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Abstract—New dynamic cloud pricing options are emerging
with cloud providers offering resources as a wide range of CPU
frequencies and matching prices that can be switched at runtime.
On the other hand, cloud providers are facing the problem of
growing operational energy costs. This raises a trade-off problem
between energy savings and revenue loss when performing actions
such as CPU frequency scaling. Although existing cloud con-
trollers for managing cloud resources deploy frequency scaling,
they only consider fixed virtual machine (VM) pricing. In this
paper we propose a performance-based pricing model adapted
for VMs with different CPU-boundedness properties. We present
a cloud controller that scales CPU frequencies to achieve energy
cost savings that exceed service revenue losses. We evaluate the
approach in a simulation based on real VM workload, electricity
price and temperature traces, estimating energy cost savings up
to 32% in certain scenarios.

I. INTRODUCTION

With the wide range of VM types, heterogeneous infras-
tructure and different computing environments including VMs
and containers [1], estimating the performance of provisioned
resources is becoming increasingly challenging [2]. New cloud
pricing schemes are emerging where resources are priced
based on the delivered performance. For example, the CPU
frequency provided to a VM at runtime determines the price
[3], with high CPU frequencies being more expensive. We call
this model performance-based pricing and it is used in pro-
duction by cloud providers, such as ElasticHosts [4]. Though
this approach mainly targets users, it could also be used by
cloud providers to control their energy consumption. Energy
consumption of data centers is becoming a major issue, ac-
counting for 1.5% of global electricity usage [5]. Furthermore,
modern clouds may consist of geographically-distributed data
centers influenced by dynamic local factors, such as real-time
electricity prices [6] and temperature-dependent cooling [7],
that we call geotemporal inputs.

We call the subsystem of the cloud, that determines the
actions to allocate and manage the VMs, a cloud controller.
Adapting the cloud controller to geotemporal inputs through
actions, such as CPU frequency scaling, raises a trade-off
problem between the potential energy savings and service
revenue losses incurred under performance-based pricing. This
is the challenge at the core of this paper.

Frequency scaling is a power management technique com-
monly used to lower the operating frequency of hardware
resources in order to reduce power consumption [8]. However,
frequency reduction may degrade the performance of re-
sources. Depending on the workload characteristics, workload

performance may be affected in different ways by the re-
source’s operating frequency [9]. E.g., CPU-bound workloads
are more sensitive to the provided CPU frequency. On the
other hand, the performance of I/O-bound workloads is less
sensitive to frequency reduction. As the operating frequency
may affect workload performance, pricing models can be used
as a mechanism to offer motivation to users for configurations
with different speed and cost characteristics, with the price of
each VM adjusted based on the perceived performance level.
For example, users of services with heterogeneous hardware,
such as Amazon EC2, would benefit from a pricing scheme
that takes into account the volatile hardware performance by
being charged based on the performance perceived by the
VM [2]. The gross profit from energy savings and service
revenue losses may not be positive for some CPU frequency
scales. Pricing schemes can be used by the providers to
find configurations where the energy cost savings exceed the
service revenue losses to balance the trade-offs.

Existing work on CPU frequency scaling and VM migration
aims to reduce energy consumption without significant impact
on workload performance [10], [11]. However, such work is
limited to fixed pricing and does not consider performance-
based pricing. Also, geotemporal inputs of data centers, includ-
ing electricity prices and temperature-based cooling, are not
explored in existing methods when deploying VM migration
[12] or CPU frequency scaling actions [13]. Methods that
consider geotemporal inputs [14], [15] only perform initial
job placement, without considering reallocation through VM
migration or frequency scaling.

In this paper, we present a novel cloud controller suitable
for performance-based pricing that is invoked periodically
(e.g. on new VM requests or geotemporal input changes) to
apply VM migrations and CPU frequency scaling. We firstly
develop a pricing model that can be applied for energy-aware
cloud control based on the actual impact that CPU frequency
scaling will have on a VM’s performance. This means that
the price is determined by the performance perceived by the
VM user based on the workload characteristics, as opposed
to the performance provided to it. Hence, we call this model
perceived-performance pricing. The model computes the VM
price based on the CPU frequency and according to the CPU-
boundedness of each VM. Secondly, we propose Best Cost Fit
Frequency Scaling (BCFFS), a cloud controller we developed.
The idea behind this cloud controller is to combine frequency
scaling and VM migrations to reduce energy costs for VMs as
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long as the performance-based revenue losses do not exceed
the energy cost savings. It is a two-stage algorithm that first
migrates VMs based on geotemporal inputs and in the second
stage applies CPU frequency scaling based on the energy-
revenue trade-off problem.

We evaluate the BCFFS cloud controller by comparing it to
two baseline controllers [12] in a trace-based simulation using
the Philharmonic framework we developed [16]. We compute
the service revenue and energy cost based on historical traces
of real-time electricity prices [17] and temperatures. CPU-
boundedness values in the simulation are distributed according
to the PlanetLab dataset of VM CPU usage. We show that
energy savings up to 32% without significant service revenue
reductions are possible using the BCFFS cloud controller.

The key contributions are: (1) We develop a perceived-
performance pricing model for determining the VM price
based on the provided CPU frequency and workload CPU-
boundedness. (2) We propose a BCFFS cloud controller for
VM migration and CPU frequency scaling by balancing the
trade-offs of service revenue loss and energy savings. (3) We
evaluate the controller in a simulation based on realistic CPU-
boundedness and geotemporal input traces, providing insights
into parameters important for the efficiency of the controller.

After examining the related work in the next section, in
Section III we describe the considered problem. In Section IV
we present the power and pricing models. In Section V we
explain our BCFFS cloud controller. In Section VI we present
the evaluation methodology and the most significant results.
We provide our concluding remarks in Section VII.

II. RELATED WORK

Adapting distributed systems to geotemporal inputs has been
studied previously. In [18], network routing in content delivery
networks is adapted for real-time electricity pricing (RTEP).
Savings of up to 40% of the full electricity cost are estimated.
Job placement based on geotemporal inputs for map-reduce
jobs is researched in [19] and for computational grids based
on both RTEP and cooling in [14], [15]. However, geotemporal
inputs as a basis for scaling CPU frequencies or as a counter-
balance to performance-based pricing has not been researched.

A lot of work focuses on power management techniques
and particularly frequency scaling [10], [13], [20]. In [13], a
cloud scheduler to prioritise and allocate jobs to VMs taking
into account the required service level agreement (SLA) of the
users is proposed. The algorithm reduces energy consumption
by allocating the minimum resource requirements to VMs in
order to avoid resource wastage and controlling the operating
frequencies of the hosts under light workloads, without degrad-
ing the performance of the executing jobs. Job scheduling to
VMs using frequency scaling is also the subject in [10]. The
proposed approach scales the frequencies of the cluster servers
at runtime and schedules the queued VMs to servers where
VM performance requirements can be met. The decision is
based on their power profiles, preferring servers that operate
at lower frequencies. In contrast to related work, our adaptive

approach scales the operating frequencies based on the CPU-
boundedness of the mapped VMs while assessing the impact
frequency reduction has on the provider’s gross profit.

Also, the impact of frequency scaling on the system and
workload performance is investigated in many studies [8],
[9], [20], [21]. The proposed compiler algorithm in [21] aims
at identifying program regions with low CPU utilization to
scale the operating frequency and reduce energy consump-
tion without impacting workload performance significantly.
The authors introduce a metric to model workload CPU-
boundedness, based on the idea that potential energy savings
from frequency scaling depend on the CPU-boundedness of
the benchmark, with more CPU-bound workloads having
lower energy savings. The work in [8] investigates the power-
performance features of systems that support power manage-
ment techniques, introducing the critical power slope concept
to determine the operating performance points of a system
that lead to energy savings. Metrics to predict the energy-
performance trade-off and determine the operating gears to use
are also the focus in [9], investigating the impact of frequency
scaling on workload performance for different HPC workloads.

III. PROBLEM DESCRIPTION

In this work, we consider a single infrastructure as a
service (IaaS) cloud provider with a large number of physical
machines (or hosts) located among a set of geographically dis-
tributed data centers. The cloud is influenced by geotemporal
inputs, such as real-time electricity prices and temperature-
dependent cooling efficiency, which are different for each data
center. Each physical machine (PM) has a specified number
of resource types with maximum capacities (e.g. CPU core
number or RAM amount) and can operate at a number of
available CPU frequencies.

Each PM can host multiple VMs to serve the users’
requests. For example, a user can request a VM with 1
CPU core and 1024 MB of RAM. Depending on the host’s
operating frequency and the VM’s CPU usage characteristics,
the performance level of the VM may vary. For example,
performance degradation that results from CPU frequency
reduction is lower in the case of less CPU-bound workloads.
A parameter (β ) to characterize the CPU-boundedness of a
workload based on the computation time at the corresponding
operating frequencies is introduced in [21] and investigated in
other studies [9], [20]. The parameter ranges between 0 and 1,
with more I/O-bound VMs taking values close to 0 and CPU-
bound VMs close to 1. In our proposed model, the parameter β

is used as a performance metric to characterise the sensitivity
of the VM performance on frequency scaling based on the
CPU usage. Each PM can access the CPU usage of the VMs
and monitor the impact of CPU on VM performance [22].

The virtual and physical machines are managed by a cloud
controller which determines the actions to be performed. These
include the migration of a VM to a PM, suspending or
resuming a PM and the increase or decrease of the operating
frequency of a PM. VM migration actions result in a migration
cost overhead modelled in [23], while the transition overhead
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from frequency scaling is considered to be negligible [20], as
well as suspending or resuming empty PMs [24].

To illustrate the problem, we provide a motivational exam-
ple in Fig. 1 with two PMs hosting VMs with different CPU-
boundedness properties. The workload consisting of VMs with
their β values is given as input to the cloud controller, which
determines the CPU frequency scaling actions to apply to the
PMs as the output. The first machine, PM1, hosts V M1 with
low CPU-boundedness and V M2 with high CPU-boundedness,
while the second physical machine, PM2, hosts V M3 and V M4,
both with low CPU-boundedness. If the cloud operates all
hosts at a maximum frequency, the allocated VMs receive good
performance, however an increased power consumption may
lead to power wastage for VMs 1, 3 and 4 that are not CPU-
bound. In order to reduce power consumption, the operating
frequencies of the hosts could be adjusted to a minimum
frequency. Although this scenario leads to energy savings, it
also leads to performance degradation of the CPU-bound V M2.

A desirable strategy would be to analyse the trade-offs
between energy savings and performance to adaptively select
an optimal frequency for each PM independently as shown in
Fig. 1. The balance between the two goals depends on many
factors such as the workload characteristics, electricity prices
and temperatures which all have to be taken into account to
determine the optimal frequency. In this ideal scenario, the
operating frequencies of PMs hosting VMs with low CPU-
boundedness are reduced, e.g. in the case of PM2. On the other
hand, PMs hosting more CPU-bound VMs are kept high, e.g.
in the case of PM1, which is set to operate at a high-enough
frequency to avoid performance degradation for V M2.

The goal of our work is to develop such an adaptive
approach that takes into account the CPU-boundedness prop-
erties of VMs to achieve energy cost savings without signifi-
cantly reducing the performance. The challenges in achieving
this goal are: (1) It is necessary to quantitatively determine the
balance between energy savings and workload performance
to find the optimal CPU frequency. (2) When considering
geotemporal inputs, changes in electricity prices and temper-
atures impact the energy cost and it is necessary to reevaluate
the control actions at runtime. To address these challenges, in
the next section we present models that allow the compari-
son of energy savings based on geotemporal inputs and the
performance impact quantified as revenue losses caused by

frequency scaling in performance-based pricing.

IV. COST-RELATED COMPONENTS

In this section we define the power and service revenue
models that influence cloud costs based on energy consump-
tion and user costs based on VM prices. These two models
are used to formulate the trade-off problem and to determine
the actions to be deployed by the cloud controller.

A. Cloud Cost Model

Power consumption is modelled based on frequency scaling
and CPU utilisation using disparate models. The idea is that
power consumption of a PM increases with higher resource
utilisation caused from more VMs per IaaS cloud models and
with higher operating CPU frequencies per high-performance
computing (HPC) models. A cubic model based on [25] is used
to compute the power consumed when the host is fully utilised
according to the operating frequency, f . The peak power of
the host operating at frequency f is given as:

Ppeak f = Pbase +Pdi f (
f − fbase

fbase
)3, (1)

where Pbase is the peak power of the host operating at a
minimum frequency fbase and Pdi f is a weight to compute the
power at different frequencies. By combining the model from
[15] for PM power under a certain utilisation util with Eq. 1,
we can express an integrated power model as:

Pf = Pidle +util(Ppeak f −Pidle) (2)

where Pidle is the power consumed by the PM when hosting no
VMs. We compute util as a uniformly weighted fraction of the
PM’s CPU cores and RAM consumed by the hosted VMs, as
CPU and RAM are shown to be the main contributors of power
consumption [26], [27]. The power model graph is shown in
Fig. 2 with PM’s power depending on util and CPU frequency.
We can see that power decreases significantly for even a small
reduction of frequency for high PM utilisation, due to the cubic
shape of the curve. Gradually, the curve becomes less steep for
lower utilisation ratios. Power consumption of empty PMs is
considered to be zero, which is approximately possible through
fast suspension technology [24].

Cooling overhead based on local temperatures is derived
from the power signals of the PMs at different data center loca-
tions. To do so, the model for computer room air conditioning
using outside air economisers from [7] was applied. These
power signals are then integrated over time and combined with
fixed or real-time electricity prices (both models are explored
in the evaluation) for the corresponding data center locations
to compute the total energy cost of the whole cloud.

B. User Cost Model

In performance-based pricing, each VM is charged accord-
ing to the operating frequency of the PM it is mapped to.
The model is based on the pricing offered by the ElasticHosts
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cloud provider [4]. The price Cvm of each VM at frequency
fCPU is computed as:

Cvm =Cbase +CCPU (
fCPU − fbase

fbase
)+CRAM(

RAMsize
RAMsizebase

),

(3)
where Cbase is the VM price at a minimum CPU frequency

( fbase) and RAM size (RAMsizebase). CCPU and CRAM are
cost weights used to generate the price from the host’s CPU
frequency fCPU and VM RAM size RAMsize, respectively.

Given that the above pricing model does not consider how
the PM’s CPU frequency affects the VM’s performance (as
discussed in Section III), we propose a novel perceived-
performance pricing model. In this model, a VM’s price is
computed based on both the CPU frequency and its impact on
workload performance. The idea is that the price may vary be-
tween VMs where CPU frequency impacts the performance at
different degrees. E.g., CPU-bound VMs whose performance
would be affected by frequency scaling would incur lower
monetary costs for the user at a lower frequency than I/O-
bound VMs. The impact of frequency scaling on workload
performance depends on the CPU-boundedness of the job,
represented by the parameter β [9]. The pricing model from
Eq. 3 is modified to adjust fCPU to be the frequency perceived
by the VM computed from the PM’s operating frequency f ,
instead of being the PM’s CPU frequency directly. We model
the perceived frequency fCPU as:

fCPU = β f +(1−β ) fmax, (4)

where fmax is the maximum operating frequency of the host.
When a VM is CPU-bound, β is close to 1 and fCPU changes
according to the PM’s operating frequency. As a result, the
price charged at a lower frequency is also lower, as the
user may perceive significant performance degradation. On the
other hand, when β is close to 0, which corresponds to the
scenario of less CPU-bound VMs where frequency reduction
does not impact performance significantly, fCPU is close to
fmax and the charged price is less dependent on the PM’s
operating frequency. A plot of the developed pricing model is
shown in Fig. 3. The axes show the host’s operating frequency,
the VM’s CPU boundedness β and the resulting VM hourly
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price based on Eq. 4. We can see that VM prices are linearly
reduced as a high β and a low CPU frequency are approached.

V. CLOUD CONTROLLER WITH FREQUENCY SCALING

With the power and pricing models that allow quantitative
comparison of energy saving and revenue loss trade-offs, the
next step in addressing the problem from Section III is devis-
ing the cloud controller algorithm. In this section we present
the BCFFS cloud controller we developed for VM migrations
and frequency scaling that increases energy cost savings, as
long as they exceed service revenue losses. The controller is
invoked periodically, determining the actions to be applied.
In a production cloud system, the cloud controller would be
invoked when new VM requests arrive or geotemporal inputs
change for a certain threshold, e.g. temperature changes by
over 1 C. Since the two actions of migrating VMs and scaling
PM CPU frequencies are mutually orthogonal, we examine
them separately as two stages of the proposed algorithm. In
the first stage the controller migrates VMs to PMs to maximise
utilisation and preferring locations with lower electricity and
cooling costs. In the second stage, the controller iteratively
reduces CPU frequencies of hosts while the resulting energy
savings exceed revenue losses.

A. VM Migration Stage

The first stage is an algorithm that places new VMs or real-
locates VMs from underutilised hosts through VM migration
considering power overhead and geotemporal inputs to select
hosts. Bin packing of VMs is an NP-hard problem, so we
propose a heuristic polynomial time algorithm.

The pseudo-code for this stage of the controller is listed
in Alg. 1. The algorithm starts by marking for allocation
all newly requested VMs (line 3) and for reallocation all
VMs from underutilised hosts (line 4). Hosts are defined as
underutilised if their utilisation falls bellow a provider-defined
threshold, as discussed in [28]. The VMs marked for allocation
will then be migrated (or initially placed) in the outermost
loop (line 6) starting with larger VMs first, as they are more
difficult to fit (line 5). Available PMs are split into active and
nonactive lists, depending on whether they are suspended or
not. We sort inactive (line 9) so that larger PMs come first for



Algorithm 1 VM Migration Stage.
Ensure: Allocate or migrate VMs per geotemporal inputs.
1: procedure VM MIGRATION STAGE
2: to_alloc← empty list
3: append all VMs newly requested to to_alloc
4: append VMs from all underutilised PMs to to_alloc
5: sort to_alloc by resource requirements decreasing
6: for vm ∈ to_alloc do
7: active← all PMs where at least one VM is allocated
8: inactive← all PMs where no VMs are allocated
9: sort inactive by capacity decreasing, cost increasing

10: mapped← False
11: while not mapped do
12: sort active by capacity decreasing, cost increasing
13: for pm ∈ active do
14: if vm fits pm then
15: mapped← True
16: break loop
17: end if
18: end for
19: if not mapped then
20: pop inactive[0] and append it to active
21: end if
22: end while
23: perform a placement/migration of vm to pm
24: end for
25: end procedure

activation (preferable to more smaller machines, due to the
idle power overhead) and data centers with lower combined
electricity price and cooling overhead cost are preferred. The
target PM to host vm is selected in the inner loop (line 11)
by sorting active to try and utilise almost full PMs first, then
preferring lower-cost location in case of ties (line 12) and
finally activating the next PM from inactive in case vm does
not fit on any of the active PMs (line 20). PM sorting is the
key step of the algorithm, as it assures that data centers will
be filled out based on geotemporal inputs. When a fitting PM
is found, the VM is placed or migrated to it (line 23) and the
algorithm continues with the next VM.

B. Frequency Scaling Stage

After determining the actions to be deployed in the initial
stage, the algorithm deploys frequency scaling actions when
they lead to energy cost savings that exceed revenue losses
based on perceived-performance pricing. The polynomial time
algorithm is described in Alg. 2. First, the algorithm resets
the frequencies of all the PMs to a maximum frequency fmax
(line 3). Actions do not have to be executed physically until the
procedure halts and the final PM frequencies are determined.
Next, the algorithm iterates through the PMs in the outer loop
(line 4) to find the best CPU frequency for each one. The
algorithm then iteratively scales down the selected frequency
according to the range of available CPU frequencies (line 9).

The examined CPU frequency is evaluated based on the
following steps: The service revenue from the VMs hosted by
the current PM and the energy cost of the PM are computed
for the previous and the new frequency (lines 10–11) based
on the power and pricing models presented in Section IV.
If switching to a new frequency would result in energy cost
savings higher than the subsequent revenue loss (line 14),
the new frequency is selected (line 18) and the algorithm
continues onto the next lower frequency (line 9). The inner
loop continues until revenue losses surpass energy savings

Algorithm 2 Frequency Scaling Stage.
Ensure: Reduce CPU frequencies while energy savings exceed revenue losses.
1: procedure FREQUENCY SCALING STAGE
2: decrease_ f easible← False
3: reset frequency of ∀pm ∈ active to fmax
4: for pm ∈ active do
5: f ← fmax . Start the loop at max frequency
6: revenue_cur← get_revenue(pm, fto_apply) . Service revenue, ∀vm ∈ pm
7: en_cost_cur← get_en_cost(pm, fto_apply) . Energy cost of the pm
8: while f > fmin do
9: f ← f − fstep

10: revenue_new← get_revenue(pm, f ) . Revenue for the new frequency
11: en_cost_new← get_en_cost(pm, f ) . New energy cost
12: revenue_loss← revenue_cur− revenue_new
13: en_savings← en_cost_cur− en_cost_new
14: if en_savings > revenue_loss then
15: revenue_cur← revenue_new . Update current service revenue
16: en_cost_cur← en_cost_new . Update current energy cost
17: decrease_ f easible← True
18: fto_apply← f . Update currently selected frequency
19: else
20: break
21: end if
22: end while
23: if decrease_ f easible then
24: apply fto_apply to pm
25: else
26: remove from active: ∀p̂m ∈ PMs s.t. p̂m has higher average(βvm) and

lower electricity price and temperature than pm
27: end if
28: end for
29: end procedure

(line 20). If no frequency decrease occurred for the current PM
(decrease_ f easible stays False), the procedure will remove
PMs with higher average β and lower electricity price and
temperature in line 26 before continuing. The idea is that such
PMs would have even lower energy savings and higher revenue
losses, so it is not necessary to consider them.

VI. EVALUATION

We evaluated the BCFFS method in a large-scale simulation
of 2k VMs based on real traces of geotemporal inputs and
VM CPU-boundedness values. The goal of the evaluation is
to show the cost savings attainable using our approach, the
impact on service revenue and to analyse the dependence on
external factors, such as electricity prices and VM workloads.

A. Methodology

The simulations were performed using Philharmonic1,
a cloud controller simulator for geographically-distributed
clouds that we developed [16]. A simulation in Philharmonic
consists of iterating through the timeline, collecting the cur-
rently available electricity prices and temperatures, as well as
the incoming VM requests. The simulated controller is called
to determine cloud control actions, such as VM migrations or
PM frequency scaling. The applied actions are used to compute
the resulting energy consumption and electricity costs.

To compute the energy costs of the simulated
geographically-distributed cloud, we consider a use case
of six data centers. We used a dataset of real-time electricity
prices described in [17] and temperatures from the Forecast2

web service. The selected data center locations (chosen to

1http://philharmonic.github.io/
2http://forecast.io/



TABLE I
SIMULATION PARAMETERS.

PMs VMs fbase fmin fmax fstep Pbase Pidle Pdi f Cbase CCPU CRAM RAMsizebase
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Fig. 4. Cities used as data center locations in the simulation.
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resemble Google’s deployment) are shown in Fig. 4. Due to
lack of RTEP data for the four non-US cities, we synthetically
generated electricity prices from the data known for other
US cities. We shifted the time series based on the time
zone offsets and added a difference in annual mean values
to resemble local values. Additionally, in the evaluation we
analyse a scenario with fixed electricity prices, where mean
values constant over time are considered for each location.

To generate realistic VM CPU-boundedness values, we
analysed the PlanetLab3 dataset of CPU usage traces for
1024 VMs collected every five minutes throughout a day. We
mapped each VM’s average CPU usage to a β value. From the
generated β dataset, we fit an exponential distribution, shown
in Fig. 5. The empirical histogram of the traces normalised to
an area of 1 is also included. We used this model to generate
the β values of the VMs in the simulation.

We consider the perceived-performance pricing model from
Section IV. We also evaluated the ElasticHosts performance-
based pricing model, but CPU frequency scaling was not
feasible, due to high VM prices compared to energy costs.
Savings are still possible with our perceived-performance
pricing model, as for certain less CPU-bound VM workloads
a CPU frequency reduction does not decrease the service
revenue substantially and yet achieves energy savings.

3https://github.com/beloglazov/planetlab-workload-traces

IT energy IT cost Total energy Total cost Service revenue
0.0

0.2

0.4

0.6

0.8

1.0

BCF

BCFFS

BFD

Fig. 6. Aggregated results for a 2k VM simulation using different controllers.

The parameters used in the simulation are summarised in
Table I. To define the cloud, the number of total PMs and
V Ms for the case of VM boot requests is given. The resource
values we assumed in this simulation (number of CPU cores,
amount of RAM) were uniformly distributed. For each VM,
we used one CPU core and ranged the amount of RAM
between 8-32 GB to vary resource utilisation over time and
VM price depending on RAM size. PMs were varied between
1-4 CPU cores and 16-32 GB RAM, to model a heterogeneous
infrastructure. The boot time and duration of the VM requests
were randomly generated following a uniform distribution
within the simulation time to vary the duration of the VMs and
distribute delete events. The total duration of the simulation
was set to 168 h (7 days), with 1 h step size. The simulation
step size was selected based on the available geotemporal input
datasets, but the cloud controller could be invoked at different
periods in production cloud systems (e.g. on new VM requests
or geotemporal input changes). Based on the workload and
PM capacity, at most 1k PMs were active at once. Each PM
can operate in five frequency modes between a minimum and
maximum frequency, fmin and fmax respectively, in steps of
200 MHz ( fstep), similar to [25]. To define the cost models,
the parameters used for the power model in Eq.1 were based
on [25] and the idle power, Pidle, was assumed to be equal
to 50% of the peak value (at maximum frequency), Ppeak fmax

,
like in [29]. The parameters for the pricing model of Eq. 3
were based on the hourly ElasticHosts [4] VM prices. We also
assume the cost of other resources, e.g. disk, that are not used
in this study to be fixed. The specified settings were used in
all the experiments, unless otherwise stated (e.g. when certain
parameters were varied to measure their impact).

We consider two baseline controllers for results comparison.
The first controller is a method for VM migration dynamically
adapting to user requests using a best fit decreasing (BFD)
placement heuristic developed in [12]. The second baseline
controller we developed called best cost fit (BCF) is a variant
of the BCFFS controller that applies VM migration based on
geotemporal inputs, but no frequency scaling. As the focus
of this work is on frequency scaling under performance-based
pricing, the BCF baseline method allows us to quantify the
improvement brought by this specific aspect.

In the remainder of the section we show the results for
different scenarios to compare the energy savings and revenue
loss resulting from applying our cloud controller approach.

B. Energy Costs and Service Revenue

We start the analysis of the results with the aggregated
energy costs and service revenue of the proposed method and
the considered baseline methods for the 2k-VM simulation
described in Table I. The aggregated results are shown in
Fig. 6. A column group is shown for each of the examined
metrics – energy and cost used by the IT equipment, total
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Fig. 7. Occurrences of (β , f ) combinations among the controlled VMs.

energy and cost that also include the cooling overhead based
on outside temperatures and the service revenue obtained
from hosting the VMs based on the perceived-performance
pricing model. In each group, there is a column for our
proposed BCFFS controller and the two baseline methods. The
values are normalised as a relative value of the BFD baseline
controller’s results. Absolute values are listed in Table II. The
proposed BCFFS controller achieves 32% total energy cost
savings compared to the BFD controller and 8% compared
to the BCF controller. No significant service revenue losses
are incurred by BCFFS. Based on our perceived-performance
pricing model, this also indicates no significant performance
degradation. Since similar service revenue and performance
results were obtained for other simulations as well, we omit
the results for service revenue losses in the rest of the section.

To explore the frequencies f assigned to VMs in the
simulation and compare them with the VMs’ CPU bound-
edness β , we counted the number of occurrences of each
(β , f ) combination for every VM and time slot. This data
is illustrated as a bivariate histogram in Fig. 7 with the
number of occurrences shown on a logarithmic scale. Darker
areas show a higher number of frequency occurrences for
the respective (β , f ) combination. It can be seen that the
occurrences of CPU frequencies assigned based on each VM’s
CPU boundedness match the areas where VM prices are high
based on the pricing model from Fig. 3. The area with high
β and low f , where prices would be the lowest, contains
no occurrences. The darkest areas of the graph with a high
number of occurrences represent the balance between energy
savings and profit losses, which is in line with the controller
requirements that energy cost savings should be maximised,
but not exceeded by revenue losses.

TABLE II
ABSOLUTE AGGREGATED SIMULATION RESULTS

BCF BCFFS BFD

IT energy (kWh) 16226.87 15028.00 21261.16
IT cost ($) 735.29 674.14 1002.19
Total energy (kWh) 19477.54 18043.00 25443.02
Total cost ($) 878.80 805.86 1193.82
Service revenue ($) 62995.63 62977.79 62995.63
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Fig. 8. Energy cost savings for different number of hosts and VMs.
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Fig. 9. Energy cost savings for different cloud utilisation rates.

C. Cloud size variation

We simulated clouds with different numbers of hosts and a
proportional frequency of incoming VM requests to examine
the energy cost savings at different scales. The number of
hosts was ranged from 200 to 1.2k with a step size of 200.
The incoming requests were generated proportionally to the
number of hosts to keep the utilisation fixed. In Fig. 8, we
show the results in terms of absolute energy costs. We can
see that the absolute energy costs savings increase for a larger
number of hosts, as the cost of operating the hosts increases.
However, the performance of the algorithm is not greatly
affected by the number of hosts, achieving similar relative
energy cost savings in all the cases.

D. Utilisation Variation

To investigate the performance of the algorithm in terms
of energy savings and revenue loss for different utilisation
scenarios, we vary the number of VM requests for the same
number of PMs. Energy costs from frequency scaling and
revenue loss of the BCFFS controller compared to the BCF
controller for different utilisation scenarios are shown in Fig. 9.
Although no significant revenue loss occurs for any of the
scenarios, energy savings using frequency scaling increase
as cloud utilisation increases. This is due to the concave
shape of the power model, where power decreases faster with
CPU frequency reduction for higher utilisation. The BCFFS
controller is therefore best suited for highly utilised PMs.

E. Electricity Cost Variation

Different cloud providers can have access to different elec-
tricity pricing schemes. Although some might have access
to RTEP, it is also interesting to see how our controller
would perform under fixed electricity pricing. In this set of
experiments, we compare scenarios for fixed and variable
electricity prices to investigate the impact of electricity pricing
on the energy savings attainable using the BCFFS algorithm.
The results are shown in Fig. 10. Energy costs are reduced



under variable electricity pricing by exploiting runtime infor-
mation and adapting the cloud configuration within the day
according to electricity price changes. In both cases, however,
the proposed cloud controller, BCFFS, achieves significant
savings compared with the baseline algorithms.

F. CPU-Boundedness Variation

To evaluate the impact of different workloads, we ran sim-
ulations using the same PMs and VM requests with only the
VM CPU-boundedness properties being varied. We generated
scenarios with VMs of fixed CPU-boundedness properties and
evaluated the total energy cost of the cloud controllers for
each scenario. The total energy costs for CPU-boundedness
properties ranging from 0.01 to 0.3 are shown in Fig. 11.
With the increase of CPU-boundedness β , energy costs of the
BCFFS controller increase gradually. Between a β of 0.05 and
0.2 there is a substantial energy cost increase. This happens
when the revenue losses exceed energy cost savings from even
an initial frequency reduction and at this point no frequency
scaling is performed. The BCFFS controller achieves the best
results for predominantly I/O-bound workloads.

VII. CONCLUSION

In this paper we proposed a novel perceived-performance
pricing model that would enable applying energy saving ac-
tions on VMs where CPU frequency scaling would not degrade
the performance. We presented a cloud controller that utilises
said pricing model and applies VM migrations and CPU fre-
quency scaling accounting for the trade-offs of service revenue
losses and energy cost savings in a geographically-distributed
cloud. We evaluated the proposed cloud controller in a simu-
lation using realistic CPU-boundedness data, electricity prices
and temperatures. Our results show significant energy cost sav-
ings can be achieved without reducing service revenue. Also,
we highlighted parameters that improve the controller’s effi-
ciency, such as low workload CPU-boundedness and high PM
utilisation, that can help cloud providers assess the method’s
potential applicability. In the future we plan to improve the
research with memory power management and a more detailed
power model for frequency scaling on multiple cores. This will
allow us to more precisely estimate the controller’s efficiency
for a wider range of VM instance types.
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