addition, the solution from the linear pro-
gramming does not necessarily consisting of 0 and 1, as
required by a binary integer programming. However, we will
show that if the incidence matrix in Equation 8 istotally
unimodular, we can obtain the optimal solution of Equation 8
by a linear programming solver, i.e., the solutions from the
linear programming will consist of only 0 and 1. We now
define the concept of totally unimodular.

Definition 3: An integer matrixI is totally unimodular if
every square submartix has determinant 0, 1 or -1.

Hoffman and Kruskal [20] showed that if a matrixI is totally
unimodular, then the vertices of the polytope defined byI are
all integral.

Theorem 1:[20] If I is a totally unimodular matrix, then
all the vertices of the polytopeP = {x|I · x ≤ b, x ≥ 0} are
integral for any integer vectorb.

We now establish the optimality of using linear program-
ing solver to solve the data replication problem. Ahuja et
al. [21] showed that incidence matrix for a bipartite graph
is totally unimodular. Therefore we can apply Theorem 1 on
our incidence matrixI and argue that the optimal solutions
of a liner programming always happen at the vertices of a
polytope, which will have integral coordinates. That is, the
optimal solution will havexuv either 0 or 1. Therefore we can
use linear programming solver to obtain the optimal solutions
of data replication problem with the objective of minimizing
the total costs.

Theorem 2:Equation 8 can be solved optimally by linear
programming.

The transformed binary integer programming problem is
equivalent to amaximum flow minimum cost problem. To
construct the network, we add two extra nodes – a source and
a sink. The source links to every nodes ofV1 with an edge
of capacityk, and every node ofV2 has a link to the sink of
capacityl. Every link betweenV1 andV2 has capacity 1 and
has a cost determine by theΓ function. The data replication
problem with θ1 is equivalent to finding a maximum flow
with minimum cost. We can solve it by existing algorithms,
e.g., cycle-canceling algorithms [22], [23] or network simplex
algorithms [24].

E. Minimize the maximum cost

Data replication problem with the maximum cost objective
function is more difficult than with the total cost objective
function. In this paper we only consider a special case in which
the replication factor of data and the capacity of machine are
both set to 1. We denote this problem asDRP(k=1, l=1,θ2) or
DRP(1,1,θ2), which is equivalent to finding aperfect matching.

Since the data is replicated only once, the mapping between
data and machine is amatching. We define thecost of a
matching between data and machine to be the maximum cost
of any edge in the matching. Formally, given a bipartite graph
G = (V1 ∪ V2, E) and a cost functionΓ : E 7→ R. We define
the cost of a matchingM to beC(M) = max{Γ(e)|e ∈ M}
The goal is to find a matching that minimizes the cost.

We propose Algorithm 1 to solveDRP(1,1,θ2) optimally.
The key idea of Algorithm 1 is to select a bound on the edge
cost, and remove edges that have higher cost. If we cannot
find a perfect matching with the remaining edges, that means
the bound is too small. If we do find a perfect matching, that
means the bound can be reduced. By doing a binary search on
the edge cost bound, we are able to find a matching in which
the maximum edge cost is minimized, which is an optimal
DRP(1,1,θ2) solution.

Figure 2 illustrates the idea of Algorithm 1. The network
consists of three data nodes and three machine nodes. The
number in the square box indicates the cost of the edge.
Figure 2(a) depicts a perfect matching (red lines) of cost 2.
Algorithm 1 then reduces the bound to 1 and removes any edge
that has cost larger than 1. As a result, the edge with cost 2 in
Figure 2(b) is removed. In addition, we find a perfect matching
with cost 1 and the cost of the perfect matching is minimized.

(a) perfect matching with cost 2(b) perfect matching with cost 1

Fig. 2. Example of minimizing maximum cost

We now describe Algorithm 1 in details. We initially set the
upper bound and lower bound to the maximum and minimum
cost of an edge respectively (line 1 and line2). In the while
loop, we run a maximum flow algorithm to check if there is a
flow of volume|V1| passing through a networkNETB from s
to t (line 5), i.e., if we can find a perfect matching. If we can
(line 7), then we set the upper bound toB, otherwise (line 9),
we set the lower bound toB. Then we calculate a new value
of B (line 4), then call the functionNetWorkConstruction
to construct a new network (line 5) and run the maximum
flow algorithm on the newly constructed network again until
the upper bound meets the lower bound.

IV. EXPERIMENT

We conduct experiments to investigate the performance
of proposed algorithms. We compare the optimal solutions
with the results of a hash algorithm and a heuristic greedy
algorithm. There are two performance metrics – the total
communication cost of a cluster, and the maximum communi-
cation cost of a machine in the cluster. We also developed an

Algorithm 1 Optimal Algorithm forDRP(1,1,θ2)

Require: A bipartite graphG = (V1∪V2, E), a cost function
Γ : E 7→ R

Ensure: A matchingM with minimum cost
1: MAX ← max{Γ(e)|e ∈ E}
2: MIN ← min{Γ(e)|e ∈ E}
3: while MAX 6= MIN do
4: B ← MAX−MIN

2
5: NETB ← NetWorkConstruction(G,Γ, B)
6: M = MaxFlow(NETB)
7: if |M | = |V1| then
8: MAX ← B
9: else

10: MIN ← B
11: end if
12: end while
13: return M

application that sends messages to its neighbors multiple times
to examine the performance of different replication strategies.

The hash algorithm works as follows. A partition selects a
machine to store its replica by a hash function. If the chosen
machine already has the replica or does not have room for
the replica, the partition will find another machine to store
the replica. A partition repeats this process until it replicates
enough replicas. Note that the hash function uses a pseudo
random number generator to give deterministic results.

The greedy algorithm works as follows. We first sort all
the edges in increasing cost order. We then select edges one
at a time according to this increasing cost order. During the
process we may not be able to select an edge for two reasons.
First the partition may have been replicated enough number
of times. Second the machine may have reached its capacity.
This process repeats until each partition has enough number
of replicas.

We focus our graph processing experiments on social net-
work analysis since it has drawn much attention in both
in academia and industry in recent years. We collect three
real-world social networks as our experiment graph data –
Youtube [6], LiveJournal [25] and Flicker [26]. Mislove et
al. [27] collect these data and publish them in an anonymous
form. Table I summarizes the numbers of nodes and edges
from these three social networks.

Social Networks Nodes (millions) Edges (millions)
YouTube 1.16 3.01
Flicker 1.86 15.7
LiveJournal 5.28 48.8

TABLE I
THE NUMBERS OF NODES AND EDGES OF THREE SOCIAL NETWORKS

In the following we first analyze the theoretical communi-
cation costs of the social networks with different replication
strategies, then we evaluate the three replication strategies by
the application that sends messages to its neighbors multiple
times.

A. Theoretical Cost

We use METIS [8] to partition a social network into 16
partitions as the input to ourData Replication Problem, since
we will use 16 machines in our experiments. We use a 16× 16
matrixA to store the number of edges between any two given
partitions. We assume that the communication cost between
two partitions is proportional to the number of edges between
them, and the proportional factor is 1. So we also useAij of
matrix A to denote the communication cost between thei-th
partition and thej-th partition.

We assume that thei-th machine has the primary copy
of the i-th partition, we can also interpret the matrixA as
follows. The rows of matrixA indicate the partition IDs and
the columns ofA indicate the machine ID. As a result we
estimate the communication cost of thej-th machine to be
the sum of the elements in thej-th column ofA. Table II
shows the matrixA of LiveJournal [25].

Replicating a partition on a machine eliminates the commu-
nication cost for the machine to retrieve it. For example, if we
replicate thek-th partition on thej-th machine, the primary
copy of thej-th partition will now be able to access thek-
th partition without communication, i.e.,akj becomes zero
because we eliminate the communications for thej-th machine
to retrieve thek-th partition.

B. Total Communication Cost

We evaluate the communication cost of the three replication
strategies by comparing the overall communication cost. Each
partition has two replicas as in [28], [29], and each machine
has no more than two replicas. Table III summarizes the
communication costs among hashing, greedy algorithm, and
the optimal algorithm. The optimal algorithm has the lowest
costs, and is used as a comparison basis. The greedy algorithm
has a cost similar to that of the optimal algorithm. The hash
method has the highest cost.

Note that the greedy algorithm may not always have two
replicas for every partition. Despite the fact that we can
always find a subgraph in which every machine connects to
two partitions, and every partition connects to two machines.
However, we may connect a partition to the machine where
it is stored, due to lack of selection at the end of the greedy
method. In that case this partition will have one less replica
than it should have, and we use this subgraph as the input to
the experiments.

The hash algorithm may not always have two replicas for
every partition either, due to the same reason as in the greedy
method. However, since the hashing is not deterministic, we
can run the hashing algorithm repeatedly until we find a
feasible solution.

We observe that the running time of three algorithms are
negligible, which is about0.165 seconds. This is because
we have small problem size, that is, a16 × 16 matrix. We
conclude that all three algorithms are efficient enough in
practice, especially in a cluster of reasonable size.

Table IV shows optimal replication that minimizes total
communication cost in LiveJournal network. The element at
thei-th row and thej-th column of Table IV indicates whether
i-th partition is replicated atj-th machine. The table indicates
that thej-th machine tends to replicate thej-th partitions to
those machines with partitions that are well connected with
the j-th partition. By doing so these machines can reduce the
communication costs needed to retrieve it.

Social Networks Hashing Greedy Optimal
YouTube 1363869 912671 900119
Flicker 8148224 6044052 6026941

LiveJournal 19290313 13310707 13251424

TABLE III
TOTAL NUMBER OF CUT-EDGES OF THREE REPLICATION STRATEGIES

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

P0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
P1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
P2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
P4 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
P5 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
P6 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
P7 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
P8 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
P9 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
P10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
P11 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
P12 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
P13 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
P14 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
P15 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

TABLE IV
THE OPTIMAL REPLICATION THAT MINIMIZES OVERALL COMMUNICATION

COST IN L IVEJOURNAL

C. Maximum Communication Cost

We now focus on minimizing the maximum communication
cost of a single machine. We consider the special case in which
the capacity constraint and replication factor are both set to1.

Social Networks Hashing Greedy Optimal
YouTube 176093 176029 130628
Flicker 1555560 1655362 1222324

LiveJournal 2297041 2471157 2031564

TABLE V
MAXIMUM NUMBER OF CUT-EDGES FROM A MACHINE

Table V compares the maximum communication cost of
a machine from different replication strategies for different
social networks. Again we use the optimal strategy as the
comparison basis. We observe from Table III and V find that
the gap between number of cut-edges between the hash and the
optimal method in minimizing the maximum communication
cost, is much smaller than in minimizing the total communi-
cation cost. The running times of the three algorithms are
also negligible, which are about0.175 seconds.

Table VI shows the optimal replication that minimizes
the maximum communication cost in LiveJournal network. It
shows that two partitions tend to replicate each other due to
their high connectivity. For example, partitionP14 andP15
are strongly connected so they replicate each other.

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

P0 0 94162 105028 35092 64300 43060 51329 72930 49424 97454 31465 46631 21874 2195 26217 56324
P1 94161 0 119222 56290 113717 69796 81430 111788 60133 115740 49037 62087 32701 2678 40470 98117
P2 105027 119222 0 71801 103119 98286 90073 142868 41634 140978 59220 68978 33181 3414 49860 91060
P3 35092 56290 71801 0 52984 48601 42938 67064 40284 101722 32234 44759 20429 2437 24431 50513
P4 64299 113717 103119 52984 0 77552 91749 128719 53146 144878 51235 59341 27235 2810 36938 64099
P5 43060 69796 98286 48601 77552 0 61173 84755 75796 131012 38625 61774 22744 2502 32132 55908
P6 51329 81430 90073 42938 91749 61174 0 192094 46633 174393 56964 60979 27108 3705 43771 61218
P7 72930 111788 142868 67064 128719 84755 192093 0 45949 190825 72308 71302 38028 3689 46420 82468
P8 49425 60133 41634 40284 53146 75796 46633 45949 0 541315 114290 193844 32054 11574 50106 169814
P9 97454 115740 140978 101722 144878 131012 174393 190825 541315 0 287743 275838 105770 39405 77456 148351
P10 31465 49037 59220 32234 51235 38625 56964 72308 114290 287742 0 109012 50537 11226 69223 132066
P11 46631 62087 68978 44760 59341 61774 60978 71302 193844 275838 109012 0 47691 10826 160691 117639
P12 21873 32701 33181 20429 27235 22744 27108 38028 32054 105770 50537 47691 0 1630911 49794 73269
P13 2195 2678 3414 2437 2809 2502 3705 3689 11574 39405 11226 10826 1630911 0 9137 13210
P14 26217 40470 49860 24431 36938 32132 43771 46420 50106 77456 69223 160690 49794 9137 0 200385
P15 56324 98117 91059 50513 64099 55908 61219 82468 169814 148351 132066 117639 73269 13210 200385 0

TABLE II
THE CUT-EDGES MATRIX OF L IVEJOURNAL

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

P0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
P4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
P5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
P6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
P7 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
P8 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
P9 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
P10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
P11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
P12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
P13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
P14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
P15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

TABLE VI
THE OPTIMAL REPLICATION THAT MINIMIZES THE MAXIMUM

COMMUNICATION COST IN L IVEJOURNAL

D. Application

We develop an applicationSendToNeighbor to evaluate
the performance of the three replication strategies. At the
beginning of SendToNeighbor a subset of vertices in the
graph send messages to their neighbors. Those vertices after
receiving messages will send messages to their neighbors. This
process repeats until a specified number of iteration. After
the specified number of iterations all vertices halt and the
computation finishes.SendToNeighbor sets the length of the
message to 100 characters, sets the number of iteration to
25, and randomly selects80% of the vertices to start sending
messages at the beginning. Also note thatSendToNeighbor
will only read data so we do not need to consider data
consistency among replicas.

Sending messages to neighbors is a typical communication
pattern in social network applications. For example PageR-
ank [1], Influence Spreading [12], and Max Value propaga-
tion [1] all involve sending messages to neighbors.

We implementSendToNeighbor on Hama [30]. Hama
is an open source implementation of Pregel [1], which is
based on bulk synchronization model. We customize Hama
into our replication strategies by implementing thePartitioner
interface. At the beginning Hama sends each vertex to a ma-
chine for processing. ThePartitioner decides which machine
processes which vertex. We implement our replication logic
in Partitioner so that the primary copy of a vertex is sent to a
specified machine, and the secondary copies are sent to other
machines according to the replication strategy.

When a vertexv at machinem wants to send a message to
its neighborn, there are two possibilities. First,n has a replica
at machinem, so the message will go to the replica. Otherwise
the message will go the machine that has the primary copy of
n.

The experiment configuration is as follows. We run the
experiment on a 16-node cluster. Each node equips with an
Intel Xeon E5504 2GHz CPU and 10GB of ram. We use
Hama 0.6.0 to implement all the replication strategies. The
performance metric is the execution time of all the iterations.
Note that this performance metric does not include the time
to load and replicate data before the iterations can start. Each
data point is the average from 10 runs. We set the replication
factor and the capacity constraint to2 while minimizing the
overall communication cost, and to1 while minimizing the
maximum communication cost.

Table VII and VIII compare the execution time ofSend-
ToNeighbor of different replication strategies and social net-
works. The speedup in the column indicates the performance
improvement compared with Hashing method. In Table VII,
the execution time ofSendToNeighbor using hashing algo-
rithm is 30% slower than using the optimal solution with
LiveJournal as input, and overall communication cost as
the objective function. Since the optimal replication strategy
minimizes the number of cut edges, it has less communication
messages than the hashing method does. The execution time
using greedy algorithm is within 5% of the optimal algorithm.
On the other hand, as shown in Table VIII, when we try to
minimize the maximum communication cost, the execution
time of SendToNeighbor using hashing algorithm is13%
slower than using the optimal solution, also with LiveJournal
as input. Table VII and VIII also indicates that the execution
time difference among the three strategies is not significant for
small networks, e.g., YouTube. The reason is that the relatively
small number of messages will not form communication
bottleneck.

Table IX shows the number of messages and we confirm that
the optimal replication strategy has the fewest messages. Sim-
ilarly Table X show the number of messages while minimizing
maximum communication cost. Table IX and X indicate that
fewer messages improves performance.

Social Networks Hashing Greedy(Speedup) Optimal(Speedup)
YouTube 53.7294 44.3369(17.42%) 43.5863(18.88%)
Flicker 423.5676 284.1521(32.91%) 283.826(32.99%)

LiveJournal 966.7852 680.124(29.65%) 642.7784(33.51%)

TABLE VII
EXECUTION TIMES (IN SECONDS) OF SendToNeighbor WITH MINIMIZING

TOTAL COMMUNICATION COST

Social Networks Hashing Greedy(Speedup) Optimal(Speedup)
YouTube 53.221 51.861(2.56%) 48.523(8.83%)
Flicker 371.1072 412.1372(-11.06%) 356.9483(3.82%)

LiveJournal 859.5838 838.5003(2.45%) 743.4389(13.51%)

TABLE VIII
EXECUTION TIMES (IN SECONDS) OF SendToNeighbor WITH MINIMIZING

THE MAXIMUM COMMUNICATION COST

V. CONCLUSION

In this work, we study a data replication problem (DRP) for
distributed graph processing. The goal ofDRP is to replicate
partitions of a graph such that each partition has at least a
certain number of replicated copies, and the cost is minimized.
We consider two cost metrics in this paper. One is to minimize
the total communication cost, and the other is to minimize the
maximum cost of a perfect matching.

We propose two optimal algorithms for both objectives
respectively. We solveDRP with minimizing total cost by a
linear programming solver, and we solveDRP with minimiz-
ing maximum cost by an algorithm based on binary search
technique and maximum flow algorithm.

Finally, we conduct experiments to evaluate the effective-
ness of the proposed algorithms and compare the results with
the hashing assignment strategy and a heuristic greedy algo-
rithm. In minimizing total communication cost experiment, the
optimal solutions save up to 30% of cost than the results of the
hashing assignment. In minimizing maximum cost experiment,
the optimal solutions outperform the hashing assignment up to
13%.

REFERENCES

[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 international conference on Management of
data, 2010.

Social Networks Hashing Greedy Optimal
YouTube 38623769 29766218 26877441
Flicker 216762750 162729836 162285028

LiveJournal 514344316 379463144 360391339

TABLE IX
NUMBER OF MESSAGES WITH MINIMIZING TOTAL COMMUNICATION COST

Social Networks Hashing Greedy Optimal
YouTube 39198196 34795395 31738458
Flicker 213402911 222252678 196641328

LiveJournal 524851846 428433548 408247450

TABLE X
NUMBER OF MESSAGES WITH MINIMIZING THE MAXIMUM

COMMUNICATION COST

[2] “Trinity,” http://research.microsoft.com/en
-us/projects/trinity/default.aspx.

[3] “Neo4j,” http://neo4j.org/.
[4] “Facebook,” http://www.facebook.com/.
[5] “Twitter,” http://twitter.com/.
[6] “Youtube,” http://www.youtube.com/.
[7] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabrera III, P. Chakka,

P. Dimov, H. Ding, J. Ferris, A. Giardullo, J. Hoon, S. Kulkarni,
N. Lawrence, M. Marchukov, D. Petrov, and L. Puzar, “Tao: how
facebook serves the social graph,” inProceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, 2012.

[8] G. Karypis and V. Kumar, “Multilevel algorithms for multi-constraint
graph partitioning,” inSupercomputing, 1998. SC98. IEEE/ACM Con-
ference on, 1998.

[9] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez, “The little engine(s) that could: scaling online social
networks,” in Proceedings of the ACM SIGCOMM 2010 conference,
2010.

[10] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload-
driven approach to database replication and partitioning,”Proc. VLDB
Endow., vol. 3, no. 1-2, Sep. 2010.

[11] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Graphlab: A new parallel framework for machine learning,”
in Conference on Uncertainty in Artificial Intelligence (UAI), 2010.

[12] L.-Y. Ho, J.-J. Wu, and P. Liu, “Distributed graph database for large-
scale social computing,” inCloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, 2012.

[13] T. Pitoura, N. Ntarmos, and P. Triantafillou, “Replication, load balancing
and efficient range query processing in dhts,” inAdvances in Database
Technology - EDBT 2006, ser. Lecture Notes in Computer Science,
Y. Ioannidis, M. Scholl, J. Schmidt, F. Matthes, M. Hatzopoulos,
K. Boehm, A. Kemper, T. Grust, and C. Boehm, Eds., 2006, vol. 3896.

[14] H. Yamamoto, D. Maruta, and Y. Oie, “Replication methods for load
balancing on distributed storages in p2p networks,”2012 IEEE/IPSJ
12th International Symposium on Applications and the Internet, vol. 0,
2005.

[15] Y. Xu, P. Kostamaa, Y. Qi, J. Wen, and K. K. Zhao, “A hadoop
based distributed loading approach to parallel data warehouses,” in
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, 2011.

[16] L. T. Chen and D. Rotem, “Optimal response time retrieval of replicated
data (extended abstract),” inProceedings of the thirteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, 1994.

[17] N. Altiparmak and A. S. Tosun, “Integrated maximum flow algorithm for
optimal response time retrieval of replicated data,” inParallel Processing
(ICPP), 2012 41st International Conference on, 2012.

[18] N. Shivakumar and J. Widom, “User profile replication for faster location
lookup in mobile environments,” inProceedings of the 1st annual
international conference on Mobile computing and networking, 1995.

[19] “Hadoop file system,” http://hadoop.apache.org/hdfs/.
[20] A. J. Hoffman, J. B. Kruskal, I. Alan, J. Hoffman, and J. B. Kruskal,

“Chapter 3 integral boundary points of convex polyhedra,” 1956.
[21] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Network flows: theory,

algorithms, and applications, 1993.
[22] P. T. Sokkalingam, R. K. Ahuja, and J. B. Orlin, “New polynomial-

time cycle-canceling algorithms for minimum cost flows,”NETWORKS,
vol. 36, pp. 53–63, 1996.

[23] A. V. Goldberg and R. E. Tarjan, “Finding minimum-cost circulations
by canceling negative cycles,”J. ACM, vol. 36, no. 4, Oct. 1989.

[24] J. B. Orlin, “A polynomial time primal network simplex algorithm for
minimum cost flows,” inProceedings of the seventh annual ACM-SIAM
symposium on Discrete algorithms, 1996.

[25] http://www.livejournal.com/.
[26] http://www.flickr.com/.
[27] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhat-

tacharjee, “Measurement and Analysis of Online Social Networks,” in
Proceedings of the 5th ACM/Usenix Internet Measurement Conference
(IMC’07), 2007.

[28] “Hadoop,” http://hadoop.apache.org/.
[29] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”

in Proceedings of the nineteenth ACM symposium on Operating systems
principles, 2003.

[30] “Hama,” http://en.wikipedia.org/wiki/Apache-Hama.

