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Abstract—NoSQL systems have become the vital components 
to deliver big data services in the Cloud. However, existing 
NoSQL systems rely on experienced administrators to configure 
and tune the wide range of configurable parameters in order to 
achieve high performance. In this paper, we present a 
policy-driven configuration management system for NoSQL 
systems, called PCM. PCM can identify workload sensitive 
configuration parameters and capture the tuned parameters for 
different workloads as configuration policies. PCM also can be 
used to analyze the range of configuration parameters that may 
impact on the runtime performance of NoSQL systems in terms 
of read and write workloads. The configuration optimization 
recommended by PCM can enable NoSQL systems such as 
HBase to run much more efficiently than the default settings for 
both individual worker node and entire cluster in the Cloud. Our 
experimental results show that HBase under the PCM 
configuration outperforms the default configuration and some 
simple configurations on a range of workloads with offering 
significantly higher throughput. 

I. INTRODUCTION 

NoSQL systems have become the vital components for 
many scale-out enterprises [3, 14, 15], due to their schema free 
design and shared nothing key-value abstractions to support 
many science and engineering applications as well as real-time 
web services [4, 16, 23]. However, existing NoSQL systems 
rely on experienced system administrators to configure and 
tune the wide range of system parameters in order to achieve 
high performance. Furthermore, most performance tuning 
efforts for NoSQL systems are done as in-house projects. As a 
result, a majority of NoSQL users just use the default 
configuration for their cloud applications. And it is the much 
more daunting challenge for developers and users with average 
experience on NoSQL to be truly familiar with a large set of 
parameters and understand how they should interact to bring 
out the optimal performance of a NoSQL system for different 
types of workloads. For example, very few can answer some of 
the most frequently asked configuration questions: When will 
the default configuration no longer be effective? What side 
effect should one watch out for when changing the default 
setting of specific parameters? Which configuration parameters 
can be tuned to speed up the runtime performance of the 
write-intensive applications? With the increased popularity of 
NoSQL systems, the problem of how to setup NoSQL clusters 
to provide good load balance, high execution concurrency and 
high resource utilization becomes an important challenge for 
NoSQL system administrators, developers and users as well as 
cloud service providers [17]. 

In this paper, we present a workload aware and 
policy-driven configuration management system for NoSQL 
systems, called PCM. First, we argue that it is essential to 
understand how different settings of parameters may influence 

the runtime performance of NoSQL system under different 
NoSQL workloads. We use PCM to identify workload 
sensitive configurable parameters and capture the tuned 
parameters for a classification of workloads as configuration 
policies. Second, we use PCM to analyze the impact of a range 
configuration parameters and their interactions on the runtime 
performance of NoSQL systems in terms of read and write 
workloads. We show that simply changing some parameters 
from their default settings may not bring out the optimal 
performance, and the tuned parameter settings for one type of 
workloads such as bulk loading, may not be effective for 
another type of workloads, such as read-intensive workloads. 
Last but not least, we show that the adaptability for various 
workloads and the tuned configurations recommended by PCM 
can enable NoSQL systems such as HBase, to run much more 
efficiently than the default settings for both individual worker 
node and the entire cluster in the cloud. We evaluate PCM 
extensively using two scales of HBase clusters on a set of 
representative workloads. The experimental results show that 
the typical NoSQL system HBase powered by the PCM 
configurations significantly outperforms the default 
configuration on a range of workloads with different dataset 
sizes, offering significantly higher throughput while 
maintaining high adaptability to various workloads and almost 
linear scalability. 

II. POLICY-DRIVEN CONFIGURATION: AN OVERVIEW 

A. Characterization of NoSQL Workloads 

In PCM, we characterize NoSQL workloads into three 
major categories according to the read/write ratio of client 
requests: write-intensive, read-intensive, and read/write-mix. 
Then we further characterize write-intensive workloads into 
three sub-categories: bulk loading (BL), write-only (WO) and 
write-mostly (WM). Similarly, we characterize read-intensive 
workloads into two sub-categories: read-only (RO) and 
read-mostly (RM); and read/write-mix workloads into three 
sub-categories: read/write-mix with similar read/write 
proportion (MixRW), read/write-mix with more read 
proportion (MixR) or with more write proportion (MixW). In 
this work, workloads are generated by four baseline data 
manipulation operations of the workload generator YCSB [5]: 
Insert, Update, Read and Scan (more details in Table I). 

1) Write-intensive workloads: Bulk loading (BL) loads the 
prepared dataset to an empty target database. BL requests are 
implemented as Insert operations in YCSB. Write-only (WO) 
workloads are further characterized into WO-Insert 
(InsertProportion=100%) and WO-Update (UpdateProportion 
=100%). Write-mostly (WM) workloads refer to the workloads 
with a small amount of read workloads (less than 10%) added 
into the WO workloads. 



TABLE I.  MAIN OPERATIONS DEFINED IN YCSB 

Type Description YCSB Parameter 

Insert Insert a new Key-Value (KV) recorda. InsertProportion 

Update 
Update a KV record by replacing the value 
of one filed. UpdateProportion 

Read 
Read a record to get the value of either one 
randomly chosen field or all fields. ReadProportion 

Scan 
Scan from a randomly chosen start key and 
fetch back randomly chosen numberb of KV 
records in Keys’ order.  

ScanProportion 

a. Each KV record has a primary string key as Key and a number of string fields as Value. 
b. The number of KVs to scan for each operation is randomly chosen between (1, MaxScanLength) 

2) Read-intensive workloads: RO-Read workloads are those 
with ReadProportion=100% for point based reads. RO-Scan 
denotes the range read with ScanProportion=100%. 
Read-mostly (RM) workloads refer to those with a small 
amount of writes (less than 10%) added into the RO workloads. 

3) Read/write-mix workloads: Read/write-mix (MixRM) 
workloads have similar read/write proportions, e.g., around 
40%~60% for both read and write. Read/write-mix with more 
read (MixR) workloads have much more read proportion, 
around 60%~90%. Read/write-mix with more write (MixW) 
workloads have much more write proportion, e.g., 60%~90%. 

B. HBase Overview 

 
Fig. 1. HBase Architecture Overview. 

TABLE II.  RELATED SERVER SIDE PARAMETERS  

Scope Parameters  Descriptions 
Cluster region.split.policy To determine when a region to be split.

RS 

heapsize The maximum amount of heap to use. 

memstore. 
upperLimit 

Maximum occupancy size of all 
memstores in a RS before new updates 
are blocked and flushes are forced. 

memstore. 
lowerLimit 

Minimum occupancy of all memstores in 
a RS before flushes are forced. 

handler.count Count of RPC Listener instances spun up 
on RegionServers 

Region 

memstore. 
flush.size 

Memstore is flushed to disk if size of the 
memstore exceeds this number of bytes.  

memstore. 
block.multiplier 

Block updates if memstore occupancy has
reached memstore.block.multiplier 
*memstore.flush.size bytes. 

block.cache.size Percentage of maximum heap to allocate 
to block cache used by HFiles.

max.filesize Maximum HStoreFile size. 

Store 
(HFile) 

compaction 
Threshold 

When the #HFiles in any HStore exceeds 
this, a minor compaction is triggered to 
merge all HFiles into one.  

blockingStoreFiles 
If more than this #HFiles in any one 
HStore then updates are blocked for the 
Region until a compaction is completed. 

compaction.kv.max How many KVs to read and then write in
a batch when do flush or compaction.

HBase [2, 18] is an open source distributed key-value store 
developed on top of the Hadoop distributed file system HDFS 
[8, 9]. It consists of four major components (see Fig.1): 
HMaster, ZooKeepercluster, RegionServers (RSs), and 
HBaseClient (HTable). HMaster is responsible for monitoring 
all RS instances in the cluster, and is the interface for all 
metadata management. ZooKeeper [19] cluster maintains the 
concurrent access to the data stored in the HBase cluster. 
HBaseClient is responsible for finding the RSs that are serving 
the particular row (key) range called a region. After locating 
the required region(s) by querying the metadata tables (.MATA. 
and -ROOT-), the client can directly contact the corresponding 
RegionServer to issue read or write requests over that region 
without going through the HMaster. Each RS is responsible for 
serving and managing the regions those are assigned to it 
through server side log buffer, MemStore and block cache. 
HBase supports two file types through the RegionServers: the 
write-ahead log and the actual data storage (HFile). The RSs 
store all the files in HDFS. Table II shows a set of parameters 
related to performance tuning for RSs and regions. Specifically, 
region.split.policy is an important parameter to determine the 
data layout across all RSs, which has significant impact on load 
balance. HBase currently has four split policies available for 
configuration: 

  IncreasingToUpperBound split policy, the default policy 
for HBase version 0.94 and later, which triggers region splits 
when region size meets the following threshold: 

(Split point = min(Num3
region/RS*2*MemStoreflushSize, MaxregionFileSize) 

For example, if memstore.flush.size is 128MB and max.filesize 
is 10GB, the region split process is carried out as follows: 
{Initial: new created table allocates only one region by default, 
Split1:min(13*2*128MB=256MB,10GB)=256MB, Split1 point; 
Split2:min(23*2*128MB=2,048MB,10GB)=2048MB, Split2 point; 
Split3:min(33*2*128MB=6,912MB,10GB)=6912MB, Split3 point; 
Split4:min(43*2*128MB=16,384MB,10GB)=10GB,…, all are 10GB.} 

  ConstantSize split policy, which triggers region splits 
when the total data size of one Store in the region exceeds the 
configured max.filesize.  

  KeyPrefix split policy, which groups the target row keys 
with configured length of prefix such that rows with the same 
key prefix are always assigned to the same region.  

  Disabled split policy, which disables the auto-split 
processing such that region splits only happen by manual split 
operations of the system administrators. 

C. Motivation and Design Guideline 

We first motivate the design of PCM through an illustrative 
example, to show the performance gain by identifying critical 
set of parameters and their configuration optimization 
recommendations. Specifically, we want to bulk load 10 
million records of 1KB each into an empty table on a small 
HBase cluster with 9RSs (see Section 5 for more details). 
Table III shows the main steps for a user to get a bulk load 
configuration that offers better performance than the default 
policy in HBase. From steps S.2 and S.3, we see that simply 
using a larger heapsize does not always guarantee performance 
improvement for bulk loading workloads. We observe from S.4 
to S.6 that replacing the default load balancing strategy by 
pre-split policy, we can significantly improve the bulk loading 
throughput (S.4). However, by combining with larger heapsize, 
the throughput drops compared to S.4 (S.5 and S.6). This is 



because simply enlarging the heap size does not help the 
throughput at all. Instead, if we also increase the 
memstore.flush.size in addition to heap size, we can achieve 
higher speedup in throughput (S.7 and S.8). If we further tune 
the storage related parameters, e.g., blockingStoreFiles and 
compactionThreshold, we can further improve the performance 
of bulk loading due to high resource utilization of memory and 
disk I/O (S.9). 

TABLE III.  POLICY EXAMPLE FOR BULK LOAD OF HBASE 

Step Configurationa Speedup Remark 

S.1 Default 1x Set throughput of default as baseline 
S.2 S.1+4GB Heap 1.0x Just use bigger heap with other 

parameters default is useless. S.3 S.1+6GB Heap 1.0x 
S.4 S.1+PreSplit 2.7x PreSplit leads to load balance  
S.5 S.4+4GB Heap 2.2x Bigger heap still inefficiency used 

and hurt PreSplit throughput. S.6 S.4+6GB Heap 2.1x 
S.7 S.6+256MB MS 2.8x MS is memstore size, bigger heap 

should configure bigger memstore. S.8 S.6.+512MB MS 3.0x 

S.9 S.8+20BF&12CT 3.3x 
Tuning storage related parameters 
can achieve further improvement. 

a. More details about the related parameters tuning in Section III & IV. 

Through this motivating example, we make two arguments: 
1) One (default) configuration cannot fit all: Although the 

default configuration may be a good choice for average 
performance, our example shows that opportunities exist to 
further optimize NoSQL system performance by identifying 
and tuning the workload related parameters. For the example 
bulk loading workload, we can provide an over 3x speedup for 
throughput performance by tuning configuration. It is also 
known that parameters tuned for performance of write 
intensive workloads hardly ever work well for performance 
tuning of read intensive workloads. Thus, we need an 
extensible and customizable policy-driven autonomic 
configuration system such that it can switch the policies 
according to the workload changes, and it allows 
administrators, developers and users to add their own 
performance tuning policies equipped with trigger and 
adaptation conditions. 

2) Interactions of the critical parameters and tuning 
policies can be very complex: Most of the popular NoSQL 
systems, including HBase, have a large number of configurable 
parameters, each with different scope (see Table II). Also, the 
same parameters may have different impacts for different 
workloads. The interaction between the parameters can be very 
complex. The common relationships include dependency based 
correlation and competition based correlation, such as those 
shown in Table III (S.2/3/5/6). Furthermore, NoSQL systems 
are known for their elasticity by running on different cluster 
setups. Thus, any parameter tuning strategies for configuration 
management should be transparent to the cluster setups and 
should maintain the horizontal scalability of NoSQL [16]. 

III. WORKLOAD ADAPTIVE PCM 

A. Design Objectives 

The main objectives for PCM design are three folds: (1) 
The configuration policy and parameter tuning recommended 
by PCM should provide high performance speedup compared 
to default or baseline configuration policy. (2) The PCM 
should provide automated or semi-automated configuration 
optimization adaptive to a selection of NoSQL workloads at 

both the cluster level and the compute node level. (3) The PCM 
should be light weight, extensible and customizable, allowing 
easy plug-in of new configuration policies for new types of 
workloads and seamless upgrade of existing configuration to 
improve the runtime performance of the NoSQL system. 

Consider write-intensive, read-intensive and read/write 
mixed workloads, for HBase, write-intensive workloads 
depend on parameters such as heapsize, memstore related 
parameters, such as memstore flushing, write blocking, hfile 
related parameters such as hfile compaction. Adequate 
parameter configuration can have significant impact on HBase 
write operation behavior. In contrast, read-intensive workloads 
depend on some different parameters or different settings of the 
same parameters, such as block cache in heapsize, hfile block 
size. Because these parameters can have significant impact on 
cache hit ratio. The read/write mixed workloads depend on 
both write-intensive and read-intensive workloads. Thus, the 
read/write proportion can help to determine how to tune the 
competitive parameters between read and write, such as how to 
configure the heap proportion to memstore for write tuning and 
cache for read tuning. 

B. Two Level Configuration Tuning Strategies 

NoSQL systems are designed to run on a cluster of nodes. 
We argue that the configuration optimization for NoSQL 
should be cluster-aware and node-aware. 

Cluster-aware tuning strategies should focus on tuning the 
configurable parameters which can improve the overall 
performance of the cluster. For HBase, we first identify a set 
of parameters those can be tuned to improve concurrency and 
load balance across the RSs. For example, the PreSplit 
strategy is designed to pre-split the input table into 
independent and well balanced regions according to the 
number of RSs in the cluster and distribute the data across the 
RSs based on the keys distribution. In addition, we need to 
improve concurrent execution at each RS through multiple 
regions, we pre-split the large input dataset into P number of 
regions, P = N times #RSs. So that each RS will have N 
regions. During bulk loading, we use PreSplit with 
ConstantSize split policy to reduce the high cost of both region 
splits and re-assignment cost occurred in default configuration. 
However, after bulk loading for write-most or mixed 
read/write workloads, we use the IncreasingToUpperBound 
split policy to further split the regions when the max.filesize 
exceeds its threshold. And this enables high concurrency 
across RSs. 

Node-aware tuning strategies should be centered on tuning 
the parameters related to per-node resource utilization to 
improve the runtime performance of individual server node. 
For the bulk loading (as well as write-intensive) workloads, 
we can delay the update blocking and the LSM-tree [13] 
related minor compaction. In order to perform memory related 
tuning, we use adaptive heap size  in each RS (around 
1/2~3/4 of the total memory size), which allows us to buffer 
more records and give priority to batch disk I/Os in order to 
flush more records for each disk I/O. For HBase, the following 
four are the most important memstore related parameters: 
upperLimit, lowerLimit, flush.size, block.multiplier, to achieve 
more efficient use of the bigger heap per-RS. Similarly, for 
disk I/O related tuning, frequent flushes and minor 
compactions can lead to higher disk I/O cost. One way is to let 
the disk I/O utilization for flushes from MemStores to HFiles 



stored on disk always come first by increasing the 
compactionThreshold to delay compactions that consume disk 
I/O much, and increase the threshold of the blockingStoreFiles 
to delay the blocking of new updates whenever possible. 
However, a careful trade-off is required here, as too big 
compactionThreshold and blockingStoreFiles may lead to 
unacceptable compaction delay, high memstore contention. 

In contrast, for the read-intensive workloads, the tuning 
strategy focuses on the cache hit ratio, which has significant 
influence on read performance. For RAM related tuning, we 
can increase the heapsize and block.cache.size to allow 
read-intensive workloads to load more records into heap after 
all the meta data (such as index and bloom filter data) has been 
loaded into memory. For disk I/O related tuning, the parameter 
hfile block size is very important. A smaller block size is more 
efficient for point read workload and a bigger block size is 
better for range read workload. Also adequate configuration of 
major compactions can be beneficial, especially for range reads. 
Next, to design the read/write mixed tuning strategy, we focus 
on tuning the competitive parameters between read and write, 
such as the heap proportion assignment for write workload 
(e.g., memstore.upperLimit) and read workload (e.g., 
block.cache.size) according to the read/write proportion in the 
mixed workloads. 

C. Policy-driven Configuration Management 

1) Workload Aware Configuration Policies 
We develop three categories of configuration policies in 

response to the three typical types of NoSQL workloads: 
Configuration optimization for write-intensive workloads: 

Table IV shows an example set of parameters which are critical 
for performance tuning of write-intensive workloads. We 
provide the recommended settings by PCM under the 
PCM-BL/WO/WM column for three subcategories of 
write-intensive workloads: PCM-BL (bulk loading), PCM-WO 
(write only) and PCM-WM (write mostly). PCM-BL and 
PCM-WO use very similar parameter settings in HBase due to 
the fact that HBase implements Insert and Update operations 
with same API (Put). For WM, as a small proportion read 
workload is added, we increase the heap size for read from 0.1 
to 0.2 and decrease the same amount of heap for write to 
maintain the total heap for memstore and cache to be under 80% 
of the max heap size to avoid out of memory error. 

Configuration optimization for read-intensive workloads: 
For read only (RO) and read mostly (RM) workloads, we 
provide PCM-RO and PCM-RM respectively. Given that point 
reads (Read) typically need just one block transfer while range 
reads (Scan) may need more disk I/O transfers depending on 
the range of the records to be scanned and the block size. We 
configure a smaller block size for PCM-Read and a relatively 
bigger block size for PCM-Scan. For read mostly workload, 
added a small portion of write workloads, we slightly change 
the heap utilization ratio between block cache and memstore. 
Table V shows the PCM recommended settings of those 
parameters which are sensitive to read workloads. 

Configuration optimization for read/write-mixed workloads: 
For three subcategories of read/write mixed workloads, we 
define three configuration policies: PCM-MixRW, PCM-MixR, 
and PCM-MixW respectively, by focusing on the trade-offs of 
heap contention for write part and read part. Table VI lists the 
PCM recommended values for the subset of parameters which 
are identified as sensitive to read/write-mixed workloads. 

TABLE IV.  WRITE-SENSITIVE POLICIES 

Parameters  Default PCM-BL/WO/WM 

heapsize 1GB (0.5~0.75)×RAM = X GB 

memstore.upperLimit 0.4 0.6/0.6/0.5 

memstore.lowerLimit 0.38 0.58/0.58/0.48 

block.cache.size 0.4 0.1/0.1/0.2 

memstore.flush.size 128MB 128MB×X 

memstore.block.multiplier 2 max(2, X) 

compactionThreshold 3 3×X 

blockingStoreFiles 10 (5~10) × X 

region.split.policy 
IncreaseTo 

UpperBound 
PreSplita/PreSplit+ 
IncreaseToUpperBound 

max.filesize 10GB 
max(10GB,dataset/(#reg)) / 
10GB/10GB 

a. Pre-split the target table into #RSs × N regions and N relies on storage I/O speed 

TABLE V.  READ-INTENSIVE POLICIES 

Parameters  Default PCM-RO/RM 

blocksize 64KB 
Read (point):16~32KB 

Scan (range): 128~256KB 

heapsize 1GB (0.5~0.75)×RAM = X GB 

block.cache.size 0.4 0.6/0.6/0.5 

memstore.upperLimit 0.4 0.1/0.1/0.2 

memstore.lowerLimit 0.38 0.08/0.08/0.18 

TABLE VI.  READ/WRITE-MIXED POLICIES 

Parameters  Default PCM-MixRW/MixR/MixW

heapsize 1GB (0.5~0.75)×RAM = X GB 

memstore.upperLimit 0.4 0.4/0.3/0.5 

memstore.lowerLimit 0.38 0.38/0.28/0.48 

block.cache.size 0.4 0.4/0.5/0.3 

memstore.flush.size 128MB 128MB×X 

memstore.block.multiplier 2 max(2, X) 

compactionThreshold 3 3×X 

blockingStoreFiles 10 (5~10)×X 

region.split.policy 
IncreaseTo 
UpperBound 

PreSplit/PreSplit+ 
IncreaseToUpperBound 

max.filesize 10GB 
max(10GB, dataset/(#reg)) / 
10GB/10GB 

2) PCM System Architecture 
PCM is designed to automatically manage the set of 

configuration policies such as those outlined above. Each 
configuration policy is defined with a set of adaptation 
conditions, such as workload characterization, dataset size, 
running cluster environment. Fig.2 shows the PCM system 
architecture consisting of five main components: Workload 
Monitor, Policy Adaptation Manager, Policy Executer, 
NoSQL Interface and Optimal Configurations. The Workload 
Monitor gathers workload state (e.g., read/write request counts) 
statistics as well as the cluster state statistics (e.g., #RSs) from 
the master of the running cluster (e.g, HMaster). Two types of 
workload statistics are collected: workload requests statistics 
(such as requests per second, read/write request counts) and 
workload runtime environment (such as used heap (max heap), 
number of living workers (e.g., RSs), number of online 
regions, number of storefiles, compaction progress, and et al. 
The Policy Adaptation Manager determines the workload type 
and which policy with tuned parameters to be used according 
to the workload. 



 

Fig. 2. Policy-driven Configuration Management: System Architecture. 

The Policy Executer (Executer) setups and refines the 
configuration for the running cluster according to certain 
policy from the Policy Adaptation Manager. The NoSQL 
Interface enables Workload Monitor and Policy Executer to 
directly interact with NoSQL systems. The Optimal 
Configurations show the effective tuned configurations under 
various workloads by tuning the parameters to find the best 
setting for each independent NoSQL system. Another property 
of PCM is that we design and implement PCM as an open 
system to allow the administrators of NoSQL systems to insert 
new configuration policy and to update and replace existing 
configuration policy. 

The functional components of PCM cooperate to 
accomplish the following five tasks: (1) Cluster state 
collection: the Monitor gathers the cluster state form the 
running cluster; If the target database is empty, then the 
Manager will setup the database with policy PCM-BL to 
prepare bulk load the target database. (2) Workload state 
collection: after the target database is loaded, the Monitor 
starts to collect the workload state statistics and periodically 
delivers the collected data statistics to the Manager for further 
decision making. (3) Workload characterization: when the 
Manager has received the workload state statistics, it will 
characterize the workload based on the workload state 
statistics. For example, the read/write request ratios can be 
used to categorize the current workload into one of the three 
workload types. (4) Configuration policy adaptation: based on 
workload state statistics collected periodically by the Monitor, 
the policy adaptation manager identifies the workload type 
and create new policy or refine existing policy. (5) 
Configuration Refinement: when Executer detects new policy 
updates arrives, it will execute the new or updated 
configuration with the recommended parameter values. 

IV. EXPERIMENTAL EVALUATION  

We evaluate the effectiveness of PCM from three 
perspectives: (1) Tune configuration parameters under different 
workloads to show the performance optimization that PCM 
policies can provide. (2) Evaluate the typical policies with 
different target dataset sizes, request distributions and 
organizations of databases to show PCM’s validity for 
workload variety. (3) Use a bigger cluster with four times size 
of the small cluster to evaluate PCM’s scalability. 

We use HBase version 0.96.2 and Hadoop version 2.2.0 
(including HDFS) in all the experiments. HBase and HDFS 
are running in the same cluster with HMaster & NameNode on 
master node, RegionServer & DataNode on each worker node. 
Two clusters are used in our evaluation: 

 
            (a) WO-BL                    (b) WO-Update 

 
            (c) RO-Read                    (d) RO-Scan 

Fig. 3. PCM recommended concurrent #threads for typical workloads. 

Cluster-small, consisting of 13 nodes: 1 node hosts both 
HMaster and NameNode as the master, 3 nodes host 
ZooKeeper cluster as coordinators and 9 nodes host 
RegionServers and DataNodes as the workers. Cluster-large, 
consisting of 40 nodes: 1 node as master, 3 nodes as 
coordinators and 36 nodes as the workers. 

Each node of the cluster has AMD Opteron single core 
(Dual socket) CPU operating at 2.6GHz with 4GB RAM per 
core (total 8GB RAM per node), and two Western Digital 
WD10EALX SATA 7200rpm HDD with 1TB capacity. All 
nodes are connected with 1 Gigabit Ethernet, run 
Ubuntu12.04-64bit with kernel version 3.2.0, and the Java 
Runtime Environment with version 1.7.0_45. We use YCSB 
version 0.1.4 to generate target types of synthetic workloads. 

A. Tuning Configuration Parameters 

This set of experiments uses cluster-small with a dataset of 
10 million KV records of 1KB per record and uniform request 
distribution. We identify the number of concurrent threads that 
HBase client should use for achieving best overall throughput. 

Fig.3(a) measures bulk loading throughput by varying 
the number of client threads. When the #threads for WO-BL 
is 4, the throughput is the highest and the average latency is 
good compared to other settings. Fig.3 (b) shows that when 
the #threads for WO-Update is set to 4, the throughput is the 
best with good average latency. Thus, we set 4 client threads 
as the PCM recommended #threads for write workloads (BL, 
WO, WM) on cluster-small in the rest of the experiments. 
Next, we examine the read intensive workloads (RO, RM). 
Fig.3 (c) and (d) show that when the #threads for both 
RO-Read and RO-Scan workloads set #threads to 60, the 
throughput is the best with relatively low average latency. 
Thus, PCM uses 60 threads as the recommended setting for 
read intensive workloads on cluster-small. In the next set of 
experiments, we conduct measurement study to show why 
PCM recommends different settings of some critical 
configuration parameters for different workloads as outlined 
in the previous section. 



 
       (a) Throughput of Read            (b) Throughput of Scan 

Fig. 4. Optimal heapsize and #regions per RS for read workloads. 

We measure the throughput by varying the heap size setting 
for all three types of workloads. Due to the space constraint, 
we only include the results of read-intensive workloads. Also 
some detail on critical parameters and their impact on bulk 
loading performance of HBase are reported in [6]. Fig.4 shows 
the read throughput by varying the heap size from the 1GB 
default to 2GB, 4GB, 6GB. The target dataset is loaded to 
HBase using PreSplit bulk loading configuration. In addition, 
we also set the #regions to 1, 2, 4, 6 per RS for node level 
concurrency. We observe that bigger heapsize significantly 
improves the read throughput, but when heapsize exceeds 4GB, 
about half of the total RAM size (8GB) per RS, the throughput 
improvement become much smaller for both RO-Read and 
RO-Scan due to the workload pressure generated by one 
HBase client node is not enough. Thus, PCM recommends to 
use 1/2~3/4 of the total memory size for HBase heapsize to 
obtain high resource utilization, e.g., 6GB and 4GB for 
RO-Read and RO-Scan workloads respectively. In order to 
choose the best setting of #regions per RS for concurrency, we 
measured the throughput for different heapsizes under different 
#regions. Fig.4 (a) shows that the throughput for RO-Read 
workload is similar when we vary the #region per RS from 1 to 
4, but when #regions per RS is increased to 6, the throughput 
starts to decrease for all heapsizes. However, for RO-Scan 
workload in Fig.4 (b), increasing #region per RS from 1 to 6 
can improve the RO-Scan throughput consistently compared to 
RO-Read and the improvement is more pronounced for smaller 
heapsizes. Thus, by PCM recommendation, we use 4 
region/RS for read-sensitive workloads here. 

B. Workload Variety by Different Datasets 

In this set of experiments, we vary target datasets from 1 
million records to 10 million records and 100 million records. 
Fig.5 shows that the PCM offers consistently higher 
throughput compared to the HBase default for bulk load, 
update, read and scan workloads. Fig. 5 (a) shows that for 
write-intensive workloads, PCM achieves significantly better 
throughput than default with all the target datasets. 
Specifically, PCM-BL get 5.2x, 2.9x and 2.4x speedup in 1 
million, 10 million and 100 million cases respectively 
compared with the HBase default (IncreasingToUpperBound 
region split policy). The reason is somewhat complex. One 
important objective for efficient bulk loading is to load the 
whole dataset into all the worker servers (RSs) evenly. An 
obvious optimization is to enable parallel processing and good 
load balance throughout bulk loading. However, the default 
policy implements the dynamic, threshold controlled 
incremental load balancing by IncreasingToUpperBound 
region split policy. Initially, only one initial region will handle 
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Fig. 5. Evaluation results with different datasets. 

bulk loading, and if all records can be loaded into a single RS 
without reaching IncreasingToUpperBound region split point, 
the default policy will load all data to only one region. Even 
when the IncreasingToUpperBound region split is triggered, if 
the balancer is not invoked, new coming records are still 
loaded to the current RS until new generated regions have 
been assigned to other RS by balancer. Thus, when the dataset 
is small or medium compared to the split point in the NoSQL 
cluster, a good portion of the cluster nodes are not used even 
the bulk loading has finished. This is why default policy lacks 
of parallelism and load balance during bulk loading. 

Concretely, using the default policy, BL-1Million case only 
uses 1 RS and BL-10Million case only uses 4 RSs out of 9 RSs 
in the Cluster-small. Only when the dataset is much larger, say 
BL-100Million case, data is distributed to all 9 RSs with 
reasonable balance at the completion of the bulk loading. 
However, the throughput of bulk loading remains to be low for 
BL-100Million case due to imbalance at start stage and 
memory utilization inefficiency. In contrast, PCM recommends 
using Pre-Split policy to bulk load the target dataset across all 
RSs in the given cluster by distributing data to pre-split regions 
on all the RSs from the initial stage, and utilizing bigger 
heapsize with tuned memstore and hfile related parameters to 
achieve high memory utilization. Fig.5 (b) shows that the 
speedups are 2.1x/1.5x/1.6x for PCM-Update-1Million, 
10Million, 100Million respectively. Then, Fig. 5 (c) and (d) 
show the throughput of RO-Read and RO-Scan respectively. 
And PCM-Read/Scan consistently outperforms Default-Read/ 
Scan. For 1Million and 10Million cases, PCM-Read/Scan is 
performed over the dataset bulk loaded based on the PCM-BL, 
thus the throughput improvements come from well-balanced 
data loads on each RS and bigger heap utilization by load much 
more records into memory to achieve accordingly higher cache 
hit ratio. So PCM-Read achieves 2.2x/1.8x speedup while 
PCM-Scan achieves 1.9x/1.9x speedup for 1Million/10Million 
cases respectively. Then, for 100Million case when target 
dataset becomes much larger, both default and PCM 
configuration cases get much lower throughput compared with  
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Fig. 6. Evaluation results with different request distributions. 

the small and medium cases during point and range read tests. 
This is primarily due to the fact that only very small part of the 
target dataset can be loaded into the cache, which sharply 
decreases the hfile block cache hit ratio. Also bigger heap size 
is not useful for point read case due to the uniform request 
distribution such that the same record is hardly to be read twice. 
For range reads (RO-Scan), the range length is uniformly 
chosen between [1, maxScanLength] (the default 
maxScanLength in YCSB is 100). So when the chosen range 
length is greater than the number of KV records in a block, 
more blocks will be loaded into memory after a RO-Scan 
operation and thus bigger heap utilization can improve the 
cache hit ratio, which leads to the PCM-Scan case achieve a 
2.7x speedup, much higher than the point read case (only 1.5x). 

C. Different Request Distributions 

In this experiment, we change the request distribution 
from Uniform to skewed distributions by Zipfian (some 
records with high probability) or Latest (most recently inserted 
records have high probability to be chosen) [5]. We use a 
target dataset of 100 million records for Uniform and Zipfian 
tests, and insert 10 million additional records for Latest tests. 
Given that most NoSQL systems (incl. HBase) use 
append-style log writes (write-optimized), different request 
distributions have less impact on write-intensive workloads 
compared to read-intensive workloads. So in this set of 
experiments, we focus on RO-Read/Scan workloads. Fig.6 (a) 
shows that PCM-Read outperforms Default-Read for all three 
request distributions. As expected, the throughput of skewed 
distribution Zipfian and Latest exhibit much higher throughput 
than Uniform due to the increased cache hit ratio. This is 
because popular KV records can be maintained in heap and 
repeatedly accessed with high probability. Especially for 
Latest skewed distribution case, the very popular records are 
more concentrated in the most recently inserted records for 
large dataset of 110Million (10Million is inserted). With 
additional bigger heap, PCM-Read-Latest has higher speedup 
than other cases. For range reads in Fig.6 (b), only the start 
key is chosen with skewed distribution and maxScanLength is 
uniformly chosen. Thus, the dataset to be accessed for range 
reads is much larger than point reads to gain more spatial 
locality. And PCM-Scan achieves much higher speedup 
(2.7x/2.5x/2.9x) than PCM-Read (1.5x/1.6x/1.2x) for 
Uniform/Zipfian/Latest distribution respectively. 

D. Multiple Databases with Varying Block Sizes 

In this set of experiments, we evaluate the effectiveness of 
PCM for multiple database scenario where a NoSQL system 
hosts more than one database in its cluster. 
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Fig. 7. Evaluation results on multiple databases. 

We create three databases with different data block sizes 
from 32KB (Table1) to 64KB (Table2) and 128KB (Table3), 
and the target dataset for each table is 10 million records with 
a total of 30 million records. We run workloads on 3 separate 
YCSB client nodes concurrently, with each sends uniform 
requests to one target table. We compare each client’s 
throughput and the total combined throughput of the three 
client nodes running with Default and PCM configurations. 
Fig.7 (a) and (b) are the results for write-sensitive workloads. 
PCM outperforms Default on each client node and the total 
throughput of PCM achieves 2.5x/1.8x speedup for BL and 
Update respectively. This indicates that PCM write workloads 
related configuration recommendation for single database also 
works well for multiple databases. For read-intensive 
workloads shown in Fig.7 (c) and (d), PCM outperforms 
Default at RO-Scan workloads under each client with different 
block sizes and the total aggregate throughput. For RO-Read 
in Fig.7 (c), PCM-Read outperforms Default-Read at database 
with large block size of 128KB (Table 3). However, for small 
block size of 32KB (Table 1) case, PCM-Read has slightly 
lower throughput than Default-Read. This is because point 
read request distribution is Uniform and cache hit ratio is very 
low, thus bigger heap has low utilization and does not help 
improving the throughput. 

E. PCM Scalability 

In this last set of experiments, we use the cluster-large with 
36RSs to evaluate the scalability of PCM compared with the 
results from cluster-small with 9RSs. As the cluster-large is 
four times bigger than the cluster-small size, we use 4 YCSB 
client nodes concurrently to generate pressure enough 
workloads on both two clusters with a target dataset of 100 
million records. Fig.8 shows PCM performs well consistently 
under various workloads for cluster-large and the results show 
PCM-36RS cases achieve 3.5x/4.0x/3.0x/3.6x speedup 
respectively for BL/Update/Read/Scan workloads, compared to 
cluster-small cases. This indicates that PCM maintains the 
horizontal scalability of HBase well and achieves almost linear 



 

Fig. 8. Throughput speedup results for PCM scalability. 

scalability ([3.5x, 4.0x, 3.0x, 3.6x] ≈ [0.87x, 1.0x, 0.75x, 0.9x] 
× 4) by just increasing the worker nodes (#RSs) for the running 
cluster. 

V. RELATED WORKS 

NoSQL evaluation: YCSB framework developed by 
Cooper et al. [5] is designed to generate representative 
synthetic workloads to compare the performance of NoSQL 
data stores for HBase [2], Cassandra [12], PNUTS [20], and a 
simple shared MySQL implementation. Patil et al [11] extends 
YCSB and builds YCSB++ to support advanced features for 
more complex evaluation of NoSQL systems, such as eventual 
consistency test. Both YCSB and YCSB++ use the default 
average configuration to evaluate the target NoSQL systems, 
instead of focusing on optimizing the configuration of 
underlying target systems. Our work on PCM focuses on 
policy-driven configuration optimization for NoSQL systems 
under representative workloads. This paper illustrates the 
design of PCM through enhancing HBase configuration to 
improve throughput performance of read and write workloads. 

NoSQL (HBase) optimization: Cruz et al [7] present a 
framework to achieve automated workload-aware elasticity for 
NoSQL systems based on HBase and OpenStack. This work 
only considers very limited HBase parameters tuning such as 
heap and cache size. As we have shown in the bulk loading 
example, simply increasing heap and cache size without 
memstore parameters tuning will not help write-sensitive 
workloads and can even hurt performance. Das et al [10] 
implements G-Store based on HBase to provide efficient 
transactional multi-key access with low overhead. Nishimura et 
al [21] proposed MD-HBase to extend HBase to support 
advanced features such as multi-dimensional query processing. 
These functionality optimizations are orthogonal to our work 
on configuration optimization. Harter et al [3] present a 
detailed study of the Facebook Message stack to analyze 
HDFS and HBase, and suggest adding a small flash layer 
between RAM and disk to get performance improvement. This 
kind of improvement can also be helpful to PCM system. 

VI. CONCLUSING REMARKS 

We have presented a policy-driven configuration 
management framework, called PCM, for disk-resident NoSQL 
systems such as HBase. PCM can analyze the range of 
configuration parameters those may impact on the runtime 
performance of NoSQL systems and make the parameter 
tuning recommendations for different workloads in form of 
configuration policies. We show that the configuration 
optimization recommended by PCM can enable the NoSQL 
system such as HBase to run much more efficiently than using 

the default settings for both the individual worker node and the 
entire cluster of different sizes in the Cloud. Although this 
paper uses HBase as the main example to illustrate the PCM 
development and tune the parameters related to the whole I/O 
stacks involved in memory, storage and network I/Os, the 
workload-adaptive and policy-driven configuration 
management principles also apply to other NoSQL systems. 
Even for main-memory-based NoSQL system such as Redis, 
the PCM framework can optimize the configuration 
management effectively. 
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