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Abstract—We present a data replication framework for dis- graph data, that targets at off-line graph analytic applications.
tributed graph processing. First we partition a graph and store  Facebook uses Tao [7] to manage a social network containing

each partition in a machine. Then we replicate all partitions and a1 800 million people. These works all propose a distributed
assign replicas to machines, where each machine can store only a

limited number of replicas. The goal is to replicate the partitions graph processing SySte,m in order to handle big graph data
so that each partition has at least a certain number of replicated that a standalone machine cannot process. These systems have
copies, and the cost is minimized. The cost is defined as thedifferent designed goals and target different applications and
data traffic needed to run general graph processing algorithms. queries. Nevertheless, these systems must address the common
The cost metric is theoverall transmission cost of all machines, issues in how to partition a graph for distributed processing,

and the maximum transmission cost of a single machine. We dh t licate data t hi fault tol d dat
propose an optimal algorithm based on linear programming to and how to replicate data o achieve lault tolerance and data

solve the problem of minimizing the overall transmission cost. availability.
We also propose an optimal algorithm to solve a special problem  Due to the large amount of data and limited capability of
of minimizing the maximum transmission cost of a node. a single machine, the graph data are partitioned over multiple

Index Terms—algorithm, data replication, binary integer pro-  machines. Each partition is stored in a machine of a cluster.
%ﬁgﬂmg’ minimum cost flow, totally unimodular, social net The first approach to partition a graph is to ugeah function

The system hashes a vertex ID to a machine ID, and store
the vertex to the corresponding machine. Pregel, Trinity and
Pegasus all use hashing to partition a graph. The second

Graph is a general model to represent the relationshigsproach to partition a graph is to use METIS [8], which
among objects. For instance, the links among websites, #énimizes the number of edges that connect different partitions
network among machines or the relations among data avkile balancing the amount of data among partitions. Systems
representative examples. The relation of data described dge METIS to partition the graph data including [9], [10], [11].

a graph, also known agraph data have been extensively Ho et al. [12] show that METIS achieves better data locality
studied recently [1], [2], [3]. than hashing on real-world social networks.

The main driving forces of graph data are the popularity Figure 1 illustrates an example of graph partition and
of various social applications. Facebook [4], Twitter [5] anthe edges between two partitions. The graph in Figure 1 is
Youtube [6] have become the most popular social applicatiomgrtitioned into 4 parts separated by the blue dotted lines. The
The data stored on these social websites have different formgtaph data of each part are stored in a machine. However,
and are highly related. For example, one may tag a friend tivere are edges crossing different partitions (red line), which
a photo or twitter a message to friends. It is natural to modate called thecut edgesin distributed graph processing, the
a social network with a graph. A node in the graph is a persgnaph data are transmitted according to the topology of the
in the social network, and an edge in the graph represents theph. As a result, @ut edgemeans the data have to be
relationship between two persons. Furthermore, queries omransmitted across different partitions. Replicating the data of
social network can be easily described as graph traversals.aAgartition can eliminate such data transmission. For example,
a result, how to efficiently process graph data has drawn mu€kve replicate the data of partition 2 to the machine stored the
attention both in the academia and in the industry. data of partition 1, we can access the data of both partitions

In recent years, a number of graph processing systems hbally, without any remote access through the two cut edges
been proposed to tackle the challenge of large scale grdmtween partition 1 and partition 2.
processing. For example, Microsoft proposes an in-memoryData replication plays an important role in a large scale
graph processing system named Trinity [2]. They claim thdistributed system. Commodity server cluster has become the
Trinity can handle billions of graph nodes. Google proposdhsic building block for cloud system nowadays. In such a
Pregel [1], a bulk synchronization model to process large scalgstem, failure is inevitable because the system consists of

I. INTRODUCTION



e not aware of any discussion on data replication of a graph.

¢ . L Moreover, the inherent connection among partitions increases
® o o the complexity of data replication. That is, one partition
.. """ ”. """ . prefers to co-locate with specified partitions because they
| ' are well connected. This property complicates the partition
Y o © © assignment.

We present a unifietinary integer programmingnodel to
discuss the above two data replication problems for distributed
graph processing. The contributions of this paper are as
follows.

a large amount of machines and software components. A To our knowledge, this work is the first effort to study
cloud system must replicate data to prevent data corruption data replication problem for distributed graph processing.
or unavailability, in order to provide nonstop services. « We develop an unified model to formulate two data repli-

We consider the following graph processing in this paper. cation problems crucial to distributed graph processing.
We first partition a graph into several parts and store each part We propose two polynomial-time optimal algorithms to
in a different machine. We refer to this copy as trémary solve these two data replication problems.
copyof a partition. We assume that each partition has similar The rest of the paper are organized as follows. We review
number of nodes and edges, which can be done by eitgs related previous works in section Il. We describe the
hashing or METIS [8]. Then we replicate the primary copyata replication problems and two optimal algorithms to solve
into severalsecondary copieto achieve high availability and them in Section I1l. We conduct experiments to evaluate the

reliability. Note that how to partition a large graph is out ogffectiveness of the optimal algorithms in Section IV. Finally,
the scope of this paper. We do not discuss graph partitioni{g conclude this paper in Section V.

in this paper.
We study adata replication problenfor distributed graph Il. RELATED WORKS
processing. We are interested in the following problem: how Data replication is a common technique to achieve reliability
do we assign secondary copies to machines, so that the copied improve the performance of data retrieval in a distributed
stored on the same machine are highbnnecte@ Here we system. However, a data replication system must enforce
define the connectivity of two partitions to llee number of the consistency among multiple copies of data, and retrieve
edgesbetween these two partitions. If the partitions stored idata efficiently from multiple sites. Previous works mainly
a machine are highly connected, we will be able to access floeus on how to minimize the response time of retrieving
neighbors of a node locally most of the time. This improvedata [16], [17] and balance the load of machines storing the
data locality of distributed graph processing and reduces treplications [15], [14], [13]. In contrast we consider a more
traffic to remote machines. general and complicated problem in which the replicated data
Formally, we partition a graph intd/ partitions, and store have preferences to each other. We will describe the major
the i-th partition on thei-th machine. Then we replicatedifferences between previous works and ours below.
each partition ag: replicas, where each replica is stored in Chen and Rotem [16] propose an optimal algorithm to
a machine. We also assume that each machine can atoreetrieve a set of replicated data, such that the response time
most/ partitions. That is, we assigiV - k partitions to N is minimized, by multiple runs of maximum flow algorithm.
machines so that each machine has no more thgattitions, They assume that the response time of a machine is pro-
and a specified objective function is optimized. portional to the amount of data retrieved from that machine.
We consider two objective functions for our data replicatiolherefore given the set of data to retrieve, one must determine
problems. The first objective function is thetal costs of which replica to retrieve, so that the maximum amount of data
remote access of all machines. The second objective functiatrieved from any machine is minimized. Nihat et al. [17]
is the maximumremote access cost among all machinesnproves the flow algorithm by Chen and Rotem [16] by
That is, we want toreducethe total remote access cost okliminating the multiple runs of maximum flow algorithm.
all machines, orbalancethe remote access cost among all Xu et al. [15] consider the problem of retrieving blocks of
machines. a file on Hadoop File System [19]. A file on HDFS consists
To quantify these objectives, we define communication cost multiple blocks, and each block is replicatédimes and
asthe number of edgesetween two partitions. For example each replica is stored on a machine of the Hadoop cluster. To
if we replicate thei-th partition on thej-th machine, which retrieve a file the system needs to gather its blocks. We will do
already has thg-th partition, we can eliminate the remoteso by assigning a machine to retrieve a block. Since a block
communication cost for any query that traverses betweenreplicated on multiple machines, we have to decide which
the i-th and thej-th partitions. We will formalize the data replica should be retrieved by that machine. The amount of
replication problem and the objective functions in Section Ilfeplicas to be retrieved should be evenly distributed among all
Data replication has been extensively studied in distribut@sachines. They definevenlyas the case that the numbers of
system [13], [14], [15], [16], [17], [18]. However, we areblocks assigned to retrieved by any two machine will differ by

Fig. 1. A graph in four partitions



at most 1. If a machine is assigned to retrieve a replica thatWe use a functio” to denote the cost to replicate a data

it does not have, then we refer to this retrieval as “remotedn a machine. Formally® function maps an edge, which is

The goal of this problem is to minimize the total number dirom a data to a machine, to a cost, iB.; £ — R.

remote retrievals, so that the network traffic is reduced. With the cost functiorl” we can associate a replication cost
Our system model differs from those of Chen antb a datau or a machinev. We denote the cost of a dataas

Rotem [16], Nihat et al. [17], and Xu et al. [15]. We considet,,, and is defined as the sum of cost to store all replicas of

the cost ofreplication so that we need to consider all replicashis data. Formally:, is the sum of edges adjacent to data

on all machines. In contrast the algorithms in previous modeds indicated by Equation 1. Similarly, we denote the cost of

in [16], [17], [15] considerretrieval cost, which is the cost of a machinev asc,, and is defined as the sum of cost to store

retrieving asinglereplica. all replicas on a machine. Formally, is the sum of edges
Shivakumar and Widom [18] considered user profile repladjacent to machine, as indicated by Equation 2.

cation in a Personal Communication Servicgystem. The

replication problem is formulated as a network flow problem.

The network consists of user profile nodes and database nodes. cw = Y T(ew) 1)
A link from a user profile node to a database node indicates VuES,
the profile is replicated on the database. A user profile must cy, = Z T(ew) 2)
be replicated at a fixed number of databases, and a database Vuco,

can only hold a limited number of user profiles. Although the o _

system model is the same as the model in our data replicatn Objective Functions

problem, we take a completely different algebraic approach toywe now consider thebjective functionsf the data replica-

solve the problem instead of using maximum flow minimumon problem in this paper. An objective function is the metric

cost algorithm to solve it. In addition, we also considee 1, evaluate a data replication algorithm. After the replication

maximum costobjective function in a unified framework, gigorithm replicates data to machines, we calculate st

instead of only thehe total cosbbjective function as in [18], according to the objective function so that we can determine

[15]. B the effectiveness of the algorithm. The goal is to minimize the
In summary, we propose a general and unified model fgpst according to a particular objective function.

the data replication problem in the context of distributed graph\we consider two objective functions. The first objective

processing. The previous works are either special cases of ifiction is the sum of the costand we denote it a®.

data replication problem or only consider a subset of objectl)ﬂarma”y@1 — Y vuer: Cu- Note that this definition is from the

functions we considered. viewpoint of data. Equivalently we can also defthefrom the

IIl. DATA REPLICATION PROBLEM viewpoint of machine, SiNC& .y, cu = X yyey, Co- The
, o , second objective function ihe maximum of the cqsind we
We definedata replication problenas to find the mostost o ote it ady. Formally 05 — max ¢, Wherew € V; U Va.

effectiveway to replicate a set of data on a set of machines. We,o js we consider the maximum of all costs for every data
will define and discuss various cost metrics for data replicatiop, 4 machine.

problem in the following subsections. We also propose two Both objective functions have their merit. indicates the

polynomial time algorithms that finds the optimal SOIUtionisotal coststo replicate data to machines. Usually the cost is

for two data replication problems with different ObjectlV(?neasured as data traffic and workload. By minimizing the total

functions. costs, we minimize the total data traffic and workload among
A. System Model all machines and data sources. On the other handeasures
tthe cost of the most expensive node. By minimizing the cost
g?the most expensive node, viralancethe data traffic and
workload among all machines and data sources.

We model a data replication system as a directed bipar
graphG = (V; UV, E). V4 andV; are sets of vertex, anfl is
the set of edged/; represents the set of data aridrepresents
the set of machines. To replicate a datan a set of machines
0, C Vo, we add an edge from to every vertex inj,,. As a
result every edge goes from a vertexlin to a vertex inV; We now formally define théata replication problenfDRP)
so @G is bipartite. Formally, for each edge= (u,v), we have as follows.

u € V1 andv € V,. Also note that we replicaté copies of a Definition 1: Given a bipartite grapliz = (V; U V5, E), a
data object for fault tolerance and data availability, thereforeplication factork, a capacity constraint, and a objective
the cardinality ofd,, is k, i.e., |d,| = k. function 6, we want to find an assignmeny, for each node

A machinev may store a limited amount of replicas fromu € V3, such thatd is minimized, given the following two
different data. Letr, denote the set of data that were replicateconstraints. The first constraint indicates that every data must
on machinev. Formally, o, = {ulv € §,,Vu € Vi}. We be replicated at different machines, and the second constraint
assume that each machine has a capadtich that a machine indicates that every machine will not have more tlatata
can hold at most data replicas, therefore we haje,| < 1.  replicas.

C. Problem Definition



Zyy- b IS & vector of dimensiofiV| and the elements df are
S = E YueV either k or [, wherek is the replication factor and is the
ul =k VueW capacity constraint of a machine.

‘O’v‘ < l, Yo eV,

In the following subsections We propose efficient algorithms I-X <b be{k,V Xe{o1}" (8)
that gives optimal mappings fddRP with objective 6, and

. . L We can use a linear programming solver to derive a lower
for a special case dDRP with objectives. prog g

bound on the minimization objective for a binary integer
D. Minimize the overall costs programming. In addition, the solution from the linear pro-
To solve DRP with the minimum total costs, we ﬁrstgramming does not necessarily consisting of 0 and 1, as

transform it into abinary integer programming problerand required by_ a blna_\ry_mteger programming. I—!oweve_r, we wil
show that if the incidence matrix in Equation 8 tistally

we show how to solve it optimally. We would like to minimize™ " ) : i .

the following objective function. umquular we can obt.aln the optl'mal solution qf Equation 8
by a linear programming solver, i.e., the solutions from the
linear programming will consist of only 0 and 1. We now

0= wuwT(ew) ) Gefine I[t)hegconceptgof totally unimodula)r/.
The minimization of Equation 3 is subject to the following Definition 3: An integer matrixI is totally unimodularif
constraints. We use,,, to denote whether data selects every square submartix has determinant 0, 1 or -1.
machinev to store a replica — If so we sef,, to 1, otherwise,  Hoffman and Kruskal [20] showed that if a matfiis totally

we set it to 0. unimodular, then the vertices of the polytope defined! laye
all integral.
Theorem 1:[20] If T is a totally unimodular matrix, then
V;/ Tw =k VuEW “) all the vertices of the polytop® = {z|I-z < b,z > 0} are
v integral for any integer vectdr.
Z Tyy <L Vv eV, (5)  We now establish the optimality of using linear program-
vueV; ing solver to solve the data replication problem. Ahuja et

Tyy € {0,1} (6) al [21] showed that incidence matrix for a bipartite graph

We now re-write Equation 3 into Equation 7. Letbe a is to_tall_y unimodula_r. Therefore we can apply_Theoremll on
constant vector of dimensiof|, v; be thei-th element of Y |n.C|dence matrixl and argue that the optimal spluuons
~, ande; be thei-th element of. Then we defind’(¢,) to  ©f @ liner programming always happen at the vertices of a
be the cost of edge;. Also we useX to denote the vector polytope, wh_|ch WI|| have mtggral coordinates. That is, the
consisting of allz,,, where thei-th element of ofX is the OPtimal solution will haver,, either 0 or 1. Therefore we can
ith edge inE. That is, X is a0 — 1 vector of dimension use linear programming solve_r to obtam thg 0pt|mall s_ollut.|ons
|E|, and thei-th element indicates whether thieth edge is of data replication problem with the objective of minimizing
selected. It is clear that the total costs are the summation(8f total costs. , ,
cost of those edge, v) wherez,, is 1, as in Equation 7. Theorem 2:Equation 8 can be solved optimally by linear

programming.
0= X -~ 7 The transformed binary integer programming problem is
equivalent to amaximum flow minimum cost problerfio

The minimization of Equation 7 is &inary integer pro- construct the network, we add two extra nodes — a source and
gramming which is in general an NP-hard problem. Howeveg sink. The source links to every nodes 16f with an edge
we will show that we can solve the data replication proble@f capacityk, and every node of» has a link to the sink of
in this case optimally in polynomial time, since Equation 3apacityl. Every link betweeri; and V, has capacity 1 and
has a property calletbtal unimodularity Before we introduce has a cost determine by tiiefunction. The data replication
unimodularity we first define thincidence matrix problem with 4; is equivalent to finding a maximum flow

Definition 2: An incidence matrixl of a graphG' = (V, E)  with minimum cost. We can solve it by existing algorithms,
is a matrix with [V'| rows and|E| column. Leta;; be the e.g., cycle-canceling algorithms [22], [23] or network simplex
element ofi-th row andj-th column of matrixIl. We define algorithms [24].

a;; as follows.
E. Minimize the maximum cost

Q5 = function is more difficult than with the total cost objective
function. In this paper we only consider a special case in which

We now re-write Equation 4, and 5 with the incidence mdhe replication factor of data and the capacity of machine are
trix I. The constraints in Equation 4 and 5 are now combindubth set to 1. We denote this problemRP(k=1, =1, 65) or

into Equation 8. Recall thak is the vector consisting of all DRP(1,16,), which is equivalent to finding perfect matching

1 if the i-th vertex is incident to the-th edge. Data replication problem with the maximum cost objective
0 otherwise



Since the data is replicated only once, the mapping betwelgorithm 1 Optimal Algorithm for DRP(1,165)
data and machine is eatching We define thecost of a Require: A bipartite graphG = (V1 UV4, E), a cost function
matching between data and machine to be the maximum costT" : £ +— R
of any edge in the matching. Formally, given a bipartite graginsure: A matching M/ with minimum cost
G = (V1 UV, E) and a cost functiod’ : £ — R. We define 1. MAX < max{I'(e)|e € E}
the cost of a matching/ to be C(M) = maxz{T'(e)le € M} 22 MIN <+ min{I'(e)le € E}

The goal is to find a matching that minimizes the cost. 3: while MAX # MIN do

We propose Algorithm 1 to solv®RP(1,16,) optimally. 4 B « MAXMIN
The key idea of Algorithm 1 is to select a bound on the edge: NETg « NetWorkConstruction(G,T', B)
cost, and remove edges that have higher cost. If we cannét M = MaxFlow(NETg)
find a perfect matching with the remaining edges, that means if |[M| = |V;| then

the bound is too small. If we do find a perfect matching, that: MAX < B
means the bound can be reduced. By doing a binary search en else

the edge cost bound, we are able to find a matching in whiah: MIN + B
the maximum edge cost is minimized, which is an optimall:  end if
DRP(1,162) solution. 12: end while

Figure 2 illustrates the idea of Algorithm 1. The networkt3: return M
consists of three data nodes and three machine nodes. The
number in the square box indicates the cost of the edge.
Figure 2(3_) depicts a perfect matching (red |ines) of cost Qpplication that sends messages to its neighbors multiple times
Algorithm 1 then reduces the bound to 1 and removes any edgeexamine the performance of different replication strategies.
that has cost larger than 1. As a result, the edge with cost 2 inThe hash algorithm works as follows. A partition selects a
Figure 2(b) is removed. In addition, we find a perfect matchidgachine to store its replica by a hash function. If the chosen

with cost 1 and the cost of the perfect matching is minimizeachine already has the replica or does not have room for
the replica, the partition will find another machine to store
the replica. A partition repeats this process until it replicates

O~ 1 O O enough replicas. Note that the hash function uses a pseudo
1 >\ w, g R random number generator to give deterministic results.
O 00 <O T O0—0 The greedy algorithm works as follows. We first sort all
Q/ O O the edges in increasing cost order. We then select edges one

at a time according to this increasing cost order. During the
process we may not be able to select an edge for two reasons.
First the partition may have been replicated enough number
of times. Second the machine may have reached its capacity.
Fig. 2. Example of minimizing maximum cost This process repeats until each partition has enough number
of replicas.

We now describe Algorlthm 1 in details. We |n|t|a”y set the We focus our graph processing experiments on social net-
upper bound and lower bound to the maximum and minimuork analysis since it has drawn much attention in both
cost of an edge respectively (line 1 and line2). In the whilg academia and industry in recent years. We collect three
loop, we run a maximum flow algorithm to check if there is @eal-world social networks as our experiment graph data —
flow of volume| V| passing through a network ET from s Youtube [6], LiveJournal [25] and Flicker [26]. Mislove et
to ¢ (line 5), i.e., if we can find a perfect matching. If we cary. [27] collect these data and publish them in an anonymous

(line 7), then we set the upper bound 9 otherwise (line 9), form. Table | summarizes the numbers of nodes and edges
we set the lower bound t®. Then we calculate a new valuefrom these three social networks.

of B (line 4), then call the functiolNetW orkConstruction

(a) perfect matching with cost Zb) perfect matching with cost 1

to construct a new network (line 5) and run the maximum ?gﬁ?{'ib’\éetworks ?‘i‘ées (millions) E%gles (millions)
flow algorithm on the newly constructed network again until Flicker 1.86 15.7
the upper bound meets the lower bound. LiveJournal 5.28 48.8
TABLE |
IV. EXPERIMENT THE NUMBERS OF NODES AND EDGES OF THREE SOCIAL NETWORKS

We conduct experiments to investigate the performance
of proposed algorithms. We compare the optimal solutionsin the following we first analyze the theoretical communi-
with the results of a hash algorithm and a heuristic greedgtion costs of the social networks with different replication
algorithm. There are two performance metrics — the totatrategies, then we evaluate the three replication strategies by
communication cost of a cluster, and the maximum commurhie application that sends messages to its neighbors multiple
cation cost of a machine in the cluster. We also developed @mes.



A. Theoretical Cost Table IV shows optimal replication that minimizes total
We use METIS [8] to partition a social network into 16corT?munlcatmn cogt in LiveJournal netwo_rk..The element at
o ) o : thei-th row and thej-th column of Table IV indicates whether
partitions as the input to oulbata Replication Problemsince

we will use 16 machines in our experiments. We use & 16 i-th partition is replicated af-th machine. The table indicates

. . that thej-th machine tends to replicate theth partitions to
matrix A to store the number of edges between any two giv : . o .
s oo ose machines with partitions that are well connected with
partitions. We assume that the communication cost between ™. o . .
iy . . the j-th partition. By doing so these machines can reduce the
two partitions is proportional to the number of edges between

them, and the proportional factor is 1. So we also Usge of communication costs needed to retrieve it.
matrix A to denote the communication cost between dlle

Y > Social Networks Hashing Greedy Optimal
partition and thej-th partition. YouTube 1363869 | 912671 900119
We assume that thé-th machine has the primary co Flicker 8148224 | 6044052| 6026941
P y copy LiveJournal 19290313 | 13310707 | 13251424

of the i-th partition, we can also interpret the matrik as
follows. The rows of matrixA indicate the partition IDs and
the columns ofA indicate the machine ID. As a result we
estimate the communication cost of thigh machine to be
the sum of the elements in thgeth column of A. Table II

TABLE Ill
TOTAL NUMBER OF CUT-EDGES OF THREE REPLICATION STRATEGIES

- H MO [M1]|M2]|M3]|M4]|M5]|M6|M7[M8]|M9|MI10|M11|M12]|M13|M14 ]| M15
shows the matrix4 of LiveJournal [25]. L[| ML W2 [ S | e [ M5 | M6 | M7 [ M6 | Mo MIO| MEL[ MIZ] W13 [ MIA VIS
pP1ff1y0}j0|0}j1j0l0OjO0O|jOj0O]O}O0O|O0|O0]|O0]|O
T oye . .. P2ff1y0}0|0}0|1|0OjO0O|jOjO]O]O|O0|O0]|O0]|O
Replicating a partition on a machine eliminates the commu- P3flofolofolololololofolofol1|1|o0]o0
L ) K ) X P4ffoj1loflofo|o|Of1|0f0|O0O] O] O] O0O|O]|oO
nication cost for the mgchme to retrieve it. For examp_le, if we POllOf O] lofofoll)ololo)olololo)o)o
replicate thek-th partition on thej-th machine, the primary o e O O O o B o I O O I
copy of thej-th partition will now be able to access tlie pi0| 0|0 o|o|ololo|o|o|1|o|o|o|olols
e . « . . p11yojojofojojojojof1jojo0jO0OjO0O}|O0O|1]|0
th partition without communication, i.e.q;; becomes zero P12 0| 0| 0| 110/ 0)0)0/0]0]0|0|0|1)0]0
because we eliminate the communications forjitle machine P14 010101 0101010100101 0110001
to retrieve thek-th partition. TABLE IV
THE OPTIMAL REPLICATION THAT MINIMIZES OVERALL COMMUNICATION
B. Total Communication Cost COST INLIVEJOURNAL

We evaluate the communication cost of the three replication
strategies by comparing the overall communication cost. Each
partition has two replicas as in [28], [29], and each machif@ Maximum Communication Cost
has no more than two replicas. Table Ill summarizes the L . L
We now focus on minimizing the maximum communication

communication costs among hashing, greedy algorithm, agc()jst of a single machine. We consider the special case in which

the optimal algorithm. The optimal algorithm has the lowe . . o
. . : i e capacity constraint and replication factor are both sét to
costs, and is used as a comparison basis. The greedy algorithm

has a cost similar to that of the optimal algorithm. The hash

. Social Networks|| Hashing| Greedy | Optimal

method has the highest cost. YouTube 176093 | 176029 | 130628
Note that the greedy algorithm may not always have two _Flicker 1555560 | 1655362 | 1222324
replicas for every partition. Despite the fact that we can LiveJournal || 2297041 | 2471157 | 2031564

always find a subgraph in which every machine connects to TABLE V

two partitions, and every partition connects to two machines. MAXIMUM NUMBER OF CUT-EDGES FROM A MACHINE

However, we may connect a partition to the machine where

it is stored, due to lack of selection at the end of the greedyTable V compares the maximum communication cost of
method. In that case this partition will have one less repliea machine from different replication strategies for different
than it should have, and we use this subgraph as the inpuktizial networks. Again we use the optimal strategy as the
the experiments. comparison basis. We observe from Table Il and V find that

The hash algorithm may not always have two replicas fatie gap between number of cut-edges between the hash and the
every partition either, due to the same reason as in the greegyimal method in minimizing the maximum communication
method. However, since the hashing is not deterministic, west, is much smaller than in minimizing the total communi-
can run the hashing algorithm repeatedly until we find @tion cost. The running times of the three algorithms are
feasible solution. also negligible, which are aboo0t175 seconds.

We observe that the running time of three algorithms areTable VI shows the optimal replication that minimizes
negligible, which is abou.165 seconds. This is becausethe maximum communication cost in LiveJournal network. It
we have small problem size, that is,16 x 16 matrix. We shows that two partitions tend to replicate each other due to
conclude that all three algorithms are efficient enough their high connectivity. For example, partitiaddl4 and P15
practice, especially in a cluster of reasonable size. are strongly connected so they replicate each other.



[ [ M0 | ML [ M2 | M3 | M& | M5 | M6 | M7 | M8 | MO | MIO | Mil | M1z | MI3 | Mi4 | Mi5 |
PO 0 | 94162 | 105028| 35092 | 64300 | 43060 | 51329 | 72930 | 49424 | 07454 | 31465 | 46631 | 21874 | 2195 | 26217 | 56324
P1|| 94161 | 0 |119222| 56290 | 113717| 69796 | 81430 | 111788| 60133 | 115740| 49037 | 62087 | 32701 | 2678 | 40470 | 98117
P2 || 105027| 119222| 0 | 71801 | 103119| 98286 | 90073 | 142868| 41634 | 140978| 59220 | 68978 | 33181 | 3414 | 49860 | 91060
P3 || 35092 | 56290 | 71801 | O | 52984 | 48601 | 42938 | 67064 | 40284 | 101722 32234 | 44759 | 20429 | 2437 | 24431 | 50513
P4 || 64299 | 113717| 103119| 52984 | 0 | 77552 | 91749 | 128719| 53146 | 144878| 51235 | 59341 | 27235 | 2810 | 36938 | 64099
P5 || 43060 | 69796 | 98286 | 48601 | 77552 | 0 | 61173 | 84755 | 75796 | 131012| 38625 | 61774 | 22744 | 2502 | 32132 | 55908
P6 || 51320 | 81430 | 90073 | 42938 | 91749 | 61174 | 0 | 192094| 46633 | 174393| 56964 | 60979 | 27108 | 3705 | 43771 | 61218
P7 || 72930 | 111788| 142868| 67064 | 128719| 84755 | 192093| 0 | 45949 | 190825| 72308 | 71302 | 38028 | 3689 | 46420 | 82468
P8 || 49425 | 60133 | 41634 | 40284 | 53146 | 75796 | 46633 | 45949 | O | 541315| 114290| 193844| 32054 | 11574 | 50106 | 169814
P9 || 97454 | 115740| 140978 | 101722 144878| 131012| 174393| 190825| 541315| 0 | 287743| 275838| 105770 | 39405 | 77456 | 148351
P10|| 31465 | 49037 | 59220 | 32234 | 51235 | 38625 | 56964 | 72308 | 114290| 287742 0 | 109012| 50537 | 11226 | 69223 | 132066

P11|| 46631 | 62087 | 68978 | 44760 | 59341 | 61774 | 60978 | 71302 | 193844 | 275838| 109012 0 47691 10826 | 160691| 117639

P12 || 21873 | 32701 | 33181 | 20429 | 27235 | 22744 | 27108 | 38028 | 32054 | 105770| 50537 | 47691 0 1630911| 49794 | 73269

P13 || 2195 2678 3414 2437 2809 2502 3705 3689 | 11574 | 39405 | 11226 | 10826 | 1630911 0 9137 | 13210

P14 || 26217 | 40470 | 49860 | 24431 | 36938 | 32132 | 43771 | 46420 | 50106 | 77456 | 69223 | 160690| 49794 9137 0 200385

P15|| 56324 | 98117 | 91059 | 50513 | 64099 | 55908 | 61219 | 82468 | 169814| 148351| 132066| 117639| 73269 13210 | 200385 0
TABLE T

THE CUT-EDGES MATRIX OF LIVEJOURNAL

[ [[MO[MI]M2[M3 [ MA4] M5 | M6] M7 | M8 M9 | MI0| MIL|M12] M13]| M14] M15]

0

When a vertex at machinem wants to send a message to
its neighbom, there are two possibilities. First,has a replica
at machinen, so the message will go to the replica. Otherwise
the message will go the machine that has the primary copy of
n.

The experiment configuration is as follows. We run the
experiment on a 16-node cluster. Each node equips with an
Intel Xeon E5504 2GHz CPU and 10GB of ram. We use

TABLE VI Hama 0.6.0 to implement all the replication strategies. The
THE OPTIMAL REPLICATION THAT MINIMIZES THE MAXIMUM P . . . .
COMMUNICATION COST IN LIVE JOURNAL performance metric is the execution time of all the iterations.
Note that this performance metric does not include the time
to load and replicate data before the iterations can start. Each
data point is the average from 10 runs. We set the replication
factor and the capacity constraint 2owhile minimizing the

We develop an applicatio®endToNeighbor to evaluate overall communication cost, and to while minimizing the
the performance of the three replication strategies. At thgaximum communication cost.
beginning of SendToNeighbor a subset of vertices in the Table VII and VIII compare the execution time &end-
graph send messages to their neighbors. Those vertices afteMeighbor of different replication strategies and social net-
receiving messages will send messages to their neighbors. Magks. The speedup in the column indicates the performance
process repeats until a specified number of iteration. Aftenprovement compared with Hashing method. In Table VII,
the specified number of iterations all vertices halt and thhe execution time oSendToNeighbor using hashing algo-
computation finishesSendToNeighbor sets the length of the rithm is 30% slower than using the optimal solution with
message to 100 characters, sets the number of iterationLieJournal as input, and overall communication cost as
25, and randomly selec&)% of the vertices to start sendingthe objective function. Since the optimal replication strategy
messages at the beginning. Also note tBahdToNeighbor minimizes the number of cut edges, it has less communication
will only read data so we do not need to consider dataessages than the hashing method does. The execution time
consistency among replicas. using greedy algorithm is within 5% of the optimal algorithm.

Sending messages to neighbors is a typical communication the other hand, as shown in Table VIII, when we try to
pattern in social network applications. For example PageRinimize the maximum communication cost, the execution
ank [1], Influence Spreading [12], and Max Value propagaime of SendToNeighbor using hashing algorithm i83%
tion [1] all involve sending messages to neighbors. slower than using the optimal solution, also with LiveJournal

We implementSendToNeighbor on Hama [30]. Hama as input. Table VIl and VIII also indicates that the execution
is an open source implementation of Pregel [1], which time difference among the three strategies is not significant for
based on bulk synchronization model. We customize Harsmall networks, e.g., YouTube. The reason is that the relatively
into our replication strategies by implementing fPertitioner small number of messages will not form communication
interface. At the beginning Hama sends each vertex to a nimttleneck.
chine for processing. ThBartitioner decides which machine Table IX shows the number of messages and we confirm that
processes which vertex. We implement our replication logibe optimal replication strategy has the fewest messages. Sim-
in Partitioner so that the primary copy of a vertex is sent to darly Table X show the number of messages while minimizing
specified machine, and the secondary copies are sent to othaximum communication cost. Table IX and X indicate that
machines according to the replication strategy. fewer messages improves performance.
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D. Application



Social Networks|| Hashing | Greedy(Speedup] Optimal(Speedup)

YouTube 53.7294 | 44.3369(17.42%)| 43.5863(18.88%)

Flicker 423.5676 | 284.1521(32.91%) 283.826(32.99%)

LiveJournal 966.7852 | 680.124(29.65%)| 642.7784(33.51%)
TABLE VII

EXECUTION TIMES (IN SECONDS OF SendToNeighbor wiTH MINIMIZING
TOTAL COMMUNICATION COST

Social Networks || Hashing Greedy(Speedup) Optimal(Speedup)
YouTube 53.221 51.861(2.56%) 48.523(8.83%)
Flicker 371.1072| 412.1372(-11.06%)| 356.9483(3.82%)
LiveJournal 859.5838 838.5003(2.45%)| 743.4389(13.51%)

(2]

3]
(4]

6]
(7]

(8]

TABLE VIII
EXECUTION TIMES (IN SECONDS OF SendToNeighbor WiTH MINIMIZING
THE MAXIMUM COMMUNICATION COST

(9]

(10]

V. CONCLUSION
11
In this work, we study a data replication probleBRP) for =

distributed graph processing. The goal@RP is to replicate
partitions of a graph such that each partition has at least'a
certain number of replicated copies, and the cost is minimized.
We consider two cost metrics in this paper. One is to minimiZ&s]
the total communication cost, and the other is to minimize the
maximum cost of a perfect matching.

We propose two optimal algorithms for both objectives
respectively. We solv®RP with minimizing total cost by a (14]
linear programming solver, and we soli&RP with minimiz-
ing maximum cost by an algorithm based on binary search
technique and maximum flow algorithm. (15

Finally, we conduct experiments to evaluate the effective-
ness of the proposed algorithms and compare the results with

the hashing assignment strategy and a heuristic greedy alk}gl

rithm. In minimizing total communication cost experiment, the
optimal solutions save up to 30% of cost than the results of tH&]
hashing assignment. In minimizing maximum cost experiment,
the optimal solutions outperform the hashing assignment upyig;
13%.
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