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Abstract—Resource management in cloud infrastructures is
one of the most challenging problems due to the heterogeneity of
resources, variability of the workload and scale of data centers.
Efficient management of physical and virtual resources can be
achieved considering performance requirements of hosted appli-
cations and infrastructure costs. In this paper, we present a self-
adaptive resource management system based on a hierarchical
multi-agent based architecture. The system uses novel adaptive
utilization threshold mechanism and benefits from reinforcement
learning technique to dynamically adjust CPU and memory
thresholds for each Physical Machine (PM). It periodically runs a
Virtual Machine (VM) placement optimization algorithm to keep
the total resource utilization of each PM within given thresh-
olds for improving Service Level Agreement (SLA) compliance.
Moreover, the algorithm consolidates VMs into the minimum
number of active PMs in order to reduce the energy consumption.
Experimental results on real workload traces show that our
recourse management system provides substantial improvement
over other approaches in terms of performance requirements,
energy consumption and the number of VM migrations.

Keywords-Resource management, VM consolidation, reinforce-
ment learning, energy-efficiency, SLA, green computing

I. INTRODUCTION

Infrastructure as a Service (IaaS) has gained a lot of

attraction over the past few years as a service model of

cloud computing. IaaS providers such as Amazon EC2 and

Rackspace are operating large data centers to deliver comput-

ing resources to cloud customers over the Internet. Several

open source IaaS cloud management frameworks have been

proposed in [1], [2], [3]. However, all these frameworks have

a high degree of centralization and do not tolerate system

component failures [4]. The centralized architectures are not

scalable to control Virtual Machines (VMs) in a large-scale

data center for three main problems. First, the worst-case

computational complexity of a centralized controller is com-

monly proportional to the system size and thus cannot scale

well for large-scale systems. Second, each server or Physical

Machine (PM) in the data center may need to communicate

with the centralized controller in every control period, and the

controller may become a communication bottleneck. Third, a

centralized controller may have long communication delays in

the large-scale data centers.

To address these problems, we propose a novel Self-

Adaptive Resource Management System (SARMS) in this

paper. To achieve scalability, SARMS uses a hierarchical

architecture that is partially inspired from HiVM [5] since we

proved HiVM can scale up for thousands PMs. SARMS pro-

vides self-adaptive ability for resource management through an

Adaptive Utilization Threshold (AUT) mechanism. This mech-

anism dynamically and adaptively adjusts utilization thresh-

olds as static thresholds are not efficient for IaaS environments

with mixed workloads. For this purpose, it uses Q-learning

as one of the most popular of Reinforcement Learning (RL)

algorithms. In Q-learning, an agent (decision-maker) learns by

trial-and-error interaction with its dynamic environment and

improves an existing policy in response to the change of the

environment. Therefore, autonomy and adaptability are key

features of Q-learning. Unlike previous works that only use

the CPU threshold, AUT considers both CPU and memory

thresholds in order to provide ”finer” grounds for analyzing

what can cause SLA violations. In addition, SARMS runs a

VM placement optimization algorithm iteratively, which uses

AUT to keep the resource utilization within the thresholds,

preventing a potential SLA violations. The algorithm also

consolidates VMs into the minimum number of active PMs for

reducing the energy consumption in IaaS cloud. Experimental

results on real workloads from Google [6] and PlanetLab [7]

data show that SARMS can reduce the energy consumption

and the number of VM migrations while maintains required

performance levels in the data center.

The remainder of the paper is organized as follows. Section

II surveys some literature regarding to existing utilization

threshold based resource management approaches and IaaS

cloud management systems. Section III presents the proposed

architecture, the AUT mechanism and the VM placement

optimization algorithm. Section IV shows the implementation

issue of our approach. Finally, we give experimental results

and conclusion in Section V and VI.

II. RELATED WORK

Recently, various approaches have been proposed for solv-

ing resource management as a multi-objective optimization

problem. They imply a variety of possible formulations of

the problem and define different objectives. Maintaining QoS

between IaaS providers and their users is one of the main

objectives for designing an efficient resource management

approach. For this reason, most of the existing works use a

static utilization threshold to avoid performance degradations.

Secron [8] considers an upper threshold to prevent CPU’s

PM from reach 100% utilization that leads to performance
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degradation. Moreover, a VM placement algorithm in [9]

maintains the CPU utilization of each PM between the static

upper and lower thresholds. Feller et al. [4] propose a static

CPU threshold to detect under-loaded and over-loaded PMs.

The simplicity and intuitive nature of these static threshold

based approaches make them very appealing. However, setting

static thresholds are not efficient for an environment with

dynamic workloads, in which different types of applications

may run on a PM. Therefore, threshold values should be tuned

for each workload type and level to perform VM placement

optimization efficiently. For this purpose, Beloglazov and

Buyya in [10] present several methods of estimating an upper

CPU threshold based on the statistical analysis of historical

data. The authors also present a VM placement algorithm to

migrate some VMs from a PM if the current CPU utilization

of PM exceeds the upper threshold. However, this algorithm

has considered only the current resource requirements and

neglected the future resource demands. Therefore, it generates

unnecessary VM migrations and increase the rate of SLA

violations in data centers. To address this problem, we propose

a regression based prediction model in [11] for forecasting

resource utilization of both PMs and VMs.

Several IaaS cloud management frameworks such as Open-

Nebula [1], Nimbus [2], CloudStack [3], HiVM [5] and

Snooze [4] have been developed during the past years. Open-

Nebula uses the traditional front-end and back-end system

architecture. A controller in the front-end node accepts user

requests and assigns them to the back-end nodes. A controller

in the back-end node receives the requests and delegates them

into the hypervisor. A similar system is proposed in [2], where

authors present the Nimbus as IaaS cloud management frame-

work. Either OpenNebula or Nimbus implement a central-

ized architecture. Moreover, CloudStack creates and manages

VMs in a centralized cloud management system. To address

the problem of the existing frameworks, Snooze presents a

hierarchical architecture that can be scalable across many

thousands of servers and VMs. We also designed a hierarchical

architecture, HiVM, for improving the scalability, performing

distributed VM management and energy efficient in IaaS. In

this paper, we present a Self-Adaptive Resource Management

System (SARMS) that uses a hierarchical architecture inspired

from HiVM. In contrast to HiVM and the existing works

discussed above, SARMS is different in the following ways:

• SARMS uses a novel Adaptive Utilization Threshold

(AUT) mechanism to dynamically and adaptively adjust

utilization thresholds using Q-learning algorithm. AUT

goes beyond the existing works which only consider CPU

threshold by taking into account memory. Combining

both memory and CPU thresholds, SARMS can better

identify causes of SLA violations and consequently pre-

vent them from happening.

• SARMS proposes a VM placement optimization algo-

rithm to keep the utilization of PMs within thresholds

in order to avoid SLA violations. The algorithm also

consolidates VMs into the minimum number of active

PMs for energy consumption reduction in data center.

• We implemented and evaluated SARMS on a simulated

data center using real Google and PlanetLab workloads.

We experimentally show the added value of employing

the AUT mechanism for VM management. We evaluate

the benefits of enriching the architecture and VM man-

agement technique by comparing with HiVM. SARMS

is also compared with a two-tier hierarchical architec-

ture [12] to show the benefit of moving from two to three-

tier hierarchical architecture. We experimentally evalu-

ate the adaptivity for the utilization of resources using

AUT by comparing SARMS against the three adaptive

utilization threshold mechanisms and a static threshold

mechanism presented in [10].

III. SELF-ADAPTIVE RESOURCE MANAGEMENT SYSTEM

A. Architecture

We consider a data center that consists of m heterogeneous

PMs, PM = 〈PM1, ..., PMm〉. Each PM is characterized

with D type of resources such as CPU, memory, network I/O

and storage capacity. In addition, multiple VMs can be allo-

cated to each PM through Virtual Machine Monitor (VMM)

or hypervisor. In our implementation, the VMs are initially

allocated to PMs based on the Best-Fit Decreasing (BFD)

as one of the well-known heuristic algorithms. At any given

time, users submit their requests for provisioning of n VMs,

VM = 〈VM1, ..., V Mm〉, which are allocated to the PMs.

As the requested utilization of VMs and PMs vary over time,

a resource management system should control physical and

virtual resources according to the resource requirements. For

this purpose, we present self-Adaptive resource Management

system based on a hierarchical architecture. Fig. 1 shows

an example of SARMS architecture which is mapped to a

three-tier data center topology [13]. The three-tier topology is

one of the most common network topologies for data centers

due to its simplicity of wiring and reduced economical costs.

In this topology, the lowest access tier contains hosts that

connect to the Top-of-Rack (ToR) switches. The PMs are

mounted in different racks (clusters) with a ToR switch. In

the intermediate aggregation tier, the clusters are arranged into

different modules with a pair of Aggregation Switches (ASs)

servicing the module connectivity. Traffic from the access tier

is forwarded to the core tier by ASs. Finally, the highest

core tier provides secure connectivity between ASs and Core

Switches (CSs) connected to the Internet.

The key idea of SARMS architecture is to split the resource

management problem across multi agents where each agent

solves a part of the prolem. Therefore, SARMS performs

a distributed resource management based on a multi-agent

based architecture that consists of four kinds of agents. At

the core tier, Global Agents (GAs) receive the VM requests

from the users and distribute them among different Module

Agents (MAs) in the aggregation tier. Each MA dispatches the

VM requests to Cluster Agents (CAs) based on the received

information from CAs including the used and total capacity

of clusters. Each CA receives the requests from MA and
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Fig. 1. An Instance of the Self-adaptive Resource Management System (SARMS) showing an instance of AUT

assigns them to Local Agents (LAs) in the cluster. Moreover,

it periodically runs a VM placement optimization algorithm in

order to reduce SLA violations and energy consumption in the

data center. Each LA monitors a PM, detects overloaded/non-

overloaded situation based on the Adaptive Utilization Thresh-

old (AUT) mechanism and reports them to CAs. The number

of LAs, CAs and MAs are equal to the number of PMs, ToRs,

CSs, respectively.

B. Assumption

Each PMi has a d-dimensional total capacity vector

CPMi
=

〈
C1

PMi
, C2

PMi
, ..., Cd

PMi

〉
, where Cd

PMi
represents

the total d-th resource capacity of PMi. Each dimension

corresponds to one type of physical resource (e.g., CPU

capacity, memory, network I/O and disk storage). In addition,

the used capacity vector of PMi can be represented as

UPMi
=

〈
U1
PMi

, U2
PMi

, ..., Ud
PMi

〉
, where Ud

PMi
denotes the

used capacity of resource d. For instance, the used CPU

capacity of a PM is estimated as the sum of the CPU utilization

of the three VMs if three VMs are hosted by the same PM.

The load of PMi is modeled as the summation of the resource

utilization ratio Rd
PMi

in each individual resources d ∈ D as

LoadPMi = RCPU
PMi

+Rmem
PMi

(1)

We do not take into account the disk size dimension since

network-attached storage (NAS) is used across the data center

as main storage. Rd
PMi

is the ratio of its used resource Ud
PMi

to its total resource Cd
PMi

as

Rd
PMi

=
Ud

PMi

Cd
PMi

(2)

The load level of VMi is defined as

LoadV Mi = RCPU
V Mi

+Rmem
V Mi

(3)

where Rd
VMi

is the ratio of the requested d-th utilization of

VMi to the total d-th consumption by VMi.

Rd
V Mi

=
Ud

V Mi

Cd
V Mi

(4)

C. PM Status Detection

To detect the status of each PM, each Local Agent (LAi)

utilizes an Adaptive Utilization Threshold (AUT) mechanism.

PMi is considered as a member of overloaded set Pover if

the CPU or memory utilization exceeds an adaptive threshold.

Otherwise, it is categorized as a member of non-overloaded

set PnonOver. Due to the variability of workload, the adap-

tive threshold T d
PMi

should be adjusted for each resource

dimensions based on the current load. For this purpose, AUT

uses Q-learning to learn on-line through experience from the

environment and utilizes its knowledge to find a suitable value

for each threshold. Thus, Q-learning provides a self-adaptive

mechanism without a prior knowledge of the environment.
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In Q-learning, LAi first percepts the current state s of the

environment and then performs an action a at the current

time slot t. We define the state s as (RCPU
PMi

, Rmem
PMi

) in AUT

mechanism. RCPU
PMi

and Rmem
PMi

are the CPU and memory

utilization ratio, respectively.

Based on the observed state s, LAi selects a utilization

threshold values T d
PMi

of {0.5, 0.6, 0.7, 0.8, 0.9} as an action

a for each d-th resource. Since the risk of SLA violation

is created when the utilization of a PM is close to 100%,

we limit the amount of resources under 90%. During the

beginning of the learning process, the LA should perform a

certain amount of exploration actions, so that it selects an

action randomly. Then, LAi chooses an action based on its

experience (exploitation). It is clear that selecting an action

is more exploration at the beginning of learning, and is more

exploitation towards the end of learning.

At the beginning of next time slot t + 1, the environment

transit into a new state ś and LAi improves its knowledge

based on a reinforcement signal. This signal can reflect the

success or failure of the system after an action has occurred.

In this paper, we consider the signal as a total value of three

penalties local, cluster and module penalties. As LAi pays

the penalties for performing action a, it tries to minimize its

average long-term penalties during the learning mechanism. In

fact, each penalty is an objective function in each tier of the

proposed architecture. The objective function determines the

impact of agent’s action on the performance and power.

The local penalty LPi indicates the impact of the local

agent i’s decision on the power and performance of PM i.
As this penalty is calculated by the LA, we called the local

penalty. AUT should make intelligent tradeoffs between power

and performance as switching PMs into power-saving mode

definitely degrades the performance level. Thus it considers

a multi-objective function LPi(SLAV, POW ) taking both

power and performance into account, and uses it to give penal-

ties in RL. The performance requirements can be formalized

via Service Level Agreement (SLA). The SLA violation of

the PM i, SLAV t+1
PMi

, is the difference between the requested

resources by all VMs and the actually allocated resources

at time slot t+ 1. The local penalty is a linear function of

SLA violation SLAV and total power consumption POW
consumed by PM i in the time slot t+ 1 as

LPi(SLAV, POW ) = SLAV t+1
PMi

+ β × POW t+1
PMi

where β is a tunable coefficient indicating the relation of power

and performance objectives.

The cluster penalty CP j
i is sent from the cluster agent j to

the local agent i. This penalty represents the impact of local

agent i’s decision on other PMs in the same cluster. Therefore,

the cluster penalty is the mean of local penalties in the cluster

j exclusive of LPi. On the other hand, the local agent i can get

an overall view of the performance and power in the cluster

as

CP j
i =

(
Y∑

y=1
LPy)− LPi

Y − 1

where Y is the number of local agents in the cluster j.

The CAj is received the module penalty MP z
j from the

module agent z. This penalty shows the mean of cluster

penalties in other clusters of the module exclusive of its cluster

penalty.

MP z
j =

(
X∑

x=1
CP j

x)− CP j
i

X − 1

where X is the number of cluster agents in the module z.

Finally, LAi updates a Q-value, Qt+1(s, a), that is related

for each pair of action-state through the total penalties P t+1
i

P t+1
i = LPi + CP j

i +MP z
j

Qt+1(s, a) = Qt(s, a) + α[P t+1
i + γmin

aεA
Qt(ś, a)−Qt(s, a)]

where α is a learning rate. The learning rate can take a value

between zero and one; the value of zero means that no learning

takes place by the algorithm; while the value of one indicates

that only the most recent information is used. The discount

factor γ is a value between 0 and 1 which gives more weight to

the penalties in the near future than the far future. Qt+1(s, a)
represents the expected power and performance caused by the

action a at state s. Therefore, the local agent selects an action

with the minimum Q-value when it percepts the state s again.

D. VM Placement Optimization

In order to reduce SLA violations and energy consumption,

each cluster agent runs an instance of VM placement opti-

mization algorithm (Algorithm 1) periodically. The algorithm

creates a migration plan M as an output of two steps.

At the first step (line 1-22), the algorithm migrates some

VMs from the over-loaded PMs for avoiding SLA violations. It

starts from the VMs that require the minimum migration time.

The migration time is calculated with dividing the memory

assigned to the VM, by the available network bandwidth

between source and destination PMs. The algorithm sorts all

VMs on the pso in ascending order of the used memory

capacity as all network links have 1GBPS bandwidth in our

simulation (line 3). Then, it starts to migrate VMs until the

source PM is still considered as a member of overloaded set

Pover (line 4 and 5). To find an appropriate destination PM

pde for reallocating the migrated VM v, the algorithm first

considers non-overloaded set PnonOver in the cluster (line 7-

12). If the aggregated resource utilization of VM and PM is

lower than the adaptive thresholds, then the PM is selected

as pde (line 8). If the algorithm can not find pde in the same

cluster, it sends a request to the module agent to find it in

the other clusters (line 13-15). The algorithm can wake up a

sleeping PM if the active PMs do not have sufficient resource

for allocation v. Finally, the new VM placement is added to a

migration plan M1 as a member (line16). The migration plan
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is a set of 3-tuple (pso; v; pde), where the source PM pso, the

VM to be migrated v, and the destination PM pde. Moreover,

the utilization ratio of source and destination PMs are updated

(line 17).

At the second step (line 23-45), the algorithm consolidates

VMs on the none-overloaded PMs. The algorithm sorts the

non-overloaded PMs PnonOver in decreasing order based on

their load level (line 24). Then, it starts from the least-loaded

PM of the list and considers it as a source PM pso (line 25

and 26). It tries to migrate all VMs and releases pso. To select

which VMs first migrate from pso, the algorithm sorts all

VMs on pso in decreasing order based on their load level

(line 27). The algorithm starts from the first PM (the most-

loaded PM) of set PnonOver (line 30) to find pde. If it is

not possible, the second PM will be selected and so on. The

algorithm selects pde that has required capacity for allocating

the VM considering thresholds (line 31). Finally, the new VM

placement is added to a migration plan M2 as a member (line

32). The resource used capacity of source and destination PMs

are updated to reflect the impact of the new VM placement

(line 33). The variable success is defined for checking whether

all VMs form pso are migrated or not. Either all VMs from

the pso are migrated if one of them fails, non of them are

migrated. Therefor, the algorithm removes all tuples in the

migration plan and recovers the resource capacity of source

and destination PMs if the value of success is false (line 39-

41). Otherwise, idle pso is switched to the sleep mode when

all of its VMs migrate from it (line 42-44). The output of the

algorithm is a migration plan M that combines all migration

tuples of the first and second steps (line 46 and 47). Finally,

the cluster agent sends commands to local agents in the cluster

based on the migration plan M for performing VM migrations.

E. VM Assignment

The VM assignment problem is solved in three tiers of

SAMS. At the core and aggregation tiers, global and module

agents run BFD algorithm to assign first VMs to modules and

then VMs to clusters, respectively. The BFD algorithm sorts

all VMs in the decreasing order based on the their load level.

It aims to assign most-loaded VM to the most-loaded module

or cluster if the module or cluster has enough capacity for

allocating the VM. This constraint should hold in order to

avoid performance degradation. In the access tier, the cluster

agent assigns each VM to a PM if the PM has sufficient CPU

and memory for allocating the VM based on the adaptive

thresholds (line 8 in Algorithm 1). Therefore, it can limit the

amount of requested resources by the VM below the adaptive

thresholds and so that minimizes performance degradation.

IV. EXPERIMENTAL SETUP AND DESIGN

A. Workload

We evaluated the proposed approach on two real workload

traces: Google Cluster Data (GCD) [6] and PlanetLab data [7].

GCD provides real trace data of a Google cluster over about

one-month period in May 2011.

Algorithm 1 VM placement optimization algorithm

1: M1 = ∅
2: for pso ∈ Pover do
3: Vm ← sort VMs on PM pso in ascending order of Umem

v

4: for v ∈ Vm do
5: if pso ∈ Pover then
6: pde = ∅
7: for p ∈ PnonOver do
8: if (RCPU

p +RCPU
v ≤ TCPU

p ) & (Rmem
p +Rmem

v ≤
Tmem
p ) then

9: pde = p
10: break;
11: end if
12: end for
13: if pde = ∅ then
14: send a request to the module agent to find pde
15: end if
16: M1 = M1 ∪ {(pso, v, pde)}
17: Update Rpso and Rpde

18: else
19: break;
20: end if
21: end for
22: end for
23: M2 = ∅
24: sort PnonOver in descending order of Loadp
25: for i = |PnonOver| to 1 do
26: pso = PnonOver[i];
27: Vm ← sort VMs on PM pso in descending order of Loadv
28: for v ∈ Vm do
29: success = false
30: for pde ∈ PnonOver − pso do
31: if (RCPU

pde + RCPU
v ≤ TCPU

pde ) & (Rmem
pde + Rmem

v ≤
Tmem
pde ) then

32: M2 = M2 ∪ {(pso, v, pde)}
33: Update Rpso and Rpde

34: success = true
35: break;
36: end if
37: end for
38: end for
39: if success = false then
40: M2 = ∅
41: Recover Rpso and Rpde

42: else
43: Switch pso to the sleep mode
44: end if
45: end for
46: M = M1 ∪ M2
47: return M

This trace involves over 650k jobs across over 12000

heterogenous PMs. Thousands of users repeatedly used these

jobs that each job consists of one or more tasks. Each task

represents a Linux program possibly consisting of multiple

processes and generates with a set of user customized re-

quirements such as CPU (core-seconds), memory, disk space,

disk time fraction (I/O seconds). The usage of each type

of resources is collected at five minutes intervals. For our

experiments, we extracted the task duration based on the time

when the task was scheduled last and the time when the task

finished. Furthermore, we also extracted the task utilization

values of CPU and memory over the first ten days.
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TABLE I
CHARACTERISTICS OF THE WORKLOAD DATA

Workload CPU Mean (%) CPU St.dev (%) CPU Median Memory Mean (%) Memory St.dev (%) Memory Median
GCD 10.87 10.85 7 22.87 16.05 20

PlanetLab 25.44 14.16 22 10.48 11.06 7

We use the job ID as the unique identifier for a job, and for

each of these jobs we extracted a set of actual usage for each

resource for all of its tasks. The attributes that we considered

for CPU and memory are: the CPU rate, which indicates the

average CPU utilization for a sample period of 5 minutes, and

the canonical memory usage, which represents the average

memory consumption for the same sampling period.

PlanetLab data is provided as a part of the CoMon project,

a monitoring infrastructure for PlanetLab. In this project,

the CPU and memory usage data is reported every five

minutes from more than a thousand VMs and is stored in

ten files. In fact, the workload is representative of an IaaS

cloud environment such as Amazon EC2. GCD and PlanetLab

VMs corresponding to their CPU and memory utilization

characteristics are presented in Table I. In both workload

traces, VM request with a CPU or RAM consumption higher

than 90% and lower than 5% where also removed from the

experiments.

B. Simulation Setup

To evaluate the efficiency of our proposed approach, we set

up experimental environment using the CloudSim toolkit [14].

Table II summarizes the main simulation setup parameters

for two proposed workloads. We simulated a data center

comprising several heterogeneous PMs. The half of PMs are

HP ProLiant ML110 G4 servers 1,860 MIPS each core, and

the other half consists of HP ProLiant ML110 G5 servers with

2,660 MIPS each core. Each PM is modeled to have 2 cores,

4GB memory and 1 GB/s network bandwidth. The CPU MIPS

rating and the memory amount characteristics of four VM

instances used in CloudSim corresponded to Amazon EC2 [1],

i.e., High-CPU Medium Instance (2500 MIPS, 0.85 GB); Extra

Large Instance (2000 MIPS, 3.75 GB); Small Instance (1000

MIPS, 1.7 GB); and Micro Instance (500 MIPS, 613 MB). α
and γ (Q-learning parameters) are 0.5 and 0.8, respectively.

The value of these parameters were obtained in a series of

preliminary experiments.

C. Evaluation Metrics

The main aim of the evaluation is show the implications of

enriching the architecture with the adaptive threshold mecha-

nism on: i) guarantee that SLAs are not violated; ii) minimize

the number of PMs used; iii) minimize the number of VM

migrations. Therefore, the performance of proposed approach

is assessed through the following metrics:

SLA Violations: a workload independent metric (SLAV) is

proposed in [10] that can be used to evaluate the SLA delivered

by any VM deployed in an IaaS. SLAV is measured by the

SLA violations due to over-utilization (SLAVO) and SLA vio-

lations due to migration (SLAVM). Both SLAVO and SLAVM

TABLE II
SIMULATION SETUP PARAMETERS

Parameter GCD PlanetLab

Physical
Architecture

Number of PMs 1600 264
Number of VMs 1600 264
Number of modules 8 3
Number of clusters 32 12
Number of PMs in each cluster 50 22
Number of clusters in each module 4 4
Core Switches 8 3
Aggregation Switches 16 6
Top-of-Rack Switches 32 12

Control
Architecture

Global Agents 4 1
Module Agents 8 3
Cluster Agents 32 12
Local Agents 1600 264

metrics independently and with equal importance characterize

the level of SLA violations by the infrastructure. Therefore,

both performance degradation due to host overloading and due

to VM migrations are proposed as a combined metric (SLAV)

SLAV = SLAV O × SLAVM (5)

In this paper, SLAVO indicates the percentage of time, during

which active PMs have experienced the CPU or memory

utilization of 100% as

SLAV O =
1

m

m∑

i=1

Tsi

Tai

(6)

where m is the number of PMs; Tsi is the total time that

the PM i has experienced the CPU or memory utilization of

100% leading to an SLA violation. Tai is the total of the PM i
being the active state. SLAVM shows the overall performance

degradation by VMs due to migrations as

SLAVM =
1

n

n∑

j=1

Cdj

Crj

(7)

where n is the number of VMs; Cdj is the estimate of the

performance degradation of the VM j caused by migrations;

Crj is the total CPU capacity requested by the VM j during

its lifetime. In our experiments, we estimate Cdj
as 10% of

the CPU utilization during all migrations of the VM j.

Energy consumption: we consider the total energy con-

sumption by the physical resources of a data center caused

by application workloads. The energy consumption of PMs

depends on the utilization of a CPU, memory, disk and

network card. Most studies show that CPU consumes more

power than other devices such as memory, disk storage and

network interface [10], [15]. Therefore, the resource utilization

of a PM is usually represented by its CPU utilization. Here

the energy consumption is measured based on real data on

power consumption provided by the results of the SPECpower
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TABLE III
THE ENERGY CONSUMPTION AT DIFFERENT LOAD LEVELS IN WATTS

Server sleep 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
HP ProLiant G4 10 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 10 93.7 97 101 105 110 116 121 125 129 133 135

benchmark1 instead of using an analytical model of server

power consumption. Table III illustrates the amount of energy

consumption of two types of HP G4 and G5 servers at

different load levels. The table shows the energy consumption

is reduced efficiently when under-utilized PMs switch to the

sleep mode.

Number of VM Migrations: live migration has a negative

impact on the performance of applications running in a VM

during a migration. It also causes negative impacts in infras-

tructure service provider such as co-located VM performance

and network congestion. Therefore, one of our objectives is

minimizing the number of VM migrations.

V. EXPERIMENTAL RESULTS

We implemented and evaluated the Self-Adaptive Resource

Management System (SARMS) on a simulated data center. We

discuss the added value of employing an adaptive threshold

mechanism and hierarchical style by comparing SARMS with

the following approaches:

• HiVM [5]: uses a utilization prediction based VM

management approach. This approach optimizes the VM

placement according to the current and future resource

utilization. We compare SARMS with HiVM to show the

benefits of the proposed extensions (i.e. the introduced

self-adaptivity).

• Multi Agents-based Dynamic Consolidation

(MADC) [12]: proposes a two-tier hierarchical multi-

agent based architecture for VM management. We

compared SARMS with MADC to show the benefit of

moving from two to three-tier hierarchical architecture.

• Three adaptive utilization threshold algorithms [10]: first

adapt the upper CPU utilization thresholds dynamically

based on the classical statistical methods: Median Ab-

solute Deviation (MAD), the Interquartile Range (IQR)

and Local Regression (LR). Then, a VM placement

optimization reallocates VMs for load blanching if total

CPU utilization of a PM exceeds the upper threshold.

By comparing SARMS against these algorithms, we can

show the impact AUT as a Q-learning based adaptive

threshold mechanism against three statical analysis based

adaptive algorithms.

• Static threshold (THR) method [10]: monitors the CPU

utilization and migrates a VM when the current utilization

exceeds 80% of the total amount of available CPU ca-

pacity on the PM. Comparison THR against SARMS can

show the performance of the adaptive threshold utilization

mechanism for VM management.

1http : //www.spec.org/power ssj2008/

Figure 2 illustrates the SLAV, energy consumption and

number of migrations by SARMS, HiVM, MADC, LR, MAD,

IQR and THR methods in GCD workload. SARMS can reduce

the SLA violations rate more efficiently than other techniques

(Figure 2(a)). The obtained results can be explained by the fact

that the proposed VM optimization algorithm as a main part

of SARMS uses the AUT mechanism to keep the utilization

of PMs below the adaptive thresholds. We also observe a

significant reduction in the energy consumption 13.7%, 25.7%,

43.6%, 59.4%, 66.4% and 69.6% when we compared with

HiVM, MADC, LR, MAD, IQR and THR, respectively. This

is because, the VM optimization algorithm minimizes the

number of non-overloaded PMs. Moreover, Figure 2(c) depicts

SARMS performs well in terms of minimizing the number of

migrations due to follow all-or-nothing property.

The SLAV metric for the PlanetLab workload is shown in

Figure 3(a). The results show that SARMS leads to signifi-

cantly less SLA violations than other benchmark algorithms.

The main reason is that SARMS prevents SLA violations

by migrating some VMs from a PM when memory or CPU

utilization exceeds the adaptive thresholds. In addition, Fig-

ure 3(b) shows SARMS provides higher energy saving in

comparison to other methods. It reduces the energy consump-

tion up to 5.9% in PlanetLab workload. This is because, the

SARMS tries to consolidate VMs into the minimum number of

non-overloaded PMs by running second step of the VM place-

ment optimization algorithm. Furthermore, SARMS is more

efficient in reducing the number of migrations (Figure 3(c)).

This is due to the fact the VM placement algorithm follows

all-or-nothing property to migrate VMs. Thus, the algorithm

can avoid unnecessary VM migrations and reduce the rate of

SLA violations in data centers.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a Self-Adaptive Resource Man-

agement System (SARMS) for efficient resource management

in cloud infrastructure. SARMS uses a novel Adaptive Uti-

lization Threshold (AUT) mechanism to dynamically adjust

utilization thresholds for each Physical Machines (PMs). As a

part of SARMS, we presented a VM placement optimization

algorithm to prevent SLA violations by migrating some VMs

from a PM when the resource utilization exceeds the threshold.

Moreover, the algorithm consolidates VMs into the minimum

number of active PMs to reduce the energy consumption in

data centers. The obtained results of real Google and Planet-

Lab workload traces show that SARMS significantly outper-

forms benchmark algorithms in terms of energy consumption,

performance requirements and number of VM migrations. As a

future work, we have identified three improvement directions

for the SARMS. First, we plan to improve AUT by tuning
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Fig. 2. The SLAV metric, energy consumption and number of VM migrations by SARMS and benchmark approaches for the GCD workload trace

Fig. 3. The SLAV metric, energy consumption and number of VM migrations by SARMS and benchmark approaches for the PlanetLab workload trace

the learning rate parameter in Q-learning according to the

current load in each PM. The second improvement proposed

a network-aware VM placement algorithm to balance network

traffic and improve network resource utilization the data center.

The third improvement aims to evaluate SARMS in a real

cloud environment.
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