
Policy-driven Configuration Management for NoSQL

Xianqiang Bao*†, Ling Liu†, Nong Xiao*, Yang Zhou†, Qi Zhang†

*State Key Laboratory of High Performance Computing,
National University of Defense Technology, Hunan 410073, China

{baoxianqiang, nongxiao}@nudt.edu.cn

†Distributed Data Intensive Systems Lab, School of Computer Science,
Georgia Institute of Technology, Atlanta, Georgia 30332-0765, USA

lingliu@cc.gatech.edu, {yzhou, qzhang90}@gatech.edu

Abstract—NoSQL systems have become the vital components
to deliver big data services in the Cloud. However, existing
NoSQL systems rely on experienced administrators to configure
and tune the wide range of configurable parameters in order to
achieve high performance. In this paper, we present a
policy-driven configuration management system for NoSQL
systems, called PCM. PCM can identify workload sensitive
configuration parameters and capture the tuned parameters for
different workloads as configuration policies. PCM also can be
used to analyze the range of configuration parameters that may
impact on the runtime performance of NoSQL systems in terms
of read and write workloads. The configuration optimization
recommended by PCM can enable NoSQL systems such as
HBase to run much more efficiently than the default settings for
both individual worker node and entire cluster in the Cloud. Our
experimental results show that HBase under the PCM
configuration outperforms the default configuration and some
simple configurations on a range of workloads with offering
significantly higher throughput.

I. INTRODUCTION

NoSQL systems have become the vital components for
many scale-out enterprises [3, 14, 15], due to their schema free
design and shared nothing key-value abstractions to support
many science and engineering applications as well as real-time
web services [4, 16, 23]. However, existing NoSQL systems
rely on experienced system administrators to configure and
tune the wide range of system parameters in order to achieve
high performance. Furthermore, most performance tuning
efforts for NoSQL systems are done as in-house projects. As a
result, a majority of NoSQL users just use the default
configuration for their cloud applications. And it is the much
more daunting challenge for developers and users with average
experience on NoSQL to be truly familiar with a large set of
parameters and understand how they should interact to bring
out the optimal performance of a NoSQL system for different
types of workloads. For example, very few can answer some of
the most frequently asked configuration questions: When will
the default configuration no longer be effective? What side
effect should one watch out for when changing the default
setting of specific parameters? Which configuration parameters
can be tuned to speed up the runtime performance of the
write-intensive applications? With the increased popularity of
NoSQL systems, the problem of how to setup NoSQL clusters
to provide good load balance, high execution concurrency and
high resource utilization becomes an important challenge for
NoSQL system administrators, developers and users as well as
cloud service providers [17].

In this paper, we present a workload aware and
policy-driven configuration management system for NoSQL
systems, called PCM. First, we argue that it is essential to
understand how different settings of parameters may influence

the runtime performance of NoSQL system under different
NoSQL workloads. We use PCM to identify workload
sensitive configurable parameters and capture the tuned
parameters for a classification of workloads as configuration
policies. Second, we use PCM to analyze the impact of a range
configuration parameters and their interactions on the runtime
performance of NoSQL systems in terms of read and write
workloads. We show that simply changing some parameters
from their default settings may not bring out the optimal
performance, and the tuned parameter settings for one type of
workloads such as bulk loading, may not be effective for
another type of workloads, such as read-intensive workloads.
Last but not least, we show that the adaptability for various
workloads and the tuned configurations recommended by PCM
can enable NoSQL systems such as HBase, to run much more
efficiently than the default settings for both individual worker
node and the entire cluster in the cloud. We evaluate PCM
extensively using two scales of HBase clusters on a set of
representative workloads. The experimental results show that
the typical NoSQL system HBase powered by the PCM
configurations significantly outperforms the default
configuration on a range of workloads with different dataset
sizes, offering significantly higher throughput while
maintaining high adaptability to various workloads and almost
linear scalability.

II. POLICY-DRIVEN CONFIGURATION: AN OVERVIEW

A. Characterization of NoSQL Workloads

In PCM, we characterize NoSQL workloads into three
major categories according to the read/write ratio of client
requests: write-intensive, read-intensive, and read/write-mix.
Then we further characterize write-intensive workloads into
three sub-categories: bulk loading (BL), write-only (WO) and
write-mostly (WM). Similarly, we characterize read-intensive
workloads into two sub-categories: read-only (RO) and
read-mostly (RM); and read/write-mix workloads into three
sub-categories: read/write-mix with similar read/write
proportion (MixRW), read/write-mix with more read
proportion (MixR) or with more write proportion (MixW). In
this work, workloads are generated by four baseline data
manipulation operations of the workload generator YCSB [5]:
Insert, Update, Read and Scan (more details in Table I).

1) Write-intensive workloads: Bulk loading (BL) loads the
prepared dataset to an empty target database. BL requests are
implemented as Insert operations in YCSB. Write-only (WO)
workloads are further characterized into WO-Insert
(InsertProportion=100%) and WO-Update (UpdateProportion
=100%). Write-mostly (WM) workloads refer to the workloads
with a small amount of read workloads (less than 10%) added
into the WO workloads.

TABLE I. MAIN OPERATIONS DEFINED IN YCSB

Type Description YCSB Parameter

Insert Insert a new Key-Value (KV) recorda. InsertProportion

Update
Update a KV record by replacing the value
of one filed. UpdateProportion

Read
Read a record to get the value of either one
randomly chosen field or all fields. ReadProportion

Scan
Scan from a randomly chosen start key and
fetch back randomly chosen numberb of KV
records in Keys’ order.

ScanProportion

a. Each KV record has a primary string key as Key and a number of string fields as Value.
b. The number of KVs to scan for each operation is randomly chosen between (1, MaxScanLength)

2) Read-intensive workloads: RO-Read workloads are those
with ReadProportion=100% for point based reads. RO-Scan
denotes the range read with ScanProportion=100%.
Read-mostly (RM) workloads refer to those with a small
amount of writes (less than 10%) added into the RO workloads.

3) Read/write-mix workloads: Read/write-mix (MixRM)
workloads have similar read/write proportions, e.g., around
40%~60% for both read and write. Read/write-mix with more
read (MixR) workloads have much more read proportion,
around 60%~90%. Read/write-mix with more write (MixW)
workloads have much more write proportion, e.g., 60%~90%.

B. HBase Overview

Fig. 1. HBase Architecture Overview.

TABLE II. RELATED SERVER SIDE PARAMETERS

Scope Parameters Descriptions
Cluster region.split.policy To determine when a region to be split.

RS

heapsize The maximum amount of heap to use.

memstore.
upperLimit

Maximum occupancy size of all
memstores in a RS before new updates
are blocked and flushes are forced.

memstore.
lowerLimit

Minimum occupancy of all memstores in
a RS before flushes are forced.

handler.count Count of RPC Listener instances spun up
on RegionServers

Region

memstore.
flush.size

Memstore is flushed to disk if size of the
memstore exceeds this number of bytes.

memstore.
block.multiplier

Block updates if memstore occupancy has
reached memstore.block.multiplier
*memstore.flush.size bytes.

block.cache.size Percentage of maximum heap to allocate
to block cache used by HFiles.

max.filesize Maximum HStoreFile size.

Store
(HFile)

compaction
Threshold

When the #HFiles in any HStore exceeds
this, a minor compaction is triggered to
merge all HFiles into one.

blockingStoreFiles
If more than this #HFiles in any one
HStore then updates are blocked for the
Region until a compaction is completed.

compaction.kv.max How many KVs to read and then write in
a batch when do flush or compaction.

HBase [2, 18] is an open source distributed key-value store
developed on top of the Hadoop distributed file system HDFS
[8, 9]. It consists of four major components (see Fig.1):
HMaster, ZooKeepercluster, RegionServers (RSs), and
HBaseClient (HTable). HMaster is responsible for monitoring
all RS instances in the cluster, and is the interface for all
metadata management. ZooKeeper [19] cluster maintains the
concurrent access to the data stored in the HBase cluster.
HBaseClient is responsible for finding the RSs that are serving
the particular row (key) range called a region. After locating
the required region(s) by querying the metadata tables (.MATA.
and -ROOT-), the client can directly contact the corresponding
RegionServer to issue read or write requests over that region
without going through the HMaster. Each RS is responsible for
serving and managing the regions those are assigned to it
through server side log buffer, MemStore and block cache.
HBase supports two file types through the RegionServers: the
write-ahead log and the actual data storage (HFile). The RSs
store all the files in HDFS. Table II shows a set of parameters
related to performance tuning for RSs and regions. Specifically,
region.split.policy is an important parameter to determine the
data layout across all RSs, which has significant impact on load
balance. HBase currently has four split policies available for
configuration:

 IncreasingToUpperBound split policy, the default policy
for HBase version 0.94 and later, which triggers region splits
when region size meets the following threshold:

(Split point = min(Num3
region/RS*2*MemStoreflushSize, MaxregionFileSize)

For example, if memstore.flush.size is 128MB and max.filesize
is 10GB, the region split process is carried out as follows:
{Initial: new created table allocates only one region by default,
Split1:min(13*2*128MB=256MB,10GB)=256MB, Split1 point;
Split2:min(23*2*128MB=2,048MB,10GB)=2048MB, Split2 point;
Split3:min(33*2*128MB=6,912MB,10GB)=6912MB, Split3 point;
Split4:min(43*2*128MB=16,384MB,10GB)=10GB,…, all are 10GB.}

 ConstantSize split policy, which triggers region splits
when the total data size of one Store in the region exceeds the
configured max.filesize.

 KeyPrefix split policy, which groups the target row keys
with configured length of prefix such that rows with the same
key prefix are always assigned to the same region.

 Disabled split policy, which disables the auto-split
processing such that region splits only happen by manual split
operations of the system administrators.

C. Motivation and Design Guideline

We first motivate the design of PCM through an illustrative
example, to show the performance gain by identifying critical
set of parameters and their configuration optimization
recommendations. Specifically, we want to bulk load 10
million records of 1KB each into an empty table on a small
HBase cluster with 9RSs (see Section 5 for more details).
Table III shows the main steps for a user to get a bulk load
configuration that offers better performance than the default
policy in HBase. From steps S.2 and S.3, we see that simply
using a larger heapsize does not always guarantee performance
improvement for bulk loading workloads. We observe from S.4
to S.6 that replacing the default load balancing strategy by
pre-split policy, we can significantly improve the bulk loading
throughput (S.4). However, by combining with larger heapsize,
the throughput drops compared to S.4 (S.5 and S.6). This is

because simply enlarging the heap size does not help the
throughput at all. Instead, if we also increase the
memstore.flush.size in addition to heap size, we can achieve
higher speedup in throughput (S.7 and S.8). If we further tune
the storage related parameters, e.g., blockingStoreFiles and
compactionThreshold, we can further improve the performance
of bulk loading due to high resource utilization of memory and
disk I/O (S.9).

TABLE III. POLICY EXAMPLE FOR BULK LOAD OF HBASE

Step Configurationa Speedup Remark

S.1 Default 1x Set throughput of default as baseline
S.2 S.1+4GB Heap 1.0x Just use bigger heap with other

parameters default is useless. S.3 S.1+6GB Heap 1.0x
S.4 S.1+PreSplit 2.7x PreSplit leads to load balance
S.5 S.4+4GB Heap 2.2x Bigger heap still inefficiency used

and hurt PreSplit throughput. S.6 S.4+6GB Heap 2.1x
S.7 S.6+256MB MS 2.8x MS is memstore size, bigger heap

should configure bigger memstore. S.8 S.6.+512MB MS 3.0x

S.9 S.8+20BF&12CT 3.3x
Tuning storage related parameters
can achieve further improvement.

a. More details about the related parameters tuning in Section III & IV.

Through this motivating example, we make two arguments:
1) One (default) configuration cannot fit all: Although the

default configuration may be a good choice for average
performance, our example shows that opportunities exist to
further optimize NoSQL system performance by identifying
and tuning the workload related parameters. For the example
bulk loading workload, we can provide an over 3x speedup for
throughput performance by tuning configuration. It is also
known that parameters tuned for performance of write
intensive workloads hardly ever work well for performance
tuning of read intensive workloads. Thus, we need an
extensible and customizable policy-driven autonomic
configuration system such that it can switch the policies
according to the workload changes, and it allows
administrators, developers and users to add their own
performance tuning policies equipped with trigger and
adaptation conditions.

2) Interactions of the critical parameters and tuning
policies can be very complex: Most of the popular NoSQL
systems, including HBase, have a large number of configurable
parameters, each with different scope (see Table II). Also, the
same parameters may have different impacts for different
workloads. The interaction between the parameters can be very
complex. The common relationships include dependency based
correlation and competition based correlation, such as those
shown in Table III (S.2/3/5/6). Furthermore, NoSQL systems
are known for their elasticity by running on different cluster
setups. Thus, any parameter tuning strategies for configuration
management should be transparent to the cluster setups and
should maintain the horizontal scalability of NoSQL [16].

III. WORKLOAD ADAPTIVE PCM

A. Design Objectives

The main objectives for PCM design are three folds: (1)
The configuration policy and parameter tuning recommended
by PCM should provide high performance speedup compared
to default or baseline configuration policy. (2) The PCM
should provide automated or semi-automated configuration
optimization adaptive to a selection of NoSQL workloads at

both the cluster level and the compute node level. (3) The PCM
should be light weight, extensible and customizable, allowing
easy plug-in of new configuration policies for new types of
workloads and seamless upgrade of existing configuration to
improve the runtime performance of the NoSQL system.

Consider write-intensive, read-intensive and read/write
mixed workloads, for HBase, write-intensive workloads
depend on parameters such as heapsize, memstore related
parameters, such as memstore flushing, write blocking, hfile
related parameters such as hfile compaction. Adequate
parameter configuration can have significant impact on HBase
write operation behavior. In contrast, read-intensive workloads
depend on some different parameters or different settings of the
same parameters, such as block cache in heapsize, hfile block
size. Because these parameters can have significant impact on
cache hit ratio. The read/write mixed workloads depend on
both write-intensive and read-intensive workloads. Thus, the
read/write proportion can help to determine how to tune the
competitive parameters between read and write, such as how to
configure the heap proportion to memstore for write tuning and
cache for read tuning.

B. Two Level Configuration Tuning Strategies

NoSQL systems are designed to run on a cluster of nodes.
We argue that the configuration optimization for NoSQL
should be cluster-aware and node-aware.

Cluster-aware tuning strategies should focus on tuning the
configurable parameters which can improve the overall
performance of the cluster. For HBase, we first identify a set
of parameters those can be tuned to improve concurrency and
load balance across the RSs. For example, the PreSplit
strategy is designed to pre-split the input table into
independent and well balanced regions according to the
number of RSs in the cluster and distribute the data across the
RSs based on the keys distribution. In addition, we need to
improve concurrent execution at each RS through multiple
regions, we pre-split the large input dataset into P number of
regions, P = N times #RSs. So that each RS will have N
regions. During bulk loading, we use PreSplit with
ConstantSize split policy to reduce the high cost of both region
splits and re-assignment cost occurred in default configuration.
However, after bulk loading for write-most or mixed
read/write workloads, we use the IncreasingToUpperBound
split policy to further split the regions when the max.filesize
exceeds its threshold. And this enables high concurrency
across RSs.

Node-aware tuning strategies should be centered on tuning
the parameters related to per-node resource utilization to
improve the runtime performance of individual server node.
For the bulk loading (as well as write-intensive) workloads,
we can delay the update blocking and the LSM-tree [13]
related minor compaction. In order to perform memory related
tuning, we use adaptive heap size in each RS (around
1/2~3/4 of the total memory size), which allows us to buffer
more records and give priority to batch disk I/Os in order to
flush more records for each disk I/O. For HBase, the following
four are the most important memstore related parameters:
upperLimit, lowerLimit, flush.size, block.multiplier, to achieve
more efficient use of the bigger heap per-RS. Similarly, for
disk I/O related tuning, frequent flushes and minor
compactions can lead to higher disk I/O cost. One way is to let
the disk I/O utilization for flushes from MemStores to HFiles

stored on disk always come first by increasing the
compactionThreshold to delay compactions that consume disk
I/O much, and increase the threshold of the blockingStoreFiles
to delay the blocking of new updates whenever possible.
However, a careful trade-off is required here, as too big
compactionThreshold and blockingStoreFiles may lead to
unacceptable compaction delay, high memstore contention.

In contrast, for the read-intensive workloads, the tuning
strategy focuses on the cache hit ratio, which has significant
influence on read performance. For RAM related tuning, we
can increase the heapsize and block.cache.size to allow
read-intensive workloads to load more records into heap after
all the meta data (such as index and bloom filter data) has been
loaded into memory. For disk I/O related tuning, the parameter
hfile block size is very important. A smaller block size is more
efficient for point read workload and a bigger block size is
better for range read workload. Also adequate configuration of
major compactions can be beneficial, especially for range reads.
Next, to design the read/write mixed tuning strategy, we focus
on tuning the competitive parameters between read and write,
such as the heap proportion assignment for write workload
(e.g., memstore.upperLimit) and read workload (e.g.,
block.cache.size) according to the read/write proportion in the
mixed workloads.

C. Policy-driven Configuration Management

1) Workload Aware Configuration Policies
We develop three categories of configuration policies in

response to the three typical types of NoSQL workloads:
Configuration optimization for write-intensive workloads:

Table IV shows an example set of parameters which are critical
for performance tuning of write-intensive workloads. We
provide the recommended settings by PCM under the
PCM-BL/WO/WM column for three subcategories of
write-intensive workloads: PCM-BL (bulk loading), PCM-WO
(write only) and PCM-WM (write mostly). PCM-BL and
PCM-WO use very similar parameter settings in HBase due to
the fact that HBase implements Insert and Update operations
with same API (Put). For WM, as a small proportion read
workload is added, we increase the heap size for read from 0.1
to 0.2 and decrease the same amount of heap for write to
maintain the total heap for memstore and cache to be under 80%
of the max heap size to avoid out of memory error.

Configuration optimization for read-intensive workloads:
For read only (RO) and read mostly (RM) workloads, we
provide PCM-RO and PCM-RM respectively. Given that point
reads (Read) typically need just one block transfer while range
reads (Scan) may need more disk I/O transfers depending on
the range of the records to be scanned and the block size. We
configure a smaller block size for PCM-Read and a relatively
bigger block size for PCM-Scan. For read mostly workload,
added a small portion of write workloads, we slightly change
the heap utilization ratio between block cache and memstore.
Table V shows the PCM recommended settings of those
parameters which are sensitive to read workloads.

Configuration optimization for read/write-mixed workloads:
For three subcategories of read/write mixed workloads, we
define three configuration policies: PCM-MixRW, PCM-MixR,
and PCM-MixW respectively, by focusing on the trade-offs of
heap contention for write part and read part. Table VI lists the
PCM recommended values for the subset of parameters which
are identified as sensitive to read/write-mixed workloads.

TABLE IV. WRITE-SENSITIVE POLICIES

Parameters Default PCM-BL/WO/WM

heapsize 1GB (0.5~0.75)×RAM = X GB

memstore.upperLimit 0.4 0.6/0.6/0.5

memstore.lowerLimit 0.38 0.58/0.58/0.48

block.cache.size 0.4 0.1/0.1/0.2

memstore.flush.size 128MB 128MB×X

memstore.block.multiplier 2 max(2, X)

compactionThreshold 3 3×X

blockingStoreFiles 10 (5~10) × X

region.split.policy
IncreaseTo

UpperBound
PreSplita/PreSplit+
IncreaseToUpperBound

max.filesize 10GB
max(10GB,dataset/(#reg)) /
10GB/10GB

a. Pre-split the target table into #RSs × N regions and N relies on storage I/O speed

TABLE V. READ-INTENSIVE POLICIES

Parameters Default PCM-RO/RM

blocksize 64KB
Read (point):16~32KB

Scan (range): 128~256KB

heapsize 1GB (0.5~0.75)×RAM = X GB

block.cache.size 0.4 0.6/0.6/0.5

memstore.upperLimit 0.4 0.1/0.1/0.2

memstore.lowerLimit 0.38 0.08/0.08/0.18

TABLE VI. READ/WRITE-MIXED POLICIES

Parameters Default PCM-MixRW/MixR/MixW

heapsize 1GB (0.5~0.75)×RAM = X GB

memstore.upperLimit 0.4 0.4/0.3/0.5

memstore.lowerLimit 0.38 0.38/0.28/0.48

block.cache.size 0.4 0.4/0.5/0.3

memstore.flush.size 128MB 128MB×X

memstore.block.multiplier 2 max(2, X)

compactionThreshold 3 3×X

blockingStoreFiles 10 (5~10)×X

region.split.policy
IncreaseTo
UpperBound

PreSplit/PreSplit+
IncreaseToUpperBound

max.filesize 10GB
max(10GB, dataset/(#reg)) /
10GB/10GB

2) PCM System Architecture
PCM is designed to automatically manage the set of

configuration policies such as those outlined above. Each
configuration policy is defined with a set of adaptation
conditions, such as workload characterization, dataset size,
running cluster environment. Fig.2 shows the PCM system
architecture consisting of five main components: Workload
Monitor, Policy Adaptation Manager, Policy Executer,
NoSQL Interface and Optimal Configurations. The Workload
Monitor gathers workload state (e.g., read/write request counts)
statistics as well as the cluster state statistics (e.g., #RSs) from
the master of the running cluster (e.g, HMaster). Two types of
workload statistics are collected: workload requests statistics
(such as requests per second, read/write request counts) and
workload runtime environment (such as used heap (max heap),
number of living workers (e.g., RSs), number of online
regions, number of storefiles, compaction progress, and et al.
The Policy Adaptation Manager determines the workload type
and which policy with tuned parameters to be used according
to the workload.

Fig. 2. Policy-driven Configuration Management: System Architecture.

The Policy Executer (Executer) setups and refines the
configuration for the running cluster according to certain
policy from the Policy Adaptation Manager. The NoSQL
Interface enables Workload Monitor and Policy Executer to
directly interact with NoSQL systems. The Optimal
Configurations show the effective tuned configurations under
various workloads by tuning the parameters to find the best
setting for each independent NoSQL system. Another property
of PCM is that we design and implement PCM as an open
system to allow the administrators of NoSQL systems to insert
new configuration policy and to update and replace existing
configuration policy.

The functional components of PCM cooperate to
accomplish the following five tasks: (1) Cluster state
collection: the Monitor gathers the cluster state form the
running cluster; If the target database is empty, then the
Manager will setup the database with policy PCM-BL to
prepare bulk load the target database. (2) Workload state
collection: after the target database is loaded, the Monitor
starts to collect the workload state statistics and periodically
delivers the collected data statistics to the Manager for further
decision making. (3) Workload characterization: when the
Manager has received the workload state statistics, it will
characterize the workload based on the workload state
statistics. For example, the read/write request ratios can be
used to categorize the current workload into one of the three
workload types. (4) Configuration policy adaptation: based on
workload state statistics collected periodically by the Monitor,
the policy adaptation manager identifies the workload type
and create new policy or refine existing policy. (5)
Configuration Refinement: when Executer detects new policy
updates arrives, it will execute the new or updated
configuration with the recommended parameter values.

IV. EXPERIMENTAL EVALUATION

We evaluate the effectiveness of PCM from three
perspectives: (1) Tune configuration parameters under different
workloads to show the performance optimization that PCM
policies can provide. (2) Evaluate the typical policies with
different target dataset sizes, request distributions and
organizations of databases to show PCM’s validity for
workload variety. (3) Use a bigger cluster with four times size
of the small cluster to evaluate PCM’s scalability.

We use HBase version 0.96.2 and Hadoop version 2.2.0
(including HDFS) in all the experiments. HBase and HDFS
are running in the same cluster with HMaster & NameNode on
master node, RegionServer & DataNode on each worker node.
Two clusters are used in our evaluation:

 (a) WO-BL (b) WO-Update

 (c) RO-Read (d) RO-Scan

Fig. 3. PCM recommended concurrent #threads for typical workloads.

Cluster-small, consisting of 13 nodes: 1 node hosts both
HMaster and NameNode as the master, 3 nodes host
ZooKeeper cluster as coordinators and 9 nodes host
RegionServers and DataNodes as the workers. Cluster-large,
consisting of 40 nodes: 1 node as master, 3 nodes as
coordinators and 36 nodes as the workers.

Each node of the cluster has AMD Opteron single core
(Dual socket) CPU operating at 2.6GHz with 4GB RAM per
core (total 8GB RAM per node), and two Western Digital
WD10EALX SATA 7200rpm HDD with 1TB capacity. All
nodes are connected with 1 Gigabit Ethernet, run
Ubuntu12.04-64bit with kernel version 3.2.0, and the Java
Runtime Environment with version 1.7.0_45. We use YCSB
version 0.1.4 to generate target types of synthetic workloads.

A. Tuning Configuration Parameters

This set of experiments uses cluster-small with a dataset of
10 million KV records of 1KB per record and uniform request
distribution. We identify the number of concurrent threads that
HBase client should use for achieving best overall throughput.

Fig.3(a) measures bulk loading throughput by varying
the number of client threads. When the #threads for WO-BL
is 4, the throughput is the highest and the average latency is
good compared to other settings. Fig.3 (b) shows that when
the #threads for WO-Update is set to 4, the throughput is the
best with good average latency. Thus, we set 4 client threads
as the PCM recommended #threads for write workloads (BL,
WO, WM) on cluster-small in the rest of the experiments.
Next, we examine the read intensive workloads (RO, RM).
Fig.3 (c) and (d) show that when the #threads for both
RO-Read and RO-Scan workloads set #threads to 60, the
throughput is the best with relatively low average latency.
Thus, PCM uses 60 threads as the recommended setting for
read intensive workloads on cluster-small. In the next set of
experiments, we conduct measurement study to show why
PCM recommends different settings of some critical
configuration parameters for different workloads as outlined
in the previous section.

 (a) Throughput of Read (b) Throughput of Scan

Fig. 4. Optimal heapsize and #regions per RS for read workloads.

We measure the throughput by varying the heap size setting
for all three types of workloads. Due to the space constraint,
we only include the results of read-intensive workloads. Also
some detail on critical parameters and their impact on bulk
loading performance of HBase are reported in [6]. Fig.4 shows
the read throughput by varying the heap size from the 1GB
default to 2GB, 4GB, 6GB. The target dataset is loaded to
HBase using PreSplit bulk loading configuration. In addition,
we also set the #regions to 1, 2, 4, 6 per RS for node level
concurrency. We observe that bigger heapsize significantly
improves the read throughput, but when heapsize exceeds 4GB,
about half of the total RAM size (8GB) per RS, the throughput
improvement become much smaller for both RO-Read and
RO-Scan due to the workload pressure generated by one
HBase client node is not enough. Thus, PCM recommends to
use 1/2~3/4 of the total memory size for HBase heapsize to
obtain high resource utilization, e.g., 6GB and 4GB for
RO-Read and RO-Scan workloads respectively. In order to
choose the best setting of #regions per RS for concurrency, we
measured the throughput for different heapsizes under different
#regions. Fig.4 (a) shows that the throughput for RO-Read
workload is similar when we vary the #region per RS from 1 to
4, but when #regions per RS is increased to 6, the throughput
starts to decrease for all heapsizes. However, for RO-Scan
workload in Fig.4 (b), increasing #region per RS from 1 to 6
can improve the RO-Scan throughput consistently compared to
RO-Read and the improvement is more pronounced for smaller
heapsizes. Thus, by PCM recommendation, we use 4
region/RS for read-sensitive workloads here.

B. Workload Variety by Different Datasets

In this set of experiments, we vary target datasets from 1
million records to 10 million records and 100 million records.
Fig.5 shows that the PCM offers consistently higher
throughput compared to the HBase default for bulk load,
update, read and scan workloads. Fig. 5 (a) shows that for
write-intensive workloads, PCM achieves significantly better
throughput than default with all the target datasets.
Specifically, PCM-BL get 5.2x, 2.9x and 2.4x speedup in 1
million, 10 million and 100 million cases respectively
compared with the HBase default (IncreasingToUpperBound
region split policy). The reason is somewhat complex. One
important objective for efficient bulk loading is to load the
whole dataset into all the worker servers (RSs) evenly. An
obvious optimization is to enable parallel processing and good
load balance throughout bulk loading. However, the default
policy implements the dynamic, threshold controlled
incremental load balancing by IncreasingToUpperBound
region split policy. Initially, only one initial region will handle

 (a) Throughput of Bulk Load (b) Throughput of Update

 (c) Throughput of Read (d) Throughput of Scan

Fig. 5. Evaluation results with different datasets.

bulk loading, and if all records can be loaded into a single RS
without reaching IncreasingToUpperBound region split point,
the default policy will load all data to only one region. Even
when the IncreasingToUpperBound region split is triggered, if
the balancer is not invoked, new coming records are still
loaded to the current RS until new generated regions have
been assigned to other RS by balancer. Thus, when the dataset
is small or medium compared to the split point in the NoSQL
cluster, a good portion of the cluster nodes are not used even
the bulk loading has finished. This is why default policy lacks
of parallelism and load balance during bulk loading.

Concretely, using the default policy, BL-1Million case only
uses 1 RS and BL-10Million case only uses 4 RSs out of 9 RSs
in the Cluster-small. Only when the dataset is much larger, say
BL-100Million case, data is distributed to all 9 RSs with
reasonable balance at the completion of the bulk loading.
However, the throughput of bulk loading remains to be low for
BL-100Million case due to imbalance at start stage and
memory utilization inefficiency. In contrast, PCM recommends
using Pre-Split policy to bulk load the target dataset across all
RSs in the given cluster by distributing data to pre-split regions
on all the RSs from the initial stage, and utilizing bigger
heapsize with tuned memstore and hfile related parameters to
achieve high memory utilization. Fig.5 (b) shows that the
speedups are 2.1x/1.5x/1.6x for PCM-Update-1Million,
10Million, 100Million respectively. Then, Fig. 5 (c) and (d)
show the throughput of RO-Read and RO-Scan respectively.
And PCM-Read/Scan consistently outperforms Default-Read/
Scan. For 1Million and 10Million cases, PCM-Read/Scan is
performed over the dataset bulk loaded based on the PCM-BL,
thus the throughput improvements come from well-balanced
data loads on each RS and bigger heap utilization by load much
more records into memory to achieve accordingly higher cache
hit ratio. So PCM-Read achieves 2.2x/1.8x speedup while
PCM-Scan achieves 1.9x/1.9x speedup for 1Million/10Million
cases respectively. Then, for 100Million case when target
dataset becomes much larger, both default and PCM
configuration cases get much lower throughput compared with

 (a) Throughput of Read (b) Throughput of Scan

Fig. 6. Evaluation results with different request distributions.

the small and medium cases during point and range read tests.
This is primarily due to the fact that only very small part of the
target dataset can be loaded into the cache, which sharply
decreases the hfile block cache hit ratio. Also bigger heap size
is not useful for point read case due to the uniform request
distribution such that the same record is hardly to be read twice.
For range reads (RO-Scan), the range length is uniformly
chosen between [1, maxScanLength] (the default
maxScanLength in YCSB is 100). So when the chosen range
length is greater than the number of KV records in a block,
more blocks will be loaded into memory after a RO-Scan
operation and thus bigger heap utilization can improve the
cache hit ratio, which leads to the PCM-Scan case achieve a
2.7x speedup, much higher than the point read case (only 1.5x).

C. Different Request Distributions

In this experiment, we change the request distribution
from Uniform to skewed distributions by Zipfian (some
records with high probability) or Latest (most recently inserted
records have high probability to be chosen) [5]. We use a
target dataset of 100 million records for Uniform and Zipfian
tests, and insert 10 million additional records for Latest tests.
Given that most NoSQL systems (incl. HBase) use
append-style log writes (write-optimized), different request
distributions have less impact on write-intensive workloads
compared to read-intensive workloads. So in this set of
experiments, we focus on RO-Read/Scan workloads. Fig.6 (a)
shows that PCM-Read outperforms Default-Read for all three
request distributions. As expected, the throughput of skewed
distribution Zipfian and Latest exhibit much higher throughput
than Uniform due to the increased cache hit ratio. This is
because popular KV records can be maintained in heap and
repeatedly accessed with high probability. Especially for
Latest skewed distribution case, the very popular records are
more concentrated in the most recently inserted records for
large dataset of 110Million (10Million is inserted). With
additional bigger heap, PCM-Read-Latest has higher speedup
than other cases. For range reads in Fig.6 (b), only the start
key is chosen with skewed distribution and maxScanLength is
uniformly chosen. Thus, the dataset to be accessed for range
reads is much larger than point reads to gain more spatial
locality. And PCM-Scan achieves much higher speedup
(2.7x/2.5x/2.9x) than PCM-Read (1.5x/1.6x/1.2x) for
Uniform/Zipfian/Latest distribution respectively.

D. Multiple Databases with Varying Block Sizes

In this set of experiments, we evaluate the effectiveness of
PCM for multiple database scenario where a NoSQL system
hosts more than one database in its cluster.

 (a) Throughput of Bulk Load (b) Throughput of Update

 (c) Throughput of Read (d) Throughput of Scan

Fig. 7. Evaluation results on multiple databases.

We create three databases with different data block sizes
from 32KB (Table1) to 64KB (Table2) and 128KB (Table3),
and the target dataset for each table is 10 million records with
a total of 30 million records. We run workloads on 3 separate
YCSB client nodes concurrently, with each sends uniform
requests to one target table. We compare each client’s
throughput and the total combined throughput of the three
client nodes running with Default and PCM configurations.
Fig.7 (a) and (b) are the results for write-sensitive workloads.
PCM outperforms Default on each client node and the total
throughput of PCM achieves 2.5x/1.8x speedup for BL and
Update respectively. This indicates that PCM write workloads
related configuration recommendation for single database also
works well for multiple databases. For read-intensive
workloads shown in Fig.7 (c) and (d), PCM outperforms
Default at RO-Scan workloads under each client with different
block sizes and the total aggregate throughput. For RO-Read
in Fig.7 (c), PCM-Read outperforms Default-Read at database
with large block size of 128KB (Table 3). However, for small
block size of 32KB (Table 1) case, PCM-Read has slightly
lower throughput than Default-Read. This is because point
read request distribution is Uniform and cache hit ratio is very
low, thus bigger heap has low utilization and does not help
improving the throughput.

E. PCM Scalability

In this last set of experiments, we use the cluster-large with
36RSs to evaluate the scalability of PCM compared with the
results from cluster-small with 9RSs. As the cluster-large is
four times bigger than the cluster-small size, we use 4 YCSB
client nodes concurrently to generate pressure enough
workloads on both two clusters with a target dataset of 100
million records. Fig.8 shows PCM performs well consistently
under various workloads for cluster-large and the results show
PCM-36RS cases achieve 3.5x/4.0x/3.0x/3.6x speedup
respectively for BL/Update/Read/Scan workloads, compared to
cluster-small cases. This indicates that PCM maintains the
horizontal scalability of HBase well and achieves almost linear

Fig. 8. Throughput speedup results for PCM scalability.

scalability ([3.5x, 4.0x, 3.0x, 3.6x] ≈ [0.87x, 1.0x, 0.75x, 0.9x]
× 4) by just increasing the worker nodes (#RSs) for the running
cluster.

V. RELATED WORKS

NoSQL evaluation: YCSB framework developed by
Cooper et al. [5] is designed to generate representative
synthetic workloads to compare the performance of NoSQL
data stores for HBase [2], Cassandra [12], PNUTS [20], and a
simple shared MySQL implementation. Patil et al [11] extends
YCSB and builds YCSB++ to support advanced features for
more complex evaluation of NoSQL systems, such as eventual
consistency test. Both YCSB and YCSB++ use the default
average configuration to evaluate the target NoSQL systems,
instead of focusing on optimizing the configuration of
underlying target systems. Our work on PCM focuses on
policy-driven configuration optimization for NoSQL systems
under representative workloads. This paper illustrates the
design of PCM through enhancing HBase configuration to
improve throughput performance of read and write workloads.

NoSQL (HBase) optimization: Cruz et al [7] present a
framework to achieve automated workload-aware elasticity for
NoSQL systems based on HBase and OpenStack. This work
only considers very limited HBase parameters tuning such as
heap and cache size. As we have shown in the bulk loading
example, simply increasing heap and cache size without
memstore parameters tuning will not help write-sensitive
workloads and can even hurt performance. Das et al [10]
implements G-Store based on HBase to provide efficient
transactional multi-key access with low overhead. Nishimura et
al [21] proposed MD-HBase to extend HBase to support
advanced features such as multi-dimensional query processing.
These functionality optimizations are orthogonal to our work
on configuration optimization. Harter et al [3] present a
detailed study of the Facebook Message stack to analyze
HDFS and HBase, and suggest adding a small flash layer
between RAM and disk to get performance improvement. This
kind of improvement can also be helpful to PCM system.

VI. CONCLUSING REMARKS

We have presented a policy-driven configuration
management framework, called PCM, for disk-resident NoSQL
systems such as HBase. PCM can analyze the range of
configuration parameters those may impact on the runtime
performance of NoSQL systems and make the parameter
tuning recommendations for different workloads in form of
configuration policies. We show that the configuration
optimization recommended by PCM can enable the NoSQL
system such as HBase to run much more efficiently than using

the default settings for both the individual worker node and the
entire cluster of different sizes in the Cloud. Although this
paper uses HBase as the main example to illustrate the PCM
development and tune the parameters related to the whole I/O
stacks involved in memory, storage and network I/Os, the
workload-adaptive and policy-driven configuration
management principles also apply to other NoSQL systems.
Even for main-memory-based NoSQL system such as Redis,
the PCM framework can optimize the configuration
management effectively.

ACKNOWLEDGMENT
This work is carried out when Xianqiang Bao is a visiting

PhD student in Georgia Institute of Technology supported by
scholarship from the China Scholarship Council. Authors from
NUDT are partially supported by the NSF of China under
Grant Nos. 61433019 and U1435217. Authors from Georgia
Tech are partially supported by NSF under Grants IIS-0905493,
CNS-1115375, IIP-1230740 and a grant from Intel ISTC on
Cloud Computing.

REFERENCES
[1] R. Cattell, “Scalable SQL and NoSQL Data Stores,” Proceedings of

ACMSIGMOD’10 Record, vol. 39, No.4, pp. 12–27, 2010.

[2] Apache HBase, http://hbase.apache.org/.

[3] T. Harter, D. Borthakur, S. Dong, et al. “Analysis of HDFS Under
HBase: A Facebook Messages Case Study”. USENIX FAST 2014.

[4] NoSQL wiki. http://en.wikipedia.org/wiki/NoSQL.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” ACM SoCC 2010.

[6] X. Bao, L. Liu, N. Xiao, et al. “HConfig: Resource Adaptive Fast Bulk
Loading in HBase”. IEEE CollaborateCom 2014.

[7] F. Cruz, F. Maia, M. Matos, et al. “MeT: Workload aware elasticity for
NoSQL”. Proceedings of ACM EuroSys 2013.

[8] Apache Hadoop, http://hadoop.apache.org/.

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. “The Hadoop
Distributed File System”. IEEE MSST 2010.

[10] S. Das, D. Agrawal, A. Abbadi. “G-Store: A Scalable Data Store for
Transactional Multi key Access in the Cloud”, ACM SoCC 2010.

[11] S. Patil, M. Polte, K. Ren, W. Tantisiriroj,et al, “YCSB++:
Benchmarking and Performance Debugging Advanced Features in
Scalable Table Stores,” ACM SoCC 2011.

[12] A. Lakshman, P. Malik, and K. Ranganathan. “Cassandra: A structured
storage system on a P2P network”. ACM SIGMOD 2008.

[13] P. O'Neil, E. Cheng, D. Gawlick, and E. O'Neil. “The log-structured
merge-tree (LSM-tree)”. Acta Informatica, 33(4):351-385, 1996.

[14] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, et al, “Bigtable: A
Distributed Storage System for Structured Data,” USENIX OSDI 2006.

[15] G. DeCandia, D. Hastorun, M. Jampani, et al. “Dynamo: Amazon’s
highly available key-value store”. ACM SOSP 2007.

[16] NoSQL databases. http://www.nosql-database.org/

[17] B. Atikoglu, Y. Xu, E. Frachtenbreg, et al. “Workload Analysis of
Large-Scale Key-Value Store”. ACM SIGMETRICS 2012.

[18] L. George. HBase: The Definitive Guide. O’Reilly Media, 2011.

[19] Apache ZooKeeper™. http://zookeeper.apache.org/

[20] B. F. Cooper, R. Ramakrishnan, U. Srivastava, et al, “PNUTS: Yahoo!'s
hosted data serving platform”, VLDB 2008.

[21] S. Nishimura, S. Das, D. Agrawal, et al, “MD-HBase: A Scalable
Multi-dimensional Data Infrastructure for Location Aware Services”,
Proceedings of IEEE MDM 2011, Vol.1 pp 7-16

[22] K. Lee, L. Liu. “Efficient Data Partitioning Model for Heterogeneous
Graphs in the Cloud”, IEEE SuperComputing 2013.

[23] H. Mao, H. Zhang, X. Bao, et al. “EaSync: A Transparent File
Synchronization Service across Multiple Machines”, NPC 2012.

