Efficient and Customizable Data Partitioning Framework
for Distributed Big RDF Data Processing in the Cloud

Kisung Lee, Ling Liu, Yuzhe Tang, Qi Zhang, Yang Zhou
DiSL, College of Computing, Georgia Institute of Technology, Atlanta, USA
{kisung.lee, lingliu} @cc.gatech.edu, {yztang, qzhang90, yzhou86} @ gatech.edu

Abstract—Big data business can leverage and benefit from the
Clouds, the most optimized, shared, automated, and virtualized
computing infrastructures. One of the important challenges in
processing big data in the Clouds is how to effectively partition
the big data to ensure efficient distributed processing of the data.
In this paper we present a Scalable and yet customizable data
PArtitioning framework, called SPA, for distributed processing
of big RDF graph data. We choose big RDF datasets as our
focus of the investigation for two reasons. First, the Linking
Open Data cloud has put forwards a good number of big RDF
datasets with tens of billions of triples and hundreds of millions
of links. Second, such huge RDF graphs can easily overwhelm
any single server due to the limited memory and CPU capacity
and exceed the processing capacity of many conventional data
processing software systems. Our data partitioning framework
has two unique features. First, we introduce a suite of vertex-
centric data partitioning building blocks to allow efficient and
yet customizable partitioning of large heterogeneous RDF graph
data. By efficient, we mean that the SPA data partitions can
support fast processing of big data of different sizes and com-
plexity. By customizable, we mean that the SPA partitions are
adaptive to different query types. Second, we propose a selection
of scalable techniques to distribute the building block partitions
across a cluster of compute nodes in a manner that minimizes
inter-node communication cost by localizing most of the queries
on distributed partitions. We evaluate our data partitioning
framework and algorithms through extensive experiments using
both benchmark and real datasets. Our experimental results show
that the SPA data partitioning framework is not only efficient for
partitioning and distributing big RDF datasets of diverse sizes
and structures but also effective for processing big data queries
of different types and complexity.

I. INTRODUCTION

Cloud computing infrastructures are widely recognized as
an attractive computing platform for efficient big data pro-
cessing because it minimizes the upfront ownership cost for
the large-scale computing infrastructure demanded by big
data analytics. With Linking Open Data community project
and World Wide Web Consortium (W3C) advocating RDF
(Resource Description Framework) [6] as a standard data
model for Web resources, we have witnessed a steady growth
of both big RDF datasets and large and growing number of
domains and applications capturing their data in RDF and
performing big data analytics over big RDF datasets. For
example, more than 52 billion RDF triples are published as of
March 2012 on Linked Data [12] and about 6.46 billion triples
are provided by the Data-gov Wiki [7] as of February 2013.
Recently the UK (United Kingdom) government is publishing
RDF about its legislation [8] with a SPARQL (a standard query
language for RDF) query interface for its data sources [5].

Hadoop MapReduce programming model and Hadoop Dis-
tributed File System (HDFS) are one of the most popular
distributed computing technologies for distributing big data
processing across a large cluster of compute nodes in the

Cloud. However, processing the huge RDF data using Hadoop
MapReduce and HDFS poses a number of new technical
challenges. First, when viewing a big RDF dataset as an RDF
graph, it typically consists of millions of vertices (subjects or
objects of RDF triples) connected by millions or billions of
edges (predicates of RDF triples). Thus triples are correlated
and connected in many different ways. Random partitioning
of big data into chunks through either horizontal (by triples)
or vertical partitioning (by subject, object or predicate) is
no longer a viable solution because data partitions generated
by such a simple partitioning method tend to have high
correlation with one another. Thus, most of the RDF queries
need to be processed through multiple rounds of data shipping
across partitions hosted in multiple compute nodes in the
Cloud. Second, HDFS (and its attached storage systems) is
excellent for managing big table like data where row objects
are independent and thus big data can be simply divided into
equal-sized chunks which can be stored in a distributed manner
and processed in parallel efficiently and reliably. However,
HDFS is not optimized for processing big RDF datasets
of high correlation. Therefore, even simple retrieval queries
can be quite inefficient to run on HDFS. Third but not the
least, Hadoop MapReduce programming model is optimized
for batch-oriented processing jobs over big data rather than
real-time request and respond types of jobs. Thus, without
correlation preserving data partitioning, Hadoop MapReduce
alone is neither adequate for handling RDF queries nor suitable
for structure-based reasoning on RDF graphs.

With these challenges in mind, in this paper, we present a
Scalable and yet customizable data PArtitioning framework,
called SPA, for distributed processing of big RDF graph data.
Our data partitioning framework has two unique features. First,
we introduce a suite of vertex-centric data partitioning building
blocks, called extended vertex blocks, to allow efficient and
yet customizable data partitioning of large heterogeneous
RDF graphs by preserving the basic vertex structure. By
efficient, we mean that the SPA data partitions can support fast
processing of big data of different sizes and complexity. By
customizable, we mean that one partitioning technique may
not fit all. Thus the SPA partitions are by design adaptive
to different data processing demands in terms of structural
correlations. Second, we propose a selection of scalable par-
allel processing techniques to distribute the structured vertex
block-based partitions across a cluster of compute nodes in
a manner that minimizes inter-node communication cost by
localizing most of the queries to independent partitions and
by maximizing intra-node processing. By partitioning and
distributing big RDF data using structured vertex blocks, we
can considerably reduce the inter-node communication cost
of complex query processing because most RDF queries can

star

type

SELECT ?yr WHERE {
?journal rdf:type Journal .
?journal title "Journal 1" .
?journal issued ?yr }

@

?journal ?)
D> &y
& iz,

& %

ype
[inProceedingsj¢—{2inproc]

(a) Example RDF Graph

(b) Example SPARQL Queries

bi-vertex
block

InProcl

SELECT DISTINCT
?person ?name WHERE {

z!nproc rdf:tlype’)lnproceedings. name InProcl
?inproc creator ?person . ry =
in-vertex
?person name ?name . ‘§°
STeaty,. ?person type Person } > out-vertex & f‘reatorbIOCk
Person| block [Personijé—Articlel]

(c) Different vertex blocks of “Personl”

Fig. 1: RDF Examples

be evaluated locally on a partition server without requiring
data shipping from other partition nodes. We evaluate our
data partitioning framework and algorithms through extensive
experiments using both benchmark and real datasets having
totally different characteristics. Our experimental results show
that the SPA data partitioning framework is efficient and
customizable for partitioning and distributing big RDF datasets
of diverse sizes and structures, and effective for processing
real-time RDF queries of different types and complexity.

II. OVERVIEW

A. RDF and SPARQL

An RDF dataset consists of (subject, predicate, object)
triples (or so-called SPO triples) with the predicate represent-
ing a relationship between its subject and object. An RDF
dataset can be depicted as an RDF graph with subjects and
objects as vertices and predicates as labeled edges connecting
a pair of subject and object. Each edge is directed, emanating
from its subject vertex to its object vertex. Fig. 1(a) shows
an example RDF graph based on the structure of SP?Bench
(SPARQL Performance Benchmark) [20].

SPARQL is a SQL-like standard query language for RDF
recommended by W3C. Most SPARQL queries consist of
multiple triple patterns, which are similar to RDF triples except
that in each triple pattern, the subject, predicate and object may
be a variable. We categorize SPARQL queries into two types:
star and complex, based on the join characteristics of triple
patterns. Star queries consist of subject-subject joins and each
join variable is the subject of all the triple patterns involved.
We refer to the remaining queries as complex queries. Fig. 1(b)
shows two example SPARQL query graphs. The first is a
star query requesting the year of publication of Journal
1 and the second is a complex query requesting the names
of all persons who are an author of at least one publication
of inproceeding type. SPARQL query processing can be
viewed as finding matching subgraphs in the RDF graph where
RDF terms from those subgraphs may be substituted for the
query variables.

B. System Architecture

Fig. 2 sketches the architecture of our RDF data partitioning
framework SPA. The first prototype of SPA is implemented
on top of Hadoop MapReduce and HDFS. The Hadoop SPA
framework consists of one coordinator and a set of worker
nodes (VMs) in the SPA cluster. The coordinator serves
as the NameNode of HDFS and the JobTracker of Hadoop
MapReduce and each worker serves as the DataNode of HDFS

-

SPA coordinator
ol Bgnlll;icnlr(lg NameNode
Interface & VM
E Generator &
| xecutor Distributor JobTracker RDF Storage
\\ System
45
< DataNode
VM Pool
TaskTracker
VM VM VM VM VM |

Fig. 2: SPA Architecture

and the TaskTracker of Hadoop MapReduce. To efficiently
store the generated partitions, we utilize an RDF-specific
storage system on each worker node.

The core components of our RDF data partitioning frame-
work are the partition block generator and distributor. The
generator uses a vertex-centric approach to construct partition
blocks such that all triples of each partition block are residing
in the same worker node. For a big RDF graph with a huge
number of vertices, we need to carefully distribute all gener-
ated partition blocks across a cluster of worker nodes using
a partition distribution mechanism. We provide an efficient
distributed implementation of our data partitioning system on
top of Hadoop MapReduce and HDFS.

III. SPA: DATA PARTITIONING FRAMEWORK

In this section we describe the SPA data partitioning
framework, focusing on the two core components: constructing
the partition blocks and distributing them across multiple
worker nodes. In order to provide partitioning models that are
customizable to different processing needs, we devise three
types of partition blocks based on the vertex structure and the
vertex access pattern. The goal of constructing partition blocks
is to assign all triples of each partition block to the same
worker node in order to support efficient query processing.

In terms of efficient query processing, there are two different
types of processing: intra-VM processing and inter-VM pro-
cessing. By intra-VM processing, we mean that a query () can
be fully executed in parallel on each VM by locally searching
the subgraphs matching the triple patterns of @, without
any coordination from one VM to another. The coordinator
simply sends () to all worker nodes (VMs), without using
Hadoop, and then merges the partial results received from
all VMs to generate the final results of (). By inter-VM
processing, we mean that a query () as a whole cannot be
executed on any VM, and it needs to be decomposed into a
set of subqueries such that each subquery can be evaluated
by intra-VM processing. Thus, the processing of @ requires
multiple rounds of coordination and data transfer across the

cluster of workers using Hadoop. In contrast to intra-VM
processing, inter-VM communication cost can be extremely
high, especially when the number of subqueries is not small
and the size of intermediate results to be transferred across the
network of worker nodes is large.

A. Constructing Extended Vertex Blocks

We center our data partitioning on a vertex-centric approach.
By vertex-centric, it means that we construct a vertex block
for each vertex. By extending a vertex block to an extended
vertex block we can assign more triples which are close to
a vertex in the same partition for efficient query processing.
Before we formally define the concept of vertex block and the
concept of extended vertex block, we first define some basic
concepts of RDF graphs.

Definition 1. (RDF Graph) An RDF graph is a directed,
labeled multigraph, denoted as G = (V, E,Xg,lg) where V
is a set of vertices and F is a multiset of directed edges (i.e.,
ordered pairs of vertices). A directed edge (u,v) € E denotes
a triple in the RDF model from subject u to object v. X is
a set of available labels (i.e., predicates) for edges and lg is
a map from an edge to its label (£ — X g).

In RDF datasets, multiple triples may have the same subject
and object. Thus E is a multiset instead of a set. We consider
that two triples in an RDF dataset are correlated if they share
the same subject, object or predicate. For simplicity, only
vertex-based correlation is considered in this paper. Thus we
only consider three types of correlated triples as follows:

Definition 2. (Different types of correlated triples) Let G =
(V,E,Xg,lg) be an RDF graph. For each vertex v € V, we
define a set of edges (triples) whose subject vertex is v as the
out-triples of vertex v, denoted by E%“* = {(v,0)|(v,0) €
E}. Similarly, we define a set of edges (triples) whose object
vertex is v as the in-triples of a vertex v € V, denoted by
Ei" = {(s,v)|(s,v) € E}. We define bi-triples of a vertex
v € V as the union of its out-triples and in-triples, denoted
by BV = Eout U B,

Now we define the concept of vertex block, the basic
building block for graph partitioning. A vertex block can
be represented by a vertex ID and its connected triples. An
intuitive way to construct the vertex block of a vertex v is to
include all connected triples (i.e., bi-triples) of v regardless
of their direction. However, for some RDF datasets, all their
queries may request only triples in one direction from a
vertex. For example, to evaluate the first SPARQL query in
Fig. 1(b), the query processor needs only out-triples of a
vertex which may be substituted for variable ?journal.
Since one partitioning technique cannot fit all, we need to
provide customizable options that can be efficiently used for
different RDF datasets and SPARQL query types. In addition
to query efficiency, partition blocks should also minimize the
triple redundancy by considering only necessary triples and
reducing the disk space of generated partitions. This motivates
us to introduce three different ways of defining the concept of
vertex blocks based on the edge direction of triples.
Definition 3. (Vertex block) Let G = (V,E,Xg,lg) be an
RDF graph. Out-vertex block of a vertex v € V' is a subgraph
of G which consists of v and its out-triples, denoted by
VBout = (Vout pout Y pout,lpout) such that Vvout = fy} U

Journall

Fig. 3: 2-hop extended bi-vertex block of “Personl”

{vo|vout € V, (v, v°%") € ES“'}. Similarly, in-vertex block
of v is defined as VB}" = (V" E*, ¥ gin,lgin) such that
Vir = {v} U {v"v"™ € V, (v'™,v) € EI"*}. Thus we define
the vertex block of v as the combination of both out-vertex
block and in-vertex block, namely the bi-vertex block, and is
formally defined as VBY = (V2 EbY % gyis Lpyi) such that
Vb= {v} U {o¥ ¥ € V, (v,0%) € B9 or (v*',v) € E"}.
We refer to vertex v as the anchor vertex of the vertex block
centered at v. Every vertex block has an anchor vertex. We
refer to those vertices in a vertex block, which are not the
anchor vertex, as the border vertices of this vertex block.

In the rest of the paper we will use vertex blocks to refer to
all three types of vertex blocks and use bi-vertex block to refer
to the combination of in-vertex block and out-vertex block.

Fig. 1(c) shows three different vertex blocks of a vertex
Personl. By locating all triples of a vertex block in the
same partition, we can efficiently process all queries which
request only triples directly connected to a vertex because
those queries can be processed using intra-VM processing.
For example, to process the star query in Fig. 1(b), we can
run the query on each VM without any coordination with other
VMs because it is guaranteed that all triples connected to a
vertex which can be substituted for the variable ? journal
are located in the same VM.

Even though the vertex blocks are beneficial for star queries,
which are common in practice, there are some RDF datasets
in which chain queries or more complex queries may request
more triples that are beyond those directly connected triples.
Consider the second query in Fig. 1(b). Clearly there is no
guarantee that any triple connecting from ?person to ?name
is located in the same partition where those connected triples
of vertex ?inproc are located. Thus inter-VM processing
may be required. This motivates us to introduce the concept
of k-hop extended vertex block (k > 1).

Given a vertex v € V in an RDF graph G, k-hop extended
vertex block of v includes not only directly connected triples
but also all nearby triples which are indirectly connected to
the vertex within k-hop radius in G. Thus, a vertex block of
v is the same as the /-hop extended vertex block of v.

Similar to the vertex block, we define three different ways of
defining the extended vertex block based on the edge direction
of triples: k-hop extended out-vertex block, k-hop extended
in-vertex block and k-hop extended bi-vertex block. Similarly,
given a k-hop extended vertex block anchored at v, we refer
to those vertices that are not the anchor vertex of the extended
vertex block as the border vertices. For example, Fig. 3 shows
the 2-hop extended bi-vertex block of vertex Personl. Due
to the space limitation, we omit the formal definitions of the
three types of the k-hop extended vertex block in this paper.

We below discuss briefly how to set the system-defined

parameter k. For a given RDF dataset, we can define k£ based
on the common types of queries we wish to provide fast
evaluation. If the radius of most of such queries is 3 hops
or less, we can set k = 3. The higher k£ value is, the higher
degree of triple replication each data partition will have and
thus more queries can be evaluated using intra-VM processing.
In fact, we find that the most frequent queries have 1 hop or
2 hops as their radius.

Once the system-defined k value is set, in order to determine
if a given query can be evaluated using intra-VM processing
or it has to pay inter-VM processing cost, all we need to do
is to check whether every vertex in the corresponding query
graph can be covered by any k-hop extended vertex block.
Concretely, if there is any vertex in the query graph whose k-
hop extended vertex block includes all triple patterns (edges)
of the query graph, then we can say that the query can be
evaluated using intra-VM processing under the current k-hop
data partitioning scheme.

In the first prototype of SPA system, we implement our
RDF data partitioning schemes using Hadoop MapReduce and
HDFS. First, users can use the SPA configuration to set some
system-defined parameters, including the number of worker
nodes used for partitioning, say n, the type of extended vertex
blocks (out-vertex, in-vertex or bi-vertex) and the k& value of
extended vertex blocks. Once the selection is entered, the SPA
data partitioner will launch a set of Hadoop jobs to partition
the triples of the given dataset into n partitions based on the
direction and the k value of the extended vertex blocks.

The first Hadoop job reads the input RDF dataset stored
in HDFS chunks. For each chunk, it examines triples one by
one and groups triples by two partitioning parameters: (i) the
type of extended vertex blocks (out-vertex, in-vertex or bi-
vertex), which defines the direction of the k-hop extension on
the input RDF graph; (ii) the k£ value of k-hop extended vertex
blocks. If the parameters are set to generate 1-hop extended
bi-vertex blocks, each triple is assigned to two extended vertex
blocks (or one block if the subject and object of the triple is
the same entity). This can be viewed as indexing this triple
by both its subject and object. However, if the parameters are
set to generate 1-hop extended out-vertex or in-vertex blocks,
each triple will be assigned to one extended vertex block based
on its subject or object respectively. We below describe how
the SPA data partitioner takes the input RDF data and uses
a cluster of compute nodes to partition it into n partitions
based on the settings of 2-hop extended out-vertex blocks. In
our first prototype, the SPA data partitioner is implemented in
two phases: Phase 1 generates vertex blocks or 1-hop extended
vertex blocks, and Phase 2 generates k-hop extended vertex
blocks for k£ > 1. If kK = 1, only Phase 1 is needed.

In the following discussion, we assume that the RDF dataset
to be partitioned has been loaded into HDFS. The first Hadoop
job is initialized with a set of map tasks in which each map
task reads a fixed-size data chunk from HDFS (the chunk size
is initialized as a part of the HDFS configuration). For each
map task, it examines triples in a chunk one by one and returns
a key-value pair where the key is the subject vertex and the
value is the remaining part (predicate and object) of the triple.
The local combine function of this Hadoop job groups all key-
value pairs that have the same key into a local subject-based

triple group for each subject. The reduce function reads the
outputs of all maps to further merge all local subject-based
groups to form a vertex block with the subject as the anchor
vertex. Each vertex group will have one anchor vertex and
be stored in HDFS as a whole. Upon the completion of this
first Hadoop job, we obtain the full set of 1-hop extended
out-vertex blocks for the RDF dataset.

In the next Hadoop job, we examine each triple against
the set of 1-hop extended out-vertex blocks, obtained in the
previous phase, to determine which extended vertex blocks
should include this triple in order to meet the k-hop guarantee.
We call this phase the controlled triple replication. Concretely,
we perform a full scan of the RDF dataset and examine in
which 1-hop extended out-vertex blocks this triple should be
added in two steps. First, for each triple, one key-value pair
is generated with the subject of the triple as the key and the
remaining part (predicate and object) of the triple as the value.
Then we group all triples with the same subject into a local
subject-based triple group. In the second step, for each 1-hop
extended out-vertex block and each subject with its local triple
group, we test if the subject vertex matches the extended out-
vertex block. By matching, we mean that the subject vertex
is the border vertex of the extended out-vertex block. If a
match is found, then we create a key-value pair with the
unique ID of the extended out-vertex block as the key and
the subject vertex of the given local subject-based triple group
as the value. This ensures that all out-triples of this subject
vertex are added to the matching extended out-vertex block. If
there is no matching extended out-vertex block for the subject
vertex, the triple group of the subject vertex is discarded.
This process is repeated until all the subject-based local triple
groups are examined against the set of extended out-vertex
blocks. Finally, we get a set of 2-hop extended out-vertex
blocks by the reduce function, which merges all key-value
pairs with the same key together such that the subject-based
triple groups with the same extended out-vertex block ID (key)
are integrated into the extended out-vertex block to obtain the
2-hop extended out-vertex block and store it as a HDFS file.
For £ > 2, we will repeat the above process until the k-
hop extended vertex blocks are constructed. In our experiment
section we report the performance of the SPA partitioner in
terms of both the time complexity and data characteristics of
generated partitions to illustrate why partitions generated by
the SPA partitioner is much more efficient for RDF graph
queries than random partitioning by HDFS chunks.

B. Distributing Extended Vertex Blocks

After we construct the extended vertex block for each
vertex, we need to distribute all the extended vertex blocks
across the cluster of worker nodes. Since there are usually a
huge number of vertices in RDF data, we need to carefully
assign each extended vertex block to a worker node. We
consider three objectives for distribution of extended vertex
blocks: (i) balanced partitions in terms of the storage cost, (ii)
reduced replication and (iii) the time required to carry out the
distribution of extended vertex blocks to worker nodes.

First, balanced partitions are essential for efficient query
processing because one big partition in the imbalanced par-
titions may be a bottleneck for query processing and so
will increase the overall query processing time. Second, by

the definition of the extended vertex block, a triple may be
replicated in several extended vertex blocks. If vertex blocks
having many common triples can be assigned to the same
partition, the storage cost can be reduced considerably because
duplicate triples are eliminated on each worker node. When
many triples are replicated on multiple partitions, the enlarged
partition size will increase the query processing cost on each
worker node. Therefore, reducing the number of replicated
triples is also an important factor critical to efficient query
processing. Third, when selecting the distribution mechanism,
we need to consider the processing time for the distribution
of extended vertex blocks. This criterion is also important for
RDF datasets that require more frequent updates.

In the first prototype of SPA partitioner, we implement
two alternative techniques for distribution of extended vertex
blocks to the set of worker nodes: hashing-based and graph
partitioning-based. The hashing-based technique can achieve
the balanced partitions and take less time to complete the
distribution. It assigns the extended vertex block of vertex v
to a partition using the hash value of v. We can also achieve
the second goal — reducing replication by developing a smart
hash function based on the semantics of the given dataset.
For example, if we know that vertices having the same URI
prefix are closely connected in the RDF graph, then we can
use the URI prefix to get the hash value, which will assign
those vertices to the same partition.

The graph partitioning-based distribution technique utilizes
the partitioning result of the minimum cut vertex partitioning
algorithm [15]. The minimum cut vertex partitioning algorithm
divides the vertices of a graph into n smaller partitions by
minimizing the number of edges between different partitions.
We generate a vertex-to-worker-node map based on the result
of the minimum cut vertex partitioning algorithm. Then we
assign the extended vertex block of each vertex to the worker
node using the vertex-to-node map. Since it is likely that close
vertices are included in the same partition and thus placed
on the same worker node, this technique focuses on reducing
replication by assigning close vertices, which are more likely
to have common triples in their extended vertex blocks, to the
same partition.

C. Distributed Query Processing

Given that intra-VM processing and inter-VM processing
are two types of distributed query processing in our frame-
work, for a SPARQL query (), assuming that the partitions
are generated based on the k-hop extended vertex block, we
construct a k-hop extended vertex block for each vertex in
the query graph of Q. If any k-hop extended vertex block
includes all edges in the query graph of (), we can process
@ using intra-VM processing because it is guaranteed that
all triples which are required to process @) are located in the
same partition. If there is no such k-hop extended vertex block,
we need to process () using inter-VM processing by splitting
@ into smaller subqueries. In this paper, we split the query
with an aim of minimizing the number of subqueries. We
use Hadoop MapReduce and HDFS to join the intermediate
results generated by the subqueries. Concretely, each subquery
is executed on each VM and then the intermediate results of
the subquery are stored in HDFS. To join the intermediate
results of all subqueries, we use the join variable values as

key values of a Hadoop job.
IV. EXPERIMENTS

In this section, we report the experimental evaluation of
our RDF data partitioning framework. Our experiments are
performed using not only different benchmark datasets but
also various real datasets. We first introduce basic character-
istics of datasets used for our evaluation. We categorize the
experimental results into two sets: (1) We show the effects of
different types of vertex blocks and the distribution techniques
in terms of the balanced partitions, replicated triples and
data partitioning and distribution time. (2) We conduct the
experiments on query processing latency.

A. Setup

We use a cluster of 21 machines (one is the coordinator) on
Emulab [21]: each has 12 GB RAM, one 2.4 GHz 64-bit quad
core Xeon E5530 processor and two 250GB 7200 rpm SATA
disks. The network bandwidth is about 40 MB/s. When we
measure the query processing time, we perform five cold runs
under the same setting and show the fastest time to remove
any possible bias posed by OS and/or network activity.

To store each generated partition on each machine, we
use RDF-3X [18] version 0.3.5 which is a RDF storage
system. We also use Hadoop version 0.20.203 running on
Java 1.6.0 to run various partitioning algorithms and join the
intermediate results generated by subqueries. In addition to
our RDF data partitioning framework, we have implemented
a random partitioning for comparison, which randomly assigns
each triple to a partition. Random partitioning is often used as
the default data partitioner in Hadoop MapReduce and HDFS.

To show the benefits of different building blocks of our
partitioning framework, we experiment with five different
extended vertex blocks: 1-hop extended out-vertex block (/-
out), 1-hop extended in-vertex block (/-in), 1-hop extended
bi-vertex block (7-bi), 2-hop extended out-vertex block (2-
out) and 2-hop extended in-vertex block (2-in). Also hashing-
based and graph partitioning-based distribution techniques are
compared in terms of balanced partitions, triple replication and
the time to complete the distribution. We use the graph parti-
tioner METIS [4] version 5.0.2 with its default configuration
to implement the graph partitioning-based distribution.

B. Datasets

We use two different benchmark generators and three differ-
ent real datasets for our experiments. To generate benchmark
datasets, we utilize two famous RDF benchmarks: LUBM
(Lehigh University Benchmark) [11] having a university do-
main and SP2Bench [20] having a DBLP domain. We generate
two datasets having different sizes from each benchmark:
(i) LUBMS500 (67M triples) and LUBM2000 (267M triples)
covering 500 and 2000 universities respectively (ii) SP2B-
100M and SP2B-200M having about 100 and 200 million
triples respectively. For real datasets, we use (iii) DBLP (57M
triples) [1] containing bibliographic descriptions in computer
science, (iv) Freebase (101M triples) [2] which is a large
knowledge base, and (v) DBpedia (288M triples) [3] which
is structured information from Wikipedia. We have deleted
any duplicate triples using one Hadoop job.

Fig. 4 shows some basic metrics of the seven RDF datasets.
The datasets generated from each benchmark have almost the

100000

100000000 100000000

Avg. #outgoing edges Avg. #incoming edges
10000
1000
100
EEE inl
innl X
S ¢ & S & &

N

(a) Avg. #outgoing edges (b) Avg. #incoming edges

N
0
&

Sl 3 2 ©
S <
RO o« W

10000

Number of types (log) Avg. Types per Subject

1000

100
1 :
n A N
s &S S S ©
AU

S
o
> 5

&

(f) Number of types (g) Avg. Types per Subject

Number of predicates (log)

(c) Number of predicates

Avg. Predicates per Type (log)

(h) Avg. Predicates per Type

©DBLP
O Freebase
4 Dbpedia

" ©DBLP
O Freebase
A Dbpedia

10000000
1000000

10000000
1000000

A
9,

100000

1 N N =
1E+0 1E+1 1E+2 1E+3 1E+4 1E45 1E+6 1E+7
#outgoing edges (log)

100 1000 10000
#outgoing edges (log)

(d) Outedge distribution (e) Inedge distribution

100000000 100000000

< LUBM500 © LUBM500
10000000 10000000

X
8 00, OLUBM2000 oOLUBM2000
1000000 | 2 ASP2B 100m 10000 z m
0000 1 X SP2B_200m 2% % SP2B_200m
S
&

10 100 1E+0 1E+2 1E+4 1E+6 1E+8
#outgoing edges (log) #outgoing edges (log)

(i) Outedge distribution (j) Inedge distribution

Fig. 4: Basic Characteristics of Seven RDF datasets

same characteristics regardless of their data size, similar to
those reported in [9]. On the other hand, the real datasets
have totally different characteristics. For example, while DBLP
has 28 predicates, DBpedia has about 58,000 predicates. To
measure the metrics based on types (Fig. 4(f), 4(g), 4(h)), we
have counted those triples having rdf:type as their predicate.
The distribution of the number of outgoing/incoming edges in
the three real datasets (Fig. 4(d) and 4(e)) have very similar
power law-like distributions. It is interesting to note that, even
though a huge number of objects have less than 100 incoming
edges, there are still many objects having a significant number
of incoming edges (e.g. more than 100,000 edges) in real
datasets. Benchmark datasets have totally different distribu-
tions as shown in Fig. 4(i) and 4(j).

C. Generating Partitions

Fig. 5 shows the partition distribution in terms of the number
of triples for different building blocks using the hashing-
based and graph partitioning-based distribution techniques.
Hereafter, we omit the results on LUBM500 and SP2B-100M
which are almost the same with those on LUBM2000 and
SP2B-200M respectively. The results show that we can get
almost perfectly balanced partitions if we extend only outgoing
triples when we construct the extended vertex blocks and
use the hashing-based distribution technique. These results are
related to the outgoing edge distribution in Fig. 4(d) and 4(i).
Since most subjects have less than 100 outgoing triples and
there is no subject having a huge number of outgoing triples,
we can generate balanced partitions by distributing triples
based on subjects. For example, the maximum number of
outgoing triples on LUBM2000 is just 14 and 99.99% of
subjects on Freebase have less than 200 outgoing triples.
The generated partitions using the graph partitioning-based
distribution technique are also well balanced when we extend
only outgoing edges because METIS has generated almost
uniform vertex partitions, even though they are a little less
balanced than those using the hashing-based technique.

However, the results clearly show that it is hard to generate
balanced partitions if we include incoming triples for our
extended vertex blocks, regardless of the distribution tech-
nique. Since there are many objects having a huge number
of incoming triples as shown in Fig. 4(e) and 4(j), partitions
having such high in-degree vertices may be much bigger than
the other partitions. For example, each of two object vertices
on LUBM2000 has about 16 million incoming triples which is

about 6% of all triples. Table I shows the normalized standard
deviation (i.e., the standard deviation divided by the mean)
in terms of the number of triples on generated partitions to
compare the balance between using the hashing-based and
graph partitioning-based distribution techniques.

TABLE I: Balance of partitions (Normalized standard deviation)

Dataset 1-out 1-in 1-bi 2-out 2-in
LUBM2000 (hashing) | 0.000 | 0.515 | 0.203 | 0.002 | 0.424
LUBM2000 (graph) 0.003 | 0.520 | 0.325 | 0.003 | 0.578
SP2B-200M (hashing) | 0.000 | 0.578 | 0.012 | 0.000 | 0.738
SP2B-200M (graph) 0.060 | 0.549 | 0.309 | 0.060 | 0.811
DBLP (hashing) 0.003 | 0.259 | 0.090 | 0.003 | 0.398
DBLP (graph) 0.036 | 0.268 | 0.196 | 0.041 0.626
Freebase (hashing) 0.002 | 0.335 | 0.165 0.003 0.379
Freebase (graph) 0.138 | 0.362 | 0.218 | 0.138 | 0.321
DBpedia (hashing) 0.002 | 0.164 | 0.075 | 0.002 | 0.083
DBpedia (graph) 0.284 | 0.201 | 0.201 | 0290 | 0.133

Table II shows the extended vertex block construction
time for different building blocks using the hashing-based
and graph partitioning-based distribution techniques. Since the
hashing-based distribution technique is incorporated into our
implementation using Hadoop for efficient processing, we do
not separate the distribution time and the extended vertex block

construction time.
TABLE II: Extended vertex block construction time (sec)

Dataset 1-out 1-in 1-bi 2-out 2-in
LUBM2000 (hashing) 276 350 1015 1727 2453
LUBM2000 (graph) 962 1683 1933 1363 2895
SP2B-200M (hashing) 196 264 797 1102 1420
SP2B-200M (graph) 700 849 1050 958 1445
DBLP (hashing) 88 89 254 414 489
DBLP (graph) 289 312 365 409 487
Freebase (hashing) 108 115 326 568 599
Freebase (graph) 399 403 505 567 585
DBpedia (hashing) 266 272 961 2453 2189
DBpedia (graph) 961 1055 1367 1593 1979

For the graph partitioning-based distribution technique, on
the other hand, there is an additional processing time to
run METIS as shown below. Concretely, to run the graph
partitioning using METIS, we first need to convert the RDF
datasets into METIS input files. It is interesting to note that
the format conversion time to run METIS considerably varies
for different datasets. Since each line in a METIS input file
represents a vertex and its connected vertices, we need to
group all connected vertices for each vertex in the RDF graph.
We have implemented this conversion step using Hadoop
for efficient processing. Our implementation consists of four
Hadoop MapReduce jobs: (1) assign an unique integer ID to
each vertex, (2) convert each subject to its ID, (3) convert
each object to its ID, and 4) group all connected vertices of

©random &1-out

<random &1-out <orandom 8Il-out aldin

<©random 81-out

10 %
(°} = -
= : al-n x1-bi © alin *1-bi) e alin xIbi ¢ . aT-n %1bi Py ® *T-bi *2-out ©2-in °
5 Q R x2out ©2in E" *2-0ut—O2:in TH *2-0Ut —©2in U *20Ut O2Ain | g X
2)) e S Swis 5 s
E® ° a9 Ew Eu Eu 0 00000%0000000 ©009g
g X g g g s
= 2 28 =2 25 S5
< » 2 £ g £
5 XRS5 £ e 5
10 2 2
o 0 0

12345678091011121314151617181920
Partition

(a) LUBM2000 (hashing)

1234567801011121314151617181920
Partition

(b) SP2B-200M (hashing)

©random &1-out
al-in *1-bi o]
*2-out ©2-in el

<random &1-out
4al-in *1-bi _
*2-out ©2-in "

%0 Q

Sn e *2-out

#Triples (

1234567891011121314151617181920
Partition

1234567891011121314151617181920
Partition

(f) LUBM2000 (graph) (g) SP2B-200M (graph)

12345678 91011121314151617181020
Partition

(c) DBLP (hashing)

<random 81-out o
4l-in *1-bi
o2-in

12345678 091011121314151617181920
Partition

(h) DBLP (graph)

12345678 91011121314151617181920
Partition

(d) Freebase (hashing)

12345678 091011121314151617181920
Partition

(e) DBpedia (hashing)

~random &1-out
4al-in *1-bi
*2-0ut ©2-in

<random &1-out
al-in *1-bi

)

o ¥2out o©zin g

X0

#Triples (million)

N
123 45678091011121314151617 181920
Partition

12345678 91011121314151617 181920
Partition

(i) Freebase (graph) (j) DBpedia (graph)

Fig. 5: Partition Distribution

each vertex. Table III shows the conversion time and running
time of METIS. The conversion time of DBLP is about 7.5
hours even though it has the smallest number of triples. It
took about 35 hours to convert the Freebase to a METIS
input file. We believe that this is because there are much more
vertices which are connected to a huge number of vertices on
Freebase and DBLP as shown in Fig. 4(e). Since most existing
graph partitioning tools require similar input formats, this
result indicates that the graph partitioning-based distribution
technique may be infeasible for some RDF datasets.
TABLE III: Graph partitioning time (sec)

Dataset conversion time | METIS running time
LUBM2000 2012 280
SP2B-200M 792 96

DBLP 27218 130

Freebase 91826 2610

DBpedia 3055 504

Fig. 6 shows, for different building blocks, the ratio of the
total number of triples of all generated partitions to that of
the original RDF data. A large ratio means that many triples
are replicated across the cluster of machines through the data
partitioning. Partitions using the 1-hop extended out-vertex or
in-vertex blocks have 1 as the ratio because each triple is
assigned to only one partition based on its subject or object
respectively. As we mentioned above, the results show that
the graph partitioning-based distribution technique can reduce
the number of replicated triples considerably, compared to the
hashing-based technique. This is because the graph partitioner
generates components in which close vertices, which have
high probability to share some triples in their extended vertex
blocks, are assigned to the same component. Especially, there
are only a few replicated triples for the 2-hop extended out-
vertex blocks. However, for the other extended vertex blocks,
the reduction is not so significant if we consider the overhead
of the graph partitioning-based distribution technique.

D. Query Processing

To evaluate query processing performance on the generated
partitions, we choose different queries from one benchmark
dataset (LUBM2000) and one real dataset (DBpedia) as shown
in Table IV. Since LUBM provides a set of benchmark queries,
we select three among them. Note that Q11 and Q13 are
slightly changed because our focus is not RDF reasoning.
We create three queries for DBpedia because there is no
representative benchmark queries.

Fig. 7 shows the query processing time of the queries for

TABLE IV: Queries

LUBM QI11: SELECT ?x ?y WHERE { ?x <subOrganizationOf> %y .

?y <subOrganizationOf> <http://www.University0.edu>}

LUBM Q13: SELECT ?x WHERE { ?x <rdf:type> <GraduateStudent> .
?x_<undergraduateDegreeFrom> <http:/www.University0.edu> }

LUBM Q14: SELECT ?x WHERE { ?x <rdf:type> <UndergraduateStudent>}
DBpedia QI: SELECT 7subject ?similar WHERE {

<Barack_Obama> <subject>> ?subject. ?similar <subject> ?subject. }
DBpedia Q2: SELECT ?person WHERE { ?person <rdf:type> <Person>}
DBpedia Q3: SELECT ?suc2 ?sucl ?person WHERE {

2suc2 <successor> ?sucl . ?sucl <successor> ?person}

different building blocks and different distribution techniques.
All building blocks ensure intra-VM processing for LUBM
Q14 and DBpedia Q2 because they are simple retrieval queries
having only one triple pattern. For LUBM Q13, random, 1-in
and 2-in needs inter-VM processing using Hadoop because
Q13 is a star query and so all triples sharing the same
subject should be located in the same partition for intra-VM
processing. On the other hand, for DBpedia Q1 which is a
reverse star query where all triple patterns share the same
object, random, I-out and 2-out needs inter-VM processing.
For LUBM Q11 and DBpedia Q3 where the object of one
triple pattern is linked to the subject of the other triple pattern,
inter-VM processing is required for random, I-out and I-
in. The results clearly show that using inter-VM processing
is slower than using intra-VM processing because of the
communication cost across the cluster of machines to join
intermediate results generated from subqueries. Furthermore,
each Hadoop job usually has about 10 seconds of initialization
overhead regardless of its input data size. In terms of the intra-
VM processing, the difference between the hashing-based
and the graph partitioning-based distribution techniques is not
significant for most cases even though they have different
balance and replication levels as shown in Table I and Fig. 6.
We think that this is because each partition is efficiently stored
and indexed in the RDF-specific storage system, thus such
level of difference on the balance and replication does not
have a great effect on query processing. The only notable
difference is when we use 2-out for partitioning because
the graph partitioning-based technique reduces the number of
replicated triples considerably. Especially, on DBpedia where
2-out using the hashing-based distribution technique generates
many replicated triples, 2-out using the graph partitioning-
based distribution technique is three times faster than that
using the hashing-based technique for DBpedia Q3.

In summary, we conclude that the most important factor of
RDF data partitioning is to ensure the intra-VM processing

IS

m Hashing-based
@ Graph partitioning-based

nnﬂk”

l-out 1-in 1-bi 2-out 2-in

(a) LUBM2000

m Hashing-based
o Graph partitioning-based

N

Replication Ratio
o =
cm ik aN O W
Replication Ratio
o [
o vk N U W

d

w

-

Replication Ratio
~

o

l-out 1-in 1-bi 2-out 2-in l-out 1-in

m Hashing-based
B Graph partitioning-based

Tk

1-bi 2-out 2-in

(c) DBLP

W Hashing-based
@ Graph partitioning-based

ﬂﬂﬂhﬂ

l-out 1-in 1-bi 2-out 2-in
(d) Freebase

m Hashing-based
@ Graph partitioning-based|

-
Replication Ratio
ok N W B O

Replication Ratio

o r
ou—vaNu‘

l-out 1-in 1-bi

(e) DBpedia

2-out 2-in

Fig. 6: Triple Replication

1000
mrandom ®m1-out 1000

m1-in o 1-bi
O2-out 02-in

m1-out
o1-bi
02-in

® random
@l-in

(b) SP2B-200M
O2-out

i

(hashmg (graph (hashmg (graph (hashmg (graph

(b) DBpedia

._
1
3
-
1]
3

,_.
15
15

Query Processing Time in Sec
Query Processing Time in Sec

,a
-

Q13 QI3 Q4 Q4 QU Qil

(hashing) (graph) (hashing) (graph) (hashing) (graph)
(a) LUBM2000

Fig. 7: Query Processing Time (sec)

for all (or most) given SPARQL queries because inter-VM
processing using Hadoop is usually much slower than intra-
VM processing. If all (or most) queries can be covered by only
outgoing extension, the graph partitioning-based distribution
technique should be preferred because it can reduce the
number of replicated triples considerably. However, for all the
other cases, the hashing-based distribution technique is a better
distribution method if we consider the huge overhead of the
graph partitioning-based technique. Also, it should be noted
that running existing graph partitioner can be infeasible for
some RDF datasets due to their complex structure.

V. RELATED WORK

Graph partitioning has been extensively studied in several
communities for several decades [13], [15]. Recently a number
of techniques have been proposed to process RDF queries on
a cluster of machines. Most of them utilize existing distributed
file systems such as HDFS to store and distribute RDF data.
SHARD [19] directly stores RDF triples in HDFS as flat text
files and runs one Hadoop job for each clause (triple pattern)
of a SPARQL query. [10] uses two HBase tables to store
RDF triples and, given a query, iteratively evaluates each triple
pattern of the query on the two tables to generate final results.
Because they use general distributed file systems which are not
optimized for RDF data, their query processing is much less
efficient than the state-of-the-art RDF storage and indexing
technology [18]. [14] generates partitions using existing graph
partitioning algorithms and stores them on RDF-3X. As we
reported in Sec. IV, running an existing graph partitioner for
large RDF data has a huge amount of overhead and is not
feasible for some real RDF datasets.

In addition, two recent papers [17], [16] have proposed
two different approaches to general processing of big graph
data. [17] promotes to store a vertex and all its outgoing
edges together and implemented a distributed system to show
the parallel processing opportunity of their approach. [16]
proposes to store a vertex and all its incoming edges together
and shows that this can speed up some graph processing on a
single server, such as PageRank. In comparison, [17] presents
a system built using out-vertex block for both subject and
object vertices, whereas [16] presents a single server solution
using the in-vertex block for both subject and object vertices.

Both are special cases of our SPA partitioner. We argue that
our SPA framework presents a systematic approach to graph
partitioning and is more general and easily configurable with
customizable performance guarantee.

VI. CONCLUSION

We have presented SPA, an efficient and customizable
RDF data partitioning model for distributed processing of
big RDF graph data in the Cloud. The main contribution is
to develop a selection of scalable techniques to distribute the
partition blocks across a cluster of compute nodes in a manner
that minimizes inter-node communication cost by localizing
most of the queries on distributed partitions. We show that
the SPA approach is not only efficient for partitioning and
distributing big RDF datasets of diverse sizes and structures
but also effective for processing RDF queries of different
types and complexity.

Acknowledgment: This work is partially sponsored by grants
from NSF CISE NetSE program, SaTC program, and Intel
ISTC on Cloud Computing.

REFERENCES

[1] “About FacetedDBLP,” http://dblp.13s.de/dblp++.php.

[2] “BTC 2012 Dataset,” http://km.aifb.kit.edu/projects/btc-2012/.

[3] “DBpedia 3.8 Downloads,” http.://wiki.dbpedia.org/Downloads38.

[4] “METIS,” http://www.cs.umn.edu/ metis.

[5] “Opening up Government,” http://data.gov.uk/sparql.

[6] “Resource Description Framework (RDF),” http.//www.w3.0rg/RDF/.
[7]1 “The Data-gov Wiki,” http://data-gov.tw.rpi.edu/wiki.

[8] “UK Legislation,” http://www.legislation.gov.uk/developer/formats/rdf.
[9] S. Duan, Kementsietsidis, Srinivas, and Udrea, “Apples and oranges: a
comparison of rdf benchmarks and real rdf datasets,” in SIGMOD, 2011.
C. Franke and et al., “Distributed Semantic Web Data Management in
HBase and MySQL Cluster,” in JEEE CLOUD, 2011.

Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL
knowledge base systems,” Web Semant., vol. 3, no. 2-3, Oct. 2005.

T. Heath, C. Bizer, and J. Hendler, Linked Data, 1st ed., 2011.

B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning
graphs,” in Supercomputing, 1995.

J. Huang, D. J. Abadi, and K. Ren, “Scalable SPARQL Querying of
Large RDF Graphs,” PVLDB, 4(21), pp. 1123-1134, August 2011.

G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs,” SIAM J. Sci. Comput., 1998.

A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: large-scale graph
computation on just a pc,” in OSDI. Berkeley, CA, USA: USENIX
Association, 2012, pp. 31-46.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in SIGMOD. New York, NY, USA: ACM, 2010, pp. 135-146.

T. Neumann and G. Weikum, “The RDF-3X engine for scalable man-
agement of RDF data,” The VLDB Journal, vol. 19, no. 1, Feb. 2010.
K. Rohloff and R. E. Schantz, “Clause-iteration with MapReduce to
scalably query datagraphs in the SHARD graph-store,” in DIDC, 2011.
M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel, “SPQBench A
SPARQL Performance Benchmark,” in /CDE, 2009.

B. White and et al.,, “An imegrated experimental environment for
distributed systems and networks,” in OSDI, 2002.

[10]
(11]

[12]
[13]

[14]
[15]
[16]

[17]

(18]
[19]
(20]
(21]

