
Improving MapReduce Performance in a Heterogeneous Cloud:
A Measurement Study

Xu Zhao1,2, Ling Liu2, Qi Zhang2, Xiaoshe Dong1
1Xi’an Jiaotong University, Shanxi, China, 710049, e-mail: zhaoxu1987@stu.xjtu.edu.cn, xsdong@mail.xjtu.edu.cn

2Georgia Institute of Technology, Atlanta, Georgia, USA, 30332, e-mail: {ling.liu, qzhang90}@cc.gatech.edu

Abstract—Hybrid clouds, geo-distributed cloud and
continuous upgrades of computing, storage and networking
resources in the cloud have driven datacenters evolving towards
heterogeneous clusters. Unfortunately, most of MapReduce
implementations are designed for homogeneous computing
environments and perform poorly in heterogeneous clusters.
Although a fair of research efforts have dedicated to improve
MapReduce performance, there still lacks of in-depth
understanding of the key factors that affect the performance of
MapReduce jobs in heterogeneous clusters. In this paper, we
present an extensive experimental study on two categories of
factors: system configuration and task scheduling. Our
measurement study shows that an in-depth understanding of these
factors is critical for improving MapReduce performance in a
heterogeneous environment. We conclude with five key findings:
(1) Early shuffle, though effective for reducing the latency of
MapReduce jobs, can impact the performance of map tasks and
reduce tasks differently when running on different types of nodes.
(2) Two phases in map tasks have different sensitive to input block
size and the ratio of sort phase with different block size is different
for different type of nodes. (3) Scheduling map or reduce tasks
dynamically with node capacity and workload awareness can
further enhance the job performance and improve resource
consumption efficiency. (4) Although random scheduling of reduce
tasks works well in homogeneous clusters, it can significantly
degrade the performance in heterogeneous clusters when shuffled
data size is large. (5) Phase-aware progress rate estimation and
speculation strategy can provide substantial performance gain
over the state of art speculation scheduler.

I. INTRODUCTION
Cloud datacenters typically employ cluster computing

infrastructure for big data processing and cloud service
provisioning. Hadoop MapReduce [2] clusters are one of the
most popular cluster deployment in the cloud. Although
compute clusters in datacenters are homogeneous by design,
as CPU, memory, storage and network communication
technologies advance over time, most datacenters continue
to upgrade their computing infrastructure. At the same time,
hybrid cloud and geo-distributed cloud become popular
solution approach to instantaneous demand of additional
computational resources to expand in-house resources and
to maintain peak service demands. As a result, most data
centers are equipped with heterogeneous sets of servers,
typically ranging from fast nodes with high CPU and
memory capacity to slow nodes with lower CPU and
memory capacity (physical machines or virtual machines).
Cloud datacenters provide different capacity of nodes at
different price, represented by Amazon EC2. In order to

meet the performance requirements of different workloads
at affordable cost, the mix of nodes with different compute,
storage and networking capacities is needed.

Unfortunately, most MapReduce implementations are
designed and optimized for homogeneous clusters and
deliver unstable and poor performance on heterogeneous
clusters. In recent years, a fair amount of independent
research has studied some problems experienced in
heterogeneous environments [4,5,7,8,10,12,13,17,18] with
LATE [4] as the most popular representative. However,
most existing efforts [5,17,18] only focus on speculation
schedulers to find the stragglers and schedule a copy of
straggler tasks on other nodes. Very little efforts have been
put forward to measure the effectiveness and efficiency of
setting a proper configuration for the heterogeneous
environment. In addition, many research efforts on tuning
MapReduce performance only analyze a subset of
parameters [6,9,15]. To the best of our knowledge, there is
no systematic study and in-depth analysis on the root causes
of unstable and sometimes poor runtime performance of
MapReduce jobs on heterogeneous clusters. For example,
how much performance gains and overhead the early shuffle
will have for data intensive applications with huge
intermediate data on heterogeneous clusters, how different
configuration parameters and their correlations may impact
on MapReduce performance on heterogeneous clusters;
when do existing schedulers, including Hadoop-LATE, fail
to deliver good performance and why. The ability to answer
these and many other related questions on performance
optimization of MapReduce jobs are critical for developing
the next generation cluster computing solutions.

Bearing these open issues in mind, in this paper, we
present a comprehensive experimental study with in-depth
analysis on two categories of performance factors: system
configuration and task scheduling, especially how different
configuration parameters and different scheduling
parameters may interact and impact on the MapReduce
performance in a heterogeneous environment. Our
measurement study shows that an in-depth understanding of
these factors is critical for improving MapReduce
performance in a heterogeneous environment.

The rest of the paper is organized as follows. Section 2
gives a brief overview of MapReduce execution model, and
the framework for distributed task scheduling. Section 3
describes the methodology of our measurement study. We
present the experimental results and analysis in Section 4 to

Figure 1. MapReduce execution model

experimentally analyze the hidden problems and the
limitations of the current Hadoop MapReduce task
scheduler (Hadoop-LATE), including the scenarios in which
it performs poorly and the in-depth experimental analysis of
the root causes for such limitations. We conclude the paper
with a discussion on related work and a summary of our
original contributions.

II. OVERVIEW AND BACKGROUND

A. MapReduce execution model
A MapReduce cluster typically consists of one master

node and a set of worker nodes. The JobTracker runs on the
master node for job execution and task scheduling, and the
TaskTracker runs on each worker node for launching and
executing tasks assigned by the JobTracker. The input data
of a MapReduce job is typically divided into multiple input
blocks, one per Map task. By default configuration, a
worker node typically has two map slots and one reduce slot
and it runs tasks on its task slots. A sketch of MapReduce
operational framework is given in Figure 1. A map task
consists of two phases: read and sort and its output file is
stored in the local storage of the node. A reduce task
consists of three phases: shuffle, sort and reduce. In the
shuffle phase, a reduce task first obtain the reduce input by
copying its input pieces from each map node based on its
partition ID. The reduce task can only enter the sort phase
after all the reduce input pieces have been copied to local
storage.

B. Early shuffle v.s. no early shuffle.
No early shuffle refers to the reduce tasks cannot start

shuffle phase until all map tasks of a job have completed. In
contrast, early shuffle breaks this rigid bulk synchronization
point by allowing the reduce task to start shuffle phase as
soon as some map tasks have completed and their map
output files are available. For example, the default early
shuffle condition in the Hadoop MapReduce configuration
is 5% of map tasks completed. Early shuffle utilizes the
parallel computing to mitigate bisector network congestion

of the cluster and work well when the number of map tasks
and intermediate data are large.

Although early shuffle can reduce the overall job
execution time, there is no reported study to date on the
additional overhead introduced by early shuffle when
shuffle data is large and its impact on (i) the execution
performance of concurrent map tasks, (ii) the amount of
performance degradation incurred at map nodes to
accommodate the early shuffle workloads, and (iii) the best
scenarios where early shuffle gives the most overall
performance gains.

C. Speculative execution in Hadoop
Speculative execution refers to the duplicate execution

of a task that is currently running at another straggler node
due to its poor performance compared to other peer nodes
for the same workload (same computation task). Two key
factors that may impact on the efficiency of speculative
execution are the accuracy of detecting straggler nodes and
the accuracy of selecting speculative execution nodes.

 Hadoop Speculative scheduler is a core component of
the Hadoop MapReduce middleware package. Hadoop-Late
is the most recent production speculative scheduler that
replaced the previous Hadoop Speculative scheduler. It
incorporates the LATE strategy [4], which estimates the
remaining time of each task using the longest approximate
time to end. Although LATE and Hadoop LATE are simple
and light-weight, the current implementation does not take
into consideration of early shuffle.

III. MEASUREMENT METHODOLOGY
In this section we outline the objectives of this

measurement study and the methodology we use to design,
setup and conduct the experiments.

A. Objectives of the Measurement study.
The main objective of this measurement study is two

folds: First, we report the performance degradations that are
observed when measuring the current Hadoop Late task
scheduler under varying system configurations and with

different workload characterizations. To the best of our
knowledge, many of the observations have never been
reported before. Second, for each of the problems observed,
we design and conduct in-depth experimental analysis to
identify and understand where the root causes of the
problem may be, especially in the context of distributed task
scheduling, the system configuration and parameter setting
choices.

We argue that such an in-depth measurement analysis
of the performance problems and the limitations of the
Hadoop LATE scheduler can provide deep insights and
optimizations for system developers to further improve the
availability, the robustness and the performance of Hadoop
MapReduce task scheduling. More importantly, this
measurement study also provides valuable guidance on
designing the next generation distributed task scheduling
algorithm that can provide high overall execution efficiency
for distributed long running jobs running on heterogeneous
clusters with early shuffle, while minimizing unnecessary
consumption of compute resources.

B. Measurement Design
In order to meet the above goals of our measurement

study, we plan to focus our experiments and measurement
analysis on the following two categories of issues, which
have not been studied in depth in the literature but are
critical to the cloud consumers to better understand how to
configure their systems and clusters in the cloud data centers,
and the cloud service developers to design and implement
the next generation MapReduce task scheduler.

The first category is about system configuration. We
argue that correct configuration is a key factor for
MapReduce performance. We are interested three
fundamental aspects of correct configurations: (i) Finding
the problems inherent with certain default configuration
parameters; (ii) Analyzing and understanding the root
causes of the problems; and (iii) Learning the best practice
and possibly the automated method to set the configuration
parameters. We show that by conducting extensive
experiments with different settings of configuration
parameters, it can guide us to find the interesting
correlations between different parameters and different
settings of parameters, which further facilitate our analysis
on the root causes of the problems found due to the design
choices made in the Hadoop MapReduce middleware.

The second category is about task scheduling, a core
component of Hadoop MapReduce software package. We
argue that efficient task scheduling and effective system
configuration are equally important for improving
performance of MapReduce jobs. Although a lot of efforts
have been made to improve the Hadoop LATE task
scheduler, most of existing works show improvements on
restricted workloads under specific configurations with
much higher complexity compared to Hadoop LATE, due to
the lack of in-depth understanding of the strengths and the
inherent weakness in the current task scheduler. In this

measurement study, we conduct targeted experiments to
identify the root causes of the inefficiency displayed by the
current MapReduce task scheduler and provide in-depth
analysis of the problems due to executing MapReduce jobs
in a heterogeneous cloud environment from both task
scheduling and system configuration perspective.

C. Experiment Environment
Our measurement results reported in this paper are

conducted on a heterogeneous Hadoop0.21 cluster with
three types of nodes: (i) 10 fast nodes with 64-bit Intel Quad
Core Xeon E5530, 12G memory, 500G 7200 rpm Western
Digital SATA disk. (ii) 3 slow nodes: Core 2 Duo, 2G
memory, 250G disk. (iii) 3 slowest nodes: 64-bit Xeon 1
core 3 GHz, 2GB memory, 146G disk. And take one fast
node as master node.

As we mentioned earlier, the intermediate result size
such as map outputs can be a dominating factor for
execution time of shuffle phase. By switching on local
combine, we may reduce the size of intermediate results
significantly for some applications such as WordCount.
However, local combine may not be applicable to some
other applications such as Hadoop TeraSort. Thus we design
three types of benchmarks for our measurement study: (a)
Type 1, data-intensive applications with large shuffle data:
such as WordCount without local combine and
InvertedIndex which takes a list of documents as input and
generates word-to-document indexing. (b) Type 2, data-
intensive applications with small shuffle data: e.g.,
WordCount with local combine turned on. (c) Type 3,
compute-intensive applications with no shuffle data: e.g.,
Kmeans.

IV. PERFORMANC MEASUREMENT AND ANALYSIS
In this section, we study the key factors that affect the

performance of a MapReduce job running on a
heterogeneous cluster. We divide the set of key factors into
two categories and report our measurement results. For each
result, we further provide experimental analysis and
discussion to gain better understanding of the root causes.
The first category of key factors is the system configuration
settings. We design and conduct several sets of experiments
with different combinations of configuration settings and
identify strong and interesting correlations between different
configuration parameters and different settings of
parameters, then we conduct in-depth analysis of the root
causes from the perspectives of Hadoop MapReduce
implementation. The second category of key factors is
related to task scheduling. Similarly, we design and conduct
a suite of experiments to expose the problems of current
MapReduce task scheduler and analyze the root causes from
both the design of the task scheduling algorithms and the
runtime execution information.

A. Performance impact of system configuration

 (a) job execution time (b) map phase execution time

Figure 3. Effectivenees of speculation

 (a) Wordcount without combine (b) InvertedIndex
 Figure 4. Map task execution time on fast node

 (a) Map phase Execution time

(b) Job Execution time

Figure 2. Performance of five job execution models

In this section, we study the effect of three types of
system configurations on the performance of MapReduce
jobs. We first study the effect of early shuffle and
speculation. Then we study the effect of map input block
size and memory buffer size on the performance of jobs.
Finally, we study the effect of varying of task slots on
different types of nodes on the performance of jobs.

1) Effect of early shuffle and speculation
To better understand the effect of early shuffle and

speculation on the performance of MapReduce jobs, we
consider five execution models based on whether to turn on
or off early shuffle and speculative execution. To better
understand the advantage of early shuffle, we use the type 1
benchmark applications with large intermediate results. We
varying the block size and the input data size and set the
number of reducers to 9, which equals to the number of fast

nodes. Every experimental plot is the average of 3 runs.
Figure 2 (a) shows map phase execution time of the five

models with input data size varying from 15G to 30G and
map input block size from 256MB to 512MB. This set of
experiments shows a number of interesting observations.
First, when block size increases from 256MB to 512MB, the
map phase execution time is increased in all five models.
This is expected. However, it is unclear whether the smaller
block size will always lead to better performance. This
motivates us to design another set of experiments to be
discussed in the next section (see Figure 4, 5). Second,
when turning on early shuffle, the map phase execution time
is increased compared to no early shuffle, as expected. Also
speculation can improve the effectiveness of early shuffle.
The third observation is that the map phase execution time
with only map speculation is more efficient than with both

map and reduce speculation. This implies that reduce
speculation can add additional overhead on map execution.

Figure 2 (b) shows the overall job execution time in all
five models. We observe that early shuffle always provides
faster job response time than without early shuffle. Early
shuffle combined with speculative execution offers the best
performance among all five models. Also speculation can
significantly improve the overall job response time, which
shows the effectiveness of the current speculative scheduler,
Hadoop Late. However, by looking closer at the 3rd group
of histograms (30G, 256m), we make an interesting
observation: the performance of the execution model with
no early shuffle and speculation is surprisingly poor
compared to other three groups of histograms. This indicates
that the speculative execution may not offer stable
performance gain (effectiveness). This motivates us to
design the next set of experiments shown in Figure 3(a). By
examining the best, worst and average job response time
with block size of 256MB and 512MB, we observe that the
speculative execution indeed shows unstable effectiveness.
Also the worst case is almost 40% longer than the best case.
Figure 3 (b) shows the map phase execution time for type 2
benchmark applications WordCount with local combine
turned on with the input data size of 18G, block size of
256MB. We observe that speculation does not reduce the
execution time, which indicates that speculation may not be
always effective.

2) Effect of block size and memory buffer size
Recall Figure 2(a), the map phase execution time will

increase as the block size increases. In this section, we first
study map task execution time by varying block size from
128MB, 256MB to 512MB. We use type 1 benchmark
applications in the experiments reported in this section.
Figure 4 shows the map task execution time of two type 1
applications on fast node, we observe that although the map

(a) Fast node (b) Slow and Slowest node

Figure 6. Map task execution time with different map slots

(a) CPU utilization (b) Memory utilization

Figure 7. CPU and Memory utilization with different map task slots
on fast node (WordCount without combine)

 (a) (K,V) map phase (b) Sort phase

 Figure 5． Two phases’ ratios with different block sizes

 (a) CPU utilization (b) Memory utilization

Figure 8. CPU and Memory utilization with different map task slots
on fast node (Kmeans)

task execution time is not linear to input block size, the
(K,V) map phase is almost linear to the input block size.
Thus we design the next set of experiments to measure the
execution time for each of the two phases by running on
three types of nodes respectively. Figure 5 shows the results
of running the application WordCount without combine. We
observe that (K,V) map phase and sort phase have different
sensitivity to input block size. The (K,V) map phase is
linear to the input block size. However, the execution time
of sort phase is not linear to input block size. Also the ratio
of sort phase with different block size is different for
different type of nodes

In summary, small block size can reduce the execution
time of speculative map task, while bigger block size can
reduce the number of map tasks. Also different types of
workloads may produce different sizes of intermediate data.
Although the best configuration can be different for
different types of workload, it is helpful to gain an in-depth
understanding of how block size, memory buffer size in
map task and JVM memory size may have different impact
on the execution time of map task and reduce task.

3) Effect of map slots and different type of nodes
In this section, we study the effect of different map

slots for different type of nodes on the performance of
MapReduce jobs. To better understand the effect of varying
map slots, we run this set of experiments with no early
shuffle. Figure 6 (a) shows the map task execution time by
varying the number of map slots on fast nodes, ranging from
2 to 9 per map node. By increasing the allocation of map
slots from 2 to 4, the map execution time has no obvious
increase compared to 2 map slots. However, when the
allocation of map slots is increased to 6 map slots or higher,
we see that the map task execution time continue to
increases quickly compared to the allocation of 2 map slots,
with about 30% increase at 6 slots, 80% of increase at 8
slots and close to 200% of increase at 9 slots. One obvious

reason is that as the allocation of map slots on the fast nodes
increases from 2 to 9, the number of map output files to be
generated for the map tasks running on fast nodes will
equally be increased. Thus it may take much longer to
perform the merge-sort step for each map task. We validate
this analysis by measuring CPU and memory utilization
when the allocation of the map slots is changing from 2 to 9.

 Figure 7 measures the CPU utilization and memory
utilization on fast nodes when varying the number of map
slots from 2 to 9. We see that the CPU utilization reaches
100% most of the time when the allocation of map slots is
increased to 8 slots. In contrast, with 6 slots, the CPU
utilization is at 90% most of the time and occasionally
approaching 100%. But with 4 slots, the CPU utilization is
increased to the range of 50% to 70% comparing to the CPU
utilization of about 38% for 2 map slots. Interestingly, for
memory utilization on fast node, we used the default JVM
memory setting of 200MB when run the map task or reduce
task. With the setting of 8 map slots, the memory utilization
of the map task is approaching 100% only at the end of the
map task execution, which is the time when merge-sort is
performed. For all map slot settings, the memory utilization
curves show consistently that the sort step in the map phase
consumes much more memory. This set of experiments also
show that CPU is the main bottleneck during the map
execution when the map slots are 6 or 8 but when the
allocation of map slots is increased to 9 or higher, both CPU
and memory become bottleneck, though the memory
utilization only reaches 100% at the end of the merge step.

Figure 8 shows the CPU and Memory utilization when
varying the number of map slots on fast node for type 3
benchmark application like Kmeans. We observe that for
this type of application, CPU can be the bottleneck while
memory utilization is low. This set of experiments shows
that assigning the map slots simply based on the capacity of
memory like Yarn [3] is not always effective.

 (a) Case one (b) Case two

Figure 11. Two cases of reduce task execution time and reduce nodes
distribution (from left to right is reduce task 0 to reduce task 8)

 (a) Slow node (b) Fast node
 Figure 9. Map task execution time (1s,2w denotes 1 slot with 2 workloads)

 (a) 4 slots on fast node (b) 6 slots on fast node

Figure 10. Varying map slots with three workloads on fast node

B. Performance impact of task scheduling algorithms
In this section, we study and analyze the problems of

current task scheduler from three aspects: (i) Effect of early
shuffle on map task scheduler; (ii) Effect of early shuffle on
reduce task scheduler; and (iii) Effect of early shuffle on
speculation task scheduler (Hadoop-LATE scheduler).

1) Effect of early shuffle on map task scheduler
When early shuffle starts, each node running map tasks

may have to run the following three types of workloads
concurrently:
e Map workload: It still runs the remaining map tasks.
e Shuffle serving workload: When there are map output

files on this node, there will be reduce workload that
serves other reduce tasks of fetching data from this node.

e Shuffle fetching workload: If a reduce task is running on
the node, there will be reduce workload of fetching the
partition of the map outputs from other map nodes.

The last two workloads may incur additional and possibly
excessive burden on slow nodes and sometimes they may
even slow down the progress rate of the fast node for the
remaining map task. Consequently, the estimation of map
progress rate may no longer be accurate, which may mislead
all the decision made solely based on the progress rate, such
as straggler detection and speculation task selection in the
speculation scheduler.

All experiments presented in this section will measure
the map task execution time with varying allocation of map
slots when turn on the early shuffle. For any node that starts
early shuffle, the node will run two or three type of
workloads concurrently. For presentation convenience, we
classify all map nodes into three types in the presence of
early shuffle: 1) One workload type (Map workload); 2)
Two workload type (Map workload + Shuffle serving
workload); 3) Three workload type (Map workload +
Shuffle serving workload + shuffle fetching workload). First
we measure the map task execution time on fast node and
slow node with varying number of map slots when turn on
early shuffle.

 Figure 9 (a) shows the map execution time on slow
node. We observe that no matter how many map slots are
set on the slow node, when the node has 3 workloads, the
map task execution time will become significantly slow.
Another interesting observation is that early shuffle will
cause some startup time before the (K,V) map phase
actually starts. This startup time is the time spent waiting to
assign the JVM. This result suggests that the scheduler
should be sensitive to the types of nodes and do not assign
reduce task on the slow node before it finishes its map tasks.

Figure 9 (b) shows the map execution time on fast node.
As expected, as the number of map slots increases from 2 to
8, the execution time continues to slow down. We observe
that when map slots is 2 and 4, the execution time of map
task on the node with three workloads is only slightly slow,
however, when map slots become 6 and 8, the node with
three workloads become dramatically slow. We monitor the
CPU and memory utilization of the node with three
workloads. Figure 10 shows the allocation of 4 slots and 6
slots on fast node. We can see that when the map slot is 4,
the CPU utilization does not reach 100%, and however,
when map slot is 6, the CPU utilization reaches to 100%. In
all cases, the memory utilization can reach up to 100%.

This set of experimental results suggests that when both
CPU and memory utilization are approaching 100%, the
scheduler should not schedule more map tasks on this node.
Also when early shuffle is turned on, the resource utilization
is dynamic and more complexity. Thus the current map
scheduler that assigns all types of nodes uniformly a fixed
number of map slots may fail to achieve the best
performance. We need an adaptive scheduler that can fully
utilize the information of node status and assign tasks
dynamically.
2) Effect of early shuffle on Reduce task scheduler

In this set of experiments, we identify the problems of
reduce task scheduler in the presence of early shuffle. Recall
our experimental setup, we set 9 reduce tasks, which equals
to the number of fast worker nodes in our heterogeneous
cluster of 16 nodes. Ideally, the reduce task schedule should
be able to schedule all nine reduce tasks on the nine fast
nodes. However, when the reduce phase started, the reduce
scheduler schedules reduce tasks randomly in the sense that
the master node will assign the first reduce task 0 (input data
is partition 0 of all the map output files) to the first node
with free reduce slot which requests for the reduce task, then
assign the next reduce task 1 to the second node with free
reduce slot, and so forth. Unfortunately, the input data of

Table 3. Slow->Fast case
Estimate(s) Real(s)

77.58 180
51.82 153

 Table 4. Slowest->Slow case
Estimate(s) Real(s)

289.1 183

 Table 2. Fast-> Fast case
Estimate(s) Real(s)

217.17 138
205 102

Table 1. The distribution of speculative tasks
 Slowest-

>Slow
Slow-
>Slow

Fast-
>Slow

Slowest-
>Fast

Slow-
>Fast

Fast-
>Fast

Map no early
Shuffle

3 0 0 0 0 6
Map early
Shuffle

0 0 2 2 4 4
Reduce early
Shuffle

0 0 1 2 1 1

 (a) Different nodes (b) Different workloads (c) Different slots
 Figure 12. The ratios between (K,V) map phase and sort phase in Map task

reduce tasks are skewed because of the partition skewedness.
So the scheduler may assign the reduce task with largest
input data to the slowest node, which is the worst case
scenario.

Figure 11 shows the two reduce nodes distributions
obtained by running the same experiment twice. The set of
experiments in Figure 11 shows clearly that the assignment
of reduce tasks is random. Another interesting observation
is is that reduce 7 with largest input data has been scheduled
on a slow node in case one and a slowest node in case two.
This severely hurts the performance of reduce tasks.

Although, reduce task speculation can alleviate the
errors made by the reduce task scheduler to some extent, it
cannot solve the problem. One approach to address this
problem is that before scheduling a reduce task to the node
requesting for reduce task, the reduce scheduler first checks
if this node is a slow node or not. It only schedules the
reduce task on it if it is not a slow node. This approach
needs a new algorithm to measure the progress rate and the
performance of the node.

3) Effect of early shuffle on speculation scheduler

Recall Figure 3 we have shown that the performance of
speculation is not stable. The problems of current
speculation scheduler can be summarized as follows:
e Waste resources: a good portion of speculative tasks

cannot help reduce the execution time of the detected
straggler tasks.

e Degradation of performance: In the case of eager reduce
task speculation in early shuffle, the additional reduce
task can hurt the map execution time on the node. In the
case of wrong speculation, running the speculation task
on slow node can delay the whole job execution time.
One of the main reasons for the above problems is due

to the fact that Hadoop-LATE uses the fixed ratio of 2:1
between (K,V) map phase and sort phase for calculating the
map progress rate, and uses the fixed ratio of 1:1:1 for the
three phases (shuffle, sort and reduce) of the reduce task.
Our experimental results in Figure 12 show that the ratio
can be different in different type of nodes (Figure 12 (a)),
different applications (Figure 4), different time in the same
node (Figure 12 (b)) and different configurations (Figure 4,
Figure 12 (c)). Another problem with the current speculation
scheduler is its eager and simple speculation policy: When
Hadoop-LATE find the task with the longest remaining time,
the scheduler will assign this task to the node that has idle
slot. When do early shuffle, too eager reduce speculation
will affect the performance of map tasks. To provide in-

depth analysis of why current Hadoop-LATE cannot work
well in the presence of early shuffle, we conduct three sets
of experiments: the map speculation performance without
early shuffle, the map speculation performance with early
shuffle, and the reduce speculation performance. All use the
type 1 benchmark application, WordCount without combine.
We consider six speculation situations: Slowest Æ Slow;
SlowÆSlow, Fast Æ Slow, Slowest Æ Fast, Slow Æ Fast,
and Fast Æ Fast. For the case Slowest Æ Slow, it means
that Hadoop-LATE detects the task with longest remaining
time on slowest node and assign the speculative task on the
slow node.

Table 1 shows the distribution of speculative tasks of
the three sets of experiments. We can see that there are 9
speculative tasks when do map speculation no early shuffle,
but all of them are not beneficial and have been killed. The
three incorrect FastÆSlow speculative tasks are due to the
wrong slow node detection, where the scheduler does not
filter the slow node from fast node, and wrong selection of
slow nodes for speculative tasks.

When we turn on early shuffle and speculation, we have
12 speculative tasks (see the distribution in Table 1), 5 of
which fail to improve the execution time of original map
tasks, though they are correct speculative tasks. These 5
speculative tasks are distributed as 2 FastÆFast, 2 SlowÆ
Fast, 1 Slowest Æ Slow. Table 2 shows the two FastÆ Fast
cases, from the results we can see the actual remaining time
is greater than the estimate. Table 3 shows the two SlowÆ
Fast cases, again the estimate remaining time is larger than
the actual remaining time. Table 4 shows the case of
SlowestÆ Slow, the actual remaining time is still smaller.
In reduce case, FastÆ Slow and FastÆ Fast denotes wrong
detection of slow node and straggler when do early shuffle.

This set of experiments suggest two design principles
for developing the next generation speculation scheduler: (1)
we need method to calculate the progress rate of every
phase to capture the dynamics of different applications,
different types of nodes and different configurations. (2) We
need more practical and yet accurate speculation policies
that are phase aware and can filter out noises.

V. RELATED WORK
A fair amount of research efforts has been dedicated to

improving the performance of MapReduce [1] in
heterogeneous environments. However, most of them focus
on optimizing the task scheduler or auto-tuning the
configuration parameters. LATE [4] is the first to show the
problems of MapReduce in heterogeneous environments
and improves the native speculation scheduler by
introducing the LATE method to compute the progress rate
of tasks. Mantri [5], MCP [17], BASE [18] improves LATE
by optimizing the speculative execution.

Hadoop auto-tuning are proposed in recent literatures [6,
9, 13, 15]. The motivation is to automatically find the
optimal configuration for a job. The self-tuning system
provides Job-Level tuning.

Recently, a new Hadoop version Yarn [3] is developed.
In this version, the JobTracker in Hadoop 0.21 is replaced
by the ResourceManager and ApplicationMaster. The
ResourceManager is responsible for computing resource
allocation and the application-specific ApplicationMaster is
responsible for task scheduling and coordination. Our work
on improving the efficiency of the task scheduling in
MapReduce Job can also help system developer to improve
the ApplicationMaster in Yarn.

To the best of our knowledge, none of the existing
works has provided a comprehensive study of the impact of
early shuffle on the effectiveness of MapReduce task
scheduler and the key factors for improving the performance
of MapReduce in heterogeneous environments.

VI. CONCLUSION
We have presented an in-depth measurement study on

two categories of factors: system configuration and task
scheduling, which are critical for improving MapReduce
performance in a heterogeneous environment. We conclude
with a number of key findings. First, early shuffle, though
effective for reducing the latency of MapReduce jobs, can
affect the performance of both map tasks and reduce tasks
differently. Second, different workloads may have different
sensitivity to input block size and thus adequate settings of
Memory buffer size for map tasks and JVM memory size
can have drastic impact on both task performance and
resource utilization. Third, dynamic node capacity and
workload aware scheduling map or reduce tasks can further
enhance the job performance and improve resource
consumption efficiency. Fourth, random scheduling of
reduce tasks, thought works well in homogeneous clusters,
can significantly degrade the performance in heterogeneous
clusters when shuffled data size is large. Finally, we
conjecture that phase-aware progress rate estimation and
speculation strategy can provide substantial performance
gain over the state of art speculation scheduler. To the best
of our knowledge, this is the first in-depth measurement and
analysis on critical performance properties of MapReduce in
heterogeneous environments.

ACKOWNDEGMENT
This research is partially supported by grants from NSF

CISE NetSE program, SaTC program, I/UCRC, an IBM
faculty award and a grand from Intel ICST on Cloud
Computing. The first author is also supported by the
National Natural Science Foundation of China
(No.61173039), the National High Technology Research
and Development Program of China (No.2012AA01A306)
and the National Natural Science Foundation for Youth
Scholars of China (No.61202041).
References
[1] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing

on Large Clusters. In Communications of the ACM, 51 (1): 107-113,
2008.

[2] Hadoop, http://lucene.apache.org/hadoop
[3] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas,Sharad

Agarwal, et al. Apache hadoop yarn: Yet another resource negotiator.
In Proceedings of the Fourth ACM Symposium on Cloud Computing.
ACM, 2013.

[4] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
Improving mapreduce performance in heterogeneous environments,
in Proc. of the 8th USENIX conference on Operating systems design
and implementation, ser. OSDI’08, 2008

[5] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B.
Saha, and E. Harris, Reining in the outliers in map-reduce clusters
using mantri, in Proc. of the 9th USENIX conference on Operating
systems design and implementation, ser. OSDI’10, 2010.

[6] H.Herodotou, H.Lim, G.Luo, N. Borisov, L.Dong, F.B.Cetin, S.Babu,
Starfish: A self-tuning Systime for Big Data Analytics, 5 th Biennial
Conference on Innovative Data Systems Research, CIDR11, 2011

[7] Y.Kwon, M.Balazinska, B.Howe, J.Rolia . SkewTune : mitigating
skew in mapreduce applications. In Proc. Of the SIGMOD Conf ,May
2012

[8] F.Ahmad, S.Chakradhar, A.Raghunathan, T.N.Vijaykumar. Tarazu:
Optimizing MapReduce on Hetergogeneous Clusters. ASPLOS’12 ,
March 2012

[9] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy. A Platform
for Scalable One-Pass Analytics using MapReduce. In Proc. of the
SIGMOD Conf., June 2011

[10] Z.Fadika, E.Dede, J.Hartog, M.Govindaraju. MARLA: MapReduce
for Heterogeneous Clusters. CCGrid 2012.

[11] Wenhui Lin, Jun Liu. Performance Analysis of MapReduce Program
in Heterogeneous Cloud Computing. Journal of Network, VOL 8,
No.8 ,August, 2013

[12] M. Hammoud and M. Sakr. Locality-aware reduce task scheduling for
mapreduce. In 2011 IEEE Third International Conference on Cloud
Computing Technology and Science (CloudCom 2011)

[13] Wenhui Lin, Jun Liu. Performance Analysis of MapReduce Program
in Heterogeneous Cloud Computing. Journal of Network, VOL 8,
No.8 ,August 2013

[14] G.Ananthanarayanan , A.Ghodsi, S.Shenker, I.Stoica. Effective
Straggler Mitigation : Attack of the clones. NSDI 2013.

[15] Kun Wang , Juwei Shi, Ben Tan, Bo Yang. Automatic Task Slots
Assignment in Hadoop MapReduce .ASBD 11. October 2011.

[16] Q. Chen, C. Liu, Z. Xiao, Improving MapReduce Performance
UsingSmart Speculative Execution Strategy. IEEE Transactions on
Computer, 2013.

[17] S. Babu, “Towards automatic optimization of mapreduce programs,”
in Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 2010, pp. 137–142

[18] Z.H. Guo, G. Fox, M. Zhou, Y. Ruan.Improving Resource Utilization
in MapReduce. 2012 IEEE International Conference on Cluster
Computing (CLUSTER). pp. 402-410, 2012

