
Protect both Integrity and Confidentiality in Outsourcing Collaborative
Filtering Computations

Qiang Tang
University of Luxembourg

Luxembourg
Email: qiang.tang@uni.lu

Balázs Pejó
University of Luxembourg

Luxembourg
Email: balazs.pejo@uni.lu

Husen Wang
University of Luxembourg

Luxembourg
Email: husen.wang@uni.lu

Abstract—In the cloud computing era, in order to avoid
the computational burdens, many recommendation service
providers tend to outsource their collaborative filtering
computations to third-party cloud servers. In order to
protect service quality, the integrity of computation results
needs to be guaranteed. In this paper, we analyze two
integrity verification approaches by Vaidya et al. and
demonstrate their performances. In particular, we analyze
the verification via auxiliary data approach which is only
briefly mentioned in the original paper, and demonstrate
the experimental results. We then propose a new solution
to outsource all computations of the weighted Slope One
algorithm in two-server setting and provide experimental
results.

Keywords-Collaborative filtering; Integrity; Confidential-
ity.

I. Introduction
Collaborative filtering is a general technique for

recommender systems to make automatic predictions
about the interests of a user by collecting preferences
or taste information from many users. Numerous or-
ganizations, small or big, have deployed it to provide
personalized services to their customers. But the bene-
fits do not come for free because collaborative filtering
algorithms are often computation-intensive, especially
when more data are desired to get better results. In the
cloud computing era, a natural solution is for the rec-
ommendation service provider (referred to as RecSys
throughout the paper) to outsource the computations
to a cloud server. In the outsourcing, two issues arise.
One is the integrity of the computation results. The
cloud server may provide some fake results instead of
spending its resources in computing the correct ones.
The other one is confidentiality and more generally
privacy issue. Both integrity and confidentiality are
desirable, but we mainly focus on the integrity issue.

With respect to integrity protection in outsourcing
collaborative filtering computations, two most relevant
works are [9] and [10]. In [9], Sheng et al. relied
on some algebraic properties to aggregately verify
the correctness (or, integrity) of inner product results
computed by the service provider. In [10], Vaidya et

al. proposed two approaches to verify the integrity
of outsourced computations (precisely, for weighted
Slope One and adjusted Cosine-based algorithms).
Moreover, they introduced a game-theoretic approach
which can serve as a complementary deterring factor
against the server’s cheating attempt. Besides [9] and
[10], there are many other related works. For example,
Wong et al. [11] and Dong et al. [4] investigated the
integrity issues in outsourcing frequent itemset mining
computations, and Liu et al. [6] proposed probabilistic
and deterministic methods to verify clustering results
for k-means clustering algorithms.

A. Problem Statement and Our Contribution

The problem setting is as follows. The RecSys pos-
sesses a rating dataset and wants to compute the
predicted ratings for the unrated items. For efficiency
reasons, the RecSys will outsource the computations
to a cloud server and wants to guarantee the integrity
of computation results. In this paper, we focus on the
weighted Slope One recommender algorithm from [5].

In Section III, we analyze the cheating and detection
strategies in four scenarios from [10], and figure out
the best strategies for the RecSys and the cloud server.
In Section IV, we analyze the verification via auxiliary
data approach and propose a simplified variant. We
demonstrate that this variant is more effective than the
verification via splitting approach from the perspective
of the RecSys. In Section V, we propose a solution
to outsource the computations in both stages for the
weighted Slope One algorithm in two-server setting,
and show the experimental results.

All experimental results are obtained based on In-
tel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz using 15
GB RAM. Both integrity verification approaches can
achieve some level of confidentiality, we put the details
in the full paper [13] due to space limitation.

II. Weighted Slope One Collaborative Filtering

In a recommender system, the item set is denoted
by B = {1, 2, . . . ,M} and the user set is denoted by U =

{1, 2, . . . ,N}. A user x’s ratings are denoted by a vector
Rx = (rx,1, . . . , rx,M). The rating value is often an integer
from {0, 1, 2, 3, 4, 5}. If user x has not rated item i then
rx,i is set to be 0. The ratings are often organized in
a rating matrix. The functionality of a recommender
system is to predict the unrated values. With respect
to Rx, a binary vector Qx = (qx,1, . . . , qx,M) is defined
as follows: qx,b = 1 iff rx,b , 0 for every 1 ≤ b ≤ M.
Basically, Qx indicates which items have been rated by

user x. The density of the rating matrix is d =
∑N

i=1
∑M

j=1 qi, j

MN .
The weighted Slope One recommender algorithm [5]

exploits deviation metrics with “popularity differen-
tial” notion between items. It predicts the rating of
an item for a user from pair-wise deviations of item
ratings. The algorithm has two stages.

Computation stage. In this stage, two matrices ΦM×M
and ∆M×M are generated. For every 1 ≤ i, j ≤M, φi, j and
δi, j (i.e. the element located in i-th row and j-th column)
are defined as φi, j =

∑N
u=1 qu,iqu, j, δi, j =

∑N
u=1 qu,iqu, j(ru,i−

ru, j) respectively. In more detail, φi, j is the number of
users who rated both item i and j, while δi, j is the
deviation of the ratings of item i from item j and ∆M×M
is referred to as the deviation matrix.

Prediction stage. This stage uses both ΦM×M and ∆M×M
as well as the original rating matrix to predict the
unrated ratings for all users. To compute the predicted
rating for item i for user x, the formula of weighted
Slope One algorithm is px,i =

∑
j∈B/{i} δi, j+rx, jφi, j∑

j∈B/{i} φi, j
.

III. Examining the Verification via Splitting
Approach

With the verification via splitting approach, the
idea is to horizontally split the rating matrix D into
r (r ≥ 1) non-overlapping blocks. These blocks are
independently outsourced to the server, who performs
the requested computations on the blocks and returns
the results. Let δ(k)

i, j be the results based on the k-th
block, the server returns the following to the RecSys:
intermediate deviation values δ(k)

i, j , for all 1 ≤ i, j ≤ M

and 1 ≤ k ≤ r; final deviation values δi, j =
∑r

k=1 δ
(k)
i, j , for

all 1 ≤ i, j ≤M.

A. Compare four Cheating-Detection Scenarios

In the following, we analyze the four different sce-
narios cheating-detection scenarios from [10] for veri-
fying the intermediate results δ(k)

i, j .
• Scenario 1 The server randomly picks up α items

and sets the deviation values associated with these
items to be random numbers in all the blocks. For
every block, the RecSys randomly selects θ devia-
tion values to verify by re-computing these values.
The verification cost is rθ deviation computations.

• Scenario 2 The server randomly picks up in total
β users/rows from all blocks and discards their
values in the computation. For every block, the
RecSys randomly selects θ deviations to verify by
recomputing these values. The verification cost is
rθ deviation computations.

• Scenario 3 The server randomly selects γ blocks
and sets the related deviations to be random
numbers. The RecSys randomly selects δ blocks
to verify by re-computing one deviation value for
each of them. The verification cost is δ deviation
computations.

• Scenario 4 For every block, the server cheats with
probability ρ and sets the related deviation values
to be random numbers. The RecSys randomly
selects δ blocks to verify by re-computing one
deviation value for each of these blocks. The ver-
ification cost is δ deviation computations.

It is clear that, for any given cheating rate for the
server, the RecSys would prefer high detection rate
and low verification cost. The cheating rate is denoted
as ρ, meaning that the server avoids ρ percent of the
required computations in the attack, and the detection
rate is denoted as Pd, meaning the probability that
the RecSys detects cheating. Therefore, we compare
these four scenarios in a pairwise manner, by setting a
common cheating rate of the server and studying the
detection rate and the verification cost for the RecSys.
We put the comparison details in the full paper [13],
and conclude that the RecSys will prefer Scenario 3
while the server will prefer Scenario 2 or Scenario 1
the most. Informally, for the RecSys, the best strategy is
to randomly choose some blocks and randomly choose
some deviation values in these blocks to verify. For the
server, the best strategy is to randomly choose some
blocks and set some deviation values in them to be
random values.

With respect to the verification of final deviation
values δi, j (1 ≤ i, j ≤ M), the RecSys can randomly
select a subset and verify them by summing up the
related intermediate results.

B. Experimental Results

We use MLM and Netflix datasets as examples to
study the performances, by assuming the following.
The server randomly selects γ blocks, and sets ζ per-
cent of the intermediate deviation values in them to
be random numbers. Moreover, the server randomly
selects ζ percent of the final deviation values to be
random numbers. In every block, the RecSys randomly
chooses θ intermediate deviation values to verify. At
last, the RecSys randomly chooses 100θ final deviation
values to verify. Based on this assumption, the server

can set γζ
r = ρ if it wants to achieve the cheating rate

ρ, and the RecSys’s detection rate is

Pd =

1 −

(M(M−1)(1−ζ)
2

θ

)/(M(M−1)
2

θ

)γ · 1 −
(M(M−1)

2 − 100θ
100θ

)/(M(M−1)
2

100θ

)
It is straightforward to verify that, by using a larger

r, the RecSys achieves higher detection rate Pd with the
same verification cost. Next, we choose r = 1 (i.e. no
splitting) and r = 10 respectively to have a closer look
at the detection rates for the MLM dataset. We skip
the details for the Netflix dataset because they are very
similar. In the experiment, we fix a number of (ρ, θ)
pairs and summarize the Pd values in Tables I and II.
In Table II, Pd values are minimized with respect to γ
and ζ.

PPPPPθ
ρ

2−1 2−2 2−3 2−4 2−6 2−9

10 0.9990 0.9437 0.7369 0.4755 0.1457 0.0194
20 1.0000 0.9968 0.9308 0.7249 0.2702 0.0383
40 1.0000 1.0000 0.9952 0.9243 0.4674 0.0752
60 1.0000 1.0000 0.9997 0.9792 0.6113 0.1107
80 1.0000 1.0000 1.0000 0.9943 0.7163 0.1448
100 1.0000 1.0000 1.0000 0.9984 0.7930 0.1776
200 1.0000 1.0000 1.0000 1.0000 0.9571 0.3236

Table I
Pd ValuesWhen r = 1

PPPPPθ
ρ

2−1 2−2 2−3 2−4 2−6 2−9

1 1.0000 0.9954 0.8594 0.6240 0.1239 0.0035
2 1.0000 1.0000 0.9802 0.8594 0.2757 0.0125
4 1.0000 1.0000 0.9996 0.9802 0.4923 0.0412
6 1.0000 1.0000 1.0000 0.9972 0.6391 0.0771
8 1.0000 1.0000 1.0000 0.9996 0.7431 0.1154

10 1.0000 1.0000 1.0000 0.9999 0.8171 0.1537
20 1.0000 1.0000 1.0000 1.0000 0.9666 0.3194

Table II
Pd ValuesWhen r = 10

The results show that, to achieve similar detection
rates Pd, the required verification cost decreases roughly
in a linear manner with respect to the number of
blocks. We summarize the verification costs in Tables
III and IV.

r = 1 θ 10 20 40 60 80 100 200
Total Time. 0.0008 0.0014 0.0026 0.0039 0.0052 0.0067 0.0135

r = 10 θ 1 2 4 6 8 10 20
Total Time. 0.0005 0.0010 0.0020 0.0031 0.0041 0.0051 0.0101

Table III
Total Costs forMLM Dataset (seconds)

r = 1 θ 10 20 40 60 80 100 200
Total Time. 0.02936 0.0546 0.1126 0.1659 0.2220 0.2873 0.5794

r = 10 θ 1 2 4 6 8 10 20
Total Time. 0.0048 0.0071 0.0128 0.0187 0.0240 0.0298 0.0570

Table IV
Total Costs for Netflix Dataset (seconds)

It seems that the larger r the better for the RecSys.
However, one concern is that the server may only cheat
on a small number of final deviation results instead of ζ
percent as we have assumed. In this case, the detection
rates will be much smaller than those in Table II.

IV. Examining the Verification via Auxiliary Data
Approach

A. Recap the Original Approach

The approach from [10] generates synthetic data to
be merged with the original matrix D, as shown in
Fig. 1. For efficiency reasons, it is required that n′ �
N and m′ � M. In order to prevent the server from
figuring out the synthetic data, it is necessary that the
real users “rate” the fake items (Z) as well as the fake
users “rate” the real items (Y). Clearly, the fake ratings
from Y may lead to inaccurate item-item deviations,
while the fake ratings from Z increases the verification
computation cost. In [10] the authors come up with the
following idea for generating Y and Z: let user u rate
items i and j. The impact on the deviation is ru,i − ru, j.
By setting another user v ratings such that rv,i − rv, j =
−(ru,i−ru, j), the deviation between i and j is unchanged.
E.g. if ratings are in the interval [min,max] then by
setting rv,i = inverse(ru,i) = min + max − ru,i all changes
in the deviations are eliminated. As seen in Equation
(1), as long as the sum of ratings belonging to the two
items from the group of users is equal then ∆i, j = 0.
This easily generalizes the generation of elements of Y
and Z for more items.∑

u

ru,i − ru, j = r1,i − r1, j + · · · + rk,i − rk, j = 0

⇒ r1,i + · · · + rk,i = r1, j + · · · + rk, j = γ
(1)

Formally, this approach can be applied with the follow-
ing steps: (1) the RecSys generates the synthetic matri-
ces X,Y,Z to be integrated with D; (2) it then randomly
permutes the rows and columns of the new matrix
and send it to the server; (3) the server computes an
intermediate deviation matrix ∆

′′

for the RecSys; (4)
the RecSys derives another deviation matrix ∆

′

for the
matrix shown in Fig. 1 based on the permutations it has
done; (5) the RecSys verifies the deviation values for
the matrix X; (6) if the verification passes, the RecSys
can obtain the deviation matrix ∆ for D from ∆

′

.

Figure 1. Splitting I Figure 2. Splitting II

B. A Simplified Variant
We observe that the matrix Y only plays the role

of hiding X in Fig. 1 while it increases the server’s
complexity in computing deviation values. Therefore,
we propose to extend D as shown in Fig. 2, where X∗

and Z∗ are computed in the same way as X and Z. By
doing so, everything stays the same except that the in-
curred complexity by Y is avoided. With the simplified
variant and the original approach, the server needs to
compute (M+m∗)(M+m∗−1)

2 deviation values, among which
m∗M deviation values are due to the verification needs
while only m∗(m∗−1)

2 of them can be used by the RecSys
(in step (5) of the procedure). In order to reduce
the computational overhead for the server, it is ideal
to minimize the value m∗ while keeping the m∗(m∗−1)

2
deviation values non-zero. Suppose the matrix X∗ has
n∗ rows, then the probability that the inner product

of any two columns is nonzero is (n∗
n∗d)−(n∗−n∗d

n∗d)
(n∗

n∗d)
where

d is the density of D. Tables V and VI shows the

minimal n∗ values for (n∗
n∗d)−(n∗−n∗d

n∗d)
(n∗

n∗d)
to achieve a number

of probabilities. Note that due to the lower density, to
achieve a similar probability, n∗ is larger in the case of
the Netflix dataset.

n∗ 100 200 300 400 500
Probability 0.1528 0.8413 0.9748 0.9994 0.9999

Table V
Values forMLM Dataset

n∗ 7000 10500 17500 21000 35000
Probability 0.6395 0.7835 0.9220 0.9531 0.9899

Table VI
Values for Netflix Dataset

Let’s assume the server will randomly choose ρ
percent of deviation values and set them to random
values. The detection rate can be computed as follows.

Pd = 1 −
((M+m∗)(M+m∗−1)

2 −
m∗(m∗−1)

2
ρ(M+m∗)(M+m∗−1)

2

)/((M+m∗)(M+m∗−1)
2

ρ(M+m∗)(M+m∗−1)
2

)
(2)

We fix a number of (ρ, m∗) pairs and summarize the
detection rates Pd in Table VII.

PPPPPm∗
ρ

2−1 2−2 2−3 2−4 2−6 2−9

2 0.5000 0.2500 0.1250 0.0625 0.0156 0.0020
4 0.9844 0.8220 0.5512 0.3211 0.0902 0.0117
6 1.0000 0.9866 0.8651 0.6202 0.2104 0.0289

10 1.0000 1.0000 0.9975 0.9452 0.5077 0.0842
20 1.0000 1.0000 1.0000 1.0000 0.9498 0.3103
40 1.0000 1.0000 1.0000 1.0000 1.0000 0.7824
80 1.0000 1.0000 1.0000 1.0000 1.0000 0.9979

Table VII
Pd values forMLM and Netflix Datasets

Interestingly, the Pd values are exactly the same
with four-digits precision, even though those of MLM

dataset should be slightly larger than those of Netflix
dataset. It shows that for reasonable cheating and
detection rates the RecSys only needs to add very
small-sized X∗ from the perspective of column size m∗

and compute m∗(m∗−1)
2 deviation values based on X∗.

C. Comparison to Verification via Splitting

In comparison, the verification via auxiliary data
approach mainly has two advantages.
• It has minimal computational complexity for the

RecSys, by minimizing the size of X∗. Furthermore,
it allows the RecSys to pre-compute X∗ and Y∗.

• It introduces fake data into the dataset and some-
how anonymizes the original dataset so that it is
more confidentiality-friendly.

Referring to Tables I, II, and VII, we can roughly say
that m∗ = 20 in the verification via auxiliary data
approach provides similar detection rates to those of
θ = 200 when r = 1 and θ = 20 when r = 10 in the veri-
fication via splitting approach. We present comparison
results in Table VIII. With respect to the verification via
splitting approach, we take the minimum values from
the last columns in Tables III and IV; with respect to
the running time of the verification via auxiliary data
approach, it is based on a 300× 20 matrix X∗ for MLM
and a 21000 × 20 matrix X∗ for Netflix.

Verification via Splitting Verification via Auxiliary Data
MLM 0.0101 0.0010

Netflix 0.0570 0.0054

Table VIII
Cost Comparison for RecSys (seconds)

The downside is that some overhead for the server
is incurred, as we have discussed in the beginning
of Section IV-B. If m∗ is much smaller than M, then
the overhead is quite small. Nevertheless, this can be
regarded as a tradeoff of the approach.

V. Outsourcing in Two-server Setting

Suppose there are two non-colluding servers, named
CS1 and CS2. The solution outsources the computations
of the computation and prediction stages in two steps.

We stress that, in the following solution, the RecSys
should randomly permute the matrix D with respect to
all the rows and columns before splitting it in both steps.
Otherwise, the servers can avoid detection by only honestly
computing the to-be-verified values. However, for the sim-
plicity of presentation, we skip this permutation and de-
permutation steps in our descriptions.

1) In the first step, the players interact as follows.
a) The RecSys splits the rating matrix D into

D∗1 and D∗2 as shown in Fig. 3.

i) It splits D into two N
2 ×M sub-matrices

D1 and D2.
ii) It randomly chooses m′ columns from D1

and put them into D2. The resulting N
2 ×

(M + m′) matrix is named D∗2.
iii) It randomly chooses m′ columns from D2

and put them into D1. The resulting N
2 ×

(M + m′) matrix is named D∗1.
The RecSys sends D∗1 and D∗2 to CS1 and CS2
respectively. Let the user set associated with
D∗1 (D∗2) be denoted asN1 (N2). Let’s assume
the added m′ columns corresponding to D∗1
(D∗2) define a new item set I1 (I2).

b) After receiving D∗1, CS1 computes a matrix
∆(1)

(M+m′)×(M+m′). For every i, j ∈ B
⋃

I1, δ(1)
i, j

is computed as δ(1)
i, j =

∑
u∈N1

qu,iqu, j(ru,i −

ru, j). Similarly, CS2 computes a matrix
∆(2)

(M+m′)×(M+m′). For every i, j ∈ B
⋃

I2, δ(2)
i, j is

computed as δ(2)
i, j =

∑
u∈N2

qu,iqu, j(ru,i − ru, j).

c) After receiving ∆(i)
M×M for i = 1, 2 from both

servers, the RecSys proceeds as follows.
i) It verifies the deviation values for the

new item sets I1 and I2. Since these val-
ues are computed by both CS1 and CS2,
the verification is just comparison.

ii) If the verification passes, the RecSys com-
putes ∆M×M. For every 1 ≤ i, j ≤ M,
δi, j = δ(1)

i, j + δ(2)
i, j .

Figure 3. Splitting I Figure 4. Splitting II

2) In the second step, the RecSys first computes
ΦM×M, and then proceeds as follows.

a) The RecSys splits the rating matrix D into
D†1 and D†2 as shown in Fig. 4.
i) It splits D into two N

2 ×M sub-matrices
D1 and D2.

ii) It randomly chooses n′ rows from D1 and
put them into D2. The resulting (N

2 +n′)×
M matrix is named D†2.

iii) It randomly chooses n′ rows from D2 and
put them into D1. The resulting (N

2 +n′)×
M matrix is named D†1.

The RecSys sends D†1 and D†2 to CS1 and CS2
respectively. In addition, the RecSys sends
∆M×M,ΦM×M to both servers. Let the user

set associated with D†1 (D†2) be denoted as
N†1 (N†2). Let’s assume the added n′ rows
corresponding to D†1 (D†2) define a new user
set U1 (U2).

b) After receiving ∆M×M,ΦM×M and D†1, CS1
computes the predictions px,i for all x ∈ N†1
and i ∈ B. Similarly, CS2 computes the pre-
dictions px,i for all x ∈N†2 and i ∈ B.

c) After receiving the predictions from both
servers, the RecSys first verifies the values
form the user sets U1 and U2. Since these
values are computed by CS1 and CS2 simul-
taneously, the verification is just comparison.
If the verification passes, the RecSys can
accepts the predictions for user x ∈ U.

From the description, it is clear that the main cost
for the RecSys is to compute ∆M×M in the first step. It
is about M(M−1)

2 additions. The computational overhead
for every server is very small, and can be found in [13].

Suppose CS1 cheats by setting ρ percent values to be
random numbers, while CS2 is honest. The detection
rates in the first step and the second step are 1 − f (ρ)
and 1− g(ρ) respectively. If CS2 also cheats in the same
manner, then the detection rate in the first step and the
second step are 1− f (ρ)2 and 1− g(ρ)2 respectively. The
functions f (ρ) and g(ρ) are defined as follows. Note
that if cheating is detected, the RecSys needs to do
extra work to figure out who has/have cheated.

f (ρ) =

((M+m′)(M+m′−1)
2 −m′(m′ − 1)

ρ (M+m′)(M+m′−1)
2

)
((M+m′)(M+m′−1)

2

ρ (M+m′)(M+m′−1)
2

) , g(ρ) =

(
(1 − d)M(N

2 − n′)

ρ(1 − d)M(N
2 + n′)

)
(

(1 − d)M(N
2 + n′)

ρ(1 − d)M(N
2 + n′)

)

With respect to the MLM and Netflix datasets, we fix
a number of (ρ, m′) pairs and study the detection rates
Pd in step 1. Table IX summarizes the results when
only one server cheats. Table X summarizes the results
when both servers cheat. Interestingly, the Pd values
are exactly the same for both datasets with four-digits
precision, even though those of MLM dataset should
be slightly larger than those of Netflix dataset.

PPPPPm′
ρ

2−1 2−2 2−3 2−4 2−6 2−9

2 0.7500 0.4375 0.2344 0.1211 0.0310 0.0039
4 0.9998 0.9683 0.7986 0.5390 0.1722 0.0232
6 1.0000 0.9998 0.9818 0.8557 0.3765 0.0570
10 1.0000 1.0000 1.0000 0.9970 0.7576 0.1613
16 1.0000 1.0000 1.0000 1.0000 0.9772 0.3745
20 1.0000 1.0000 1.0000 1.0000 0.9975 0.5243
30 1.0000 1.0000 1.0000 1.0000 1.0000 0.8175

Table IX
Pd values w.r.t. m′ and ρ (MLM and Netflix, one cheats)

PPPPPm′
ρ

2−1 2−2 2−3 2−4 2−6 2−9

2 0.9375 0.6836 0.4138 0.2275 0.0611 0.0078
4 1.0000 0.9990 0.9594 0.7875 0.3147 0.0458
6 1.0000 1.0000 0.9997 0.9792 0.6113 0.1107
10 1.0000 1.0000 1.0000 1.0000 0.9413 0.2967
16 1.0000 1.0000 1.0000 1.0000 0.9995 0.6088
20 1.0000 1.0000 1.0000 1.0000 1.0000 0.7737
30 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667

Table X
Pd values w.r.t. m′ and ρ (MLM and Netflix, two cheat)

Next, we fix a number of (ρ, n′) pairs and study the
detection rates Pd in step 2. When one server cheats,
Tables XI and XII summarize the results.

PPPPPn′
ρ

2−9 2−10 2−11 2−12 2−13 2−14

1 1.0000 0.9994 0.9753 0.8426 0.6033 0.3701
2 1.0000 1.0000 0.9994 0.9753 0.8428 0.6033
3 1.0000 1.0000 1.0000 0.9961 0.9377 0.7506
4 1.0000 1.0000 1.0000 0.9994 0.9754 0.8430
5 1.0000 1.0000 1.0000 0.9994 0.9754 0.8430
6 1.0000 1.0000 1.0000 1.0000 0.9961 0.9378
7 1.0000 1.0000 1.0000 1.0000 0.9985 0.9609

Table XI
Pd values w.r.t. n′ and ρ (MLM, one cheats)

PPPPPn′
ρ

2−9 2−10 2−11 2−12 2−13 2−14

1 1.0000 1.0000 1.0000 0.9998 0.9862 0.8827
2 1.0000 1.0000 1.0000 1.0000 0.9998 0.9862
3 1.0000 1.0000 1.0000 1.0000 1.0000 0.9984
4 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table XII
Pd values w.r.t. n′ and ρ (Netflix, one cheats)

It is clear that, for both datasets, even setting a
small n′ and very low cheating rate, Pd values are
very big. Due to its lower density, the Pd values for
the Netflix dataset are larger. When both server cheat,
the Pd values will even be bigger than those from these
tables. Due to space limitation, we skip the details here.

VI. Conclusion

In this paper, we have mainly focused on the in-
tegrity protection of weighted Slope One. It is a fu-
ture work to apply the proposed approaches to other
recommender algorithms. It is a widely open prob-
lem to investigate lightweight solutions for rigorous
protection of confidentiality in outsourcing. A related
problem is to achieve confidentiality and integrity
simultaneously. With homomorphic encryption, it is
straightforward to have integrity because we can add
a few dummy records (e.g. with all zeros) to verify
integrity. However, it becomes harder if we desire
lightweight solutions without completely relying on

inefficient cryptographic primitives such as homomor-
phic encryption schemes.

Acknowledgements
Qiang Tang and Husen Wang are supported by a

CORE grant from the National Research Fund, Lux-
embourg. Qiang Tang and Balázs Pejó are supported
by an internal project from University of Luxembourg.
We thank Jun Wang for his helpful comments.

References

[1] J. W Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved
security for a ring-based fully homomorphic encryp-
tion scheme. In Cryptography and Coding, pages 45–64.
Springer, 2013.

[2] J. F. Canny. Collaborative filtering with privacy. In Secu-
rity and Privacy, 2002. Proceedings. 2002 IEEE Symposium
on, pages 45–57. IEEE, 2002.

[3] S. S. Roy and K. Jarvinen and F. Vercauteren and V.
Dimitrov and I. Verbauwhede. Modular hardware archi-
tecture for somewhat homomorphic function evaluation.
In Cryptographic Hardware and Embedded Systems–CHES
2015: 17th International Workshop, Proceedings, volume
9293, page 164. Springer, 2015.

[4] B. Dong, R. Liu, and H. W. Wang. Result integrity
verification of outsourced frequent itemset mining. In
Data and Applications Security and Privacy XXVII, pages
258–265. Springer, 2013.

[5] D. Lemire and A. Maclachlan. Slope one predictors
for online rating-based collaborative filtering. In SDM,
volume 5, pages 1–5. SIAM, 2005.

[6] R. Liu, H. W. Wang, P. Mordohai, and H. Xiong. Integrity
verification of k-means clustering outsourced to infras-
tructure as a service (iaas) providers. In SDM, pages
632–640, 2013.

[7] F. McSherry and I. Mironov. Differentially private recom-
mender systems: building privacy into the net. In Pro-
ceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 627–636.
ACM, 2009.

[8] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N.
Taft, and D. Boneh. Privacy-preserving matrix factoriza-
tion. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 801–812. ACM,
2013.

[9] G. Sheng, T. Wen, Q. Guo, and Y. Yin. Verifying correct-
ness of inner product of vectors in cloud computing. In
Proceedings of the 2013 international workshop on Security in
cloud computing, pages 61–68. ACM, 2013.

[10] J. Vaidya, I. Yakut, and A. Basu. Efficient integrity
verification for outsourced collaborative filtering. In Data
Mining (ICDM), 2014 IEEE International Conference on,
pages 560–569. IEEE, 2014.

[11] W. K. Wong, D. W. Cheung, E. Hung, B. Kao, and
N. Mamoulis. An audit environment for outsourcing
of frequent itemset mining. Proceedings of the VLDB
Endowment, 2(1):1162–1173, 2009.

[12] I. Yakut and H. Polat. Arbitrarily distributed data-
based recommendations with privacy. Data & Knowledge
Engineering, 72:239–256, 2012.

[13] Q. Tang and B. Pejo. Protect both Integrity and Con-
fidentiality in Outsourcing Collaborative Filtering Com-
putations. Available at http://eprint.iacr.org/2016/079

