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Abstract—We present here the results of our investigation
of a transactional model of parallel programming on cluster
computing systems. This model is specifically targeted for graph
applications with the goal of harnessing unstructured parallelism
inherently present in many such problems. In this model, tasks
for vertex-centric computations are executed optimistically in
parallel as serializable transactions. A key-value based globally
shared object store is implemented in the main memory of the
cluster nodes for storing the graph data. Task computations
read and modify data in the distributed global store, without
any explicitly programmed message-passing in the application
code. Based on this model we developed a framework for parallel
programming of graph applications on computing clusters. We
present here the programming abstractions provided by this
framework and its architecture. Using several graph problems
we illustrate the simplicity of the abstractions provided by
this model. These problems include graph coloring, k-nearest
neighbors, and single-source shortest path computation. We also
illustrate how incremental computations can be supported by
this programming model. Using these problems we evaluate the
transactional programming model and the mechanisms provided
by this framework.

I. INTRODUCTION

Parallelism in many graph problems tends to be fine-grained

with irregular structure [14], [8], which makes it difficult to

partition data for parallel computing using commonly used

frameworks such as MapReduce [5]. To harness the irregular

parallelism inherent in such problems, also called amorphous
parallelism [14], [8], techniques based on optimistic parallel

execution of concurrent tasks have been investigated in the

past [8]. Speculative execution techniques for extracting

parallelism have also been widely investigated in the context

of multi-core and multi-threaded architectures.Such techniques

are based on the notion of software transactional memory [6],

[10] to guarantee the atomicity and isolation properties of

concurrently executed tasks.

Our work has been driven by the goal of developing a

transaction-based model of parallel programming on clus-

ter computers, utilizing optimistic execution techniques for

harnessing amorphous parallelism in graph problems. We

implemented this model in a parallel programming framework

called Beehive [18]. It is intended for cluster computing of

large problems for which the RAM of a single computer may

not be sufficient. Its design has been driven by the goals of

providing simple programming abstractions and support for

fault-tolerance and recovery. We present here the transaction-

based programming abstractions and the system architecture

of this framework. The primary focus of this paper is on the

results of our investigation and our experience in programming

with the transactional model of parallel computing on clusters.

The computation model supported by our programming

framework is vertex-centric, supporting parallel execution of

computation tasks on different vertices of a graph. Each task is

executed as a serializable transaction [3], implemented using

optimistic concurrency control techniques [9]. A global object

storage is implemented in the memory of the cluster nodes

for providing location-transparent access to graph data. This

relieves the programmer from the burden of programming

explicitly with message-passing primitives. The motivations

for adopting this approach is to provide a simple model for

parallel programming of graph algorithms as compared to the

message-passing models.

In comparison to our previous work in [18], the Beehive sys-

tem described here provides significantly better performance

by supporting object caching, fine-grain operations on remote

objects, and multi-threaded implementation of the transaction

validation service. This system also supports fault-tolerance

using checkpointing and recovery mechanisms. In this paper

we also present an evaluation of the optimistic execution

model using several graph problems, which include graph

coloring, single-source shortest path, and k-nearest neighbors.

The programs for these problems illustrate the simplicity of

the Beehive programming abstractions and also show that one

can easily develop a parallel program for a problem through

simple adaptation of a sequential algorithm. We also illustrate

here an important advantage of the transactional programming

model in its ability to support incremental computations when

a graph structure is updated after the execution of a parallel

program.

The next section presents the related work. Section III

presents an overview of the transactional model of parallel

computing provided by Beehive. Section IV presents the

programming abstractions, Section V presents an overview

of the system architecture. Section VI outlines the significant

refinements of the initial design presented in [18]. In Sec-

tion VII we illustrate parallel programming in this framework

using a set of graph problems. Using these example programs,

in Section VIII we present the results of our performance

evaluation experiments. Section IX discusses and summarizes

the results of our investigation, and presents the conclusions.
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II. RELATED WORK

Our approach is conceptually close to the work presented

in [8] and the Galois system [13], which provides an in-

frastructure to support speculative execution of computations

for graph data analytics on shared memory multiprocessor

systems. The Ligra [17] system supports vertex-centric parallel

computing on shared memory systems. In contrast, our work

is aimed for execution on cluster computing platforms. In

the recent years several frameworks and systems have been

developed specifically for performing graph data analytics on

computing clusters. Distributed GraphLab [11] uses locking

based concurrency control for task executions. The approach

investigated in our work is based on the optimistic concurrency

control model [9]. Pregel [12] and its open-source counterpart

Giraph [2] are specifically intended for graph data analysis.

They are based on the Bulk Synchronous Parallel (BSP)

model [20] of computing. This requires programmers to adapt

their algorithms to utilize the BSP model. Moreover, the BSP

model may not be suitable for all types of graph processing

problems. Utilizing the Pregel model also requires suitable

partitioning of the graph. The Dryad [7] system for graph data

analytics is based on data-flow based parallel computing.

The Piccolo [15] system provides a programming model

based on the abstraction of a shared data store. However, it

does not support a general model of transactional task execu-

tion; it provides atomic operations and concurrent combining

operations limited to a single key-based data item in the

storage. Trinity [16] is specifically designed for parallel com-

puting of graph problems utilizing RAM of cluster computing

nodes for storing graph data using key-value abstractions. Its

synchronization primitives are based on spin-locks; it lacks

higher level synchronization mechanisms such as transactions.

Our focus is on leveraging a global object storage abstraction

for transactional parallel computing.

In contrast to the systems noted above, Beehive provides

several unique capabilities. It provides a richer model for

representing graph data. Nodes and edges are defined as

Java objects, which can be extended to contain different

kinds of application-specific properties. This also facilitates

parallel programming of applications that involve hypergraphs,

where multiple edges representing different types of relation-

ships among nodes are needed. Beehive model also supports

dynamic graph structures, i.e. in a computation edges and

nodes can be added or removed from the graph. The trans-

actional model of computation also facilitates incremental re-

computations when the graph structure is modified. Moreover,

Beehive also supports concurrent execution of different types

of tasks on multiple nodes, unlike many of the above systems

where one specific computation is executed on all nodes.

III. TRANSACTIONAL PARALLEL COMPUTING MODEL

A parallel program is composed of a set of vertex-centric

computation tasks. A task performs computation on some

specified node, and it can also read or update other nodes in

the graph. It is possible for a successfully completing task to

create new tasks for further computation. Each task is executed

as a serializable transaction [3] satisfying the properties of

atomicity and isolation. We refer to these computations as

transactional tasks. Each such task is required to be well-
formed in the sense that its atomic computation step transforms

the graph data from one consistent state to another. This

ensures that the final computation state is one that would

result from a sequential execution of the tasks. It should be

noted that the serialization order of the transactional tasks is

non-deterministic. Therefore, the final state resulting from a

parallel program execution in this model may not be a state

that would result from a sequential algorithm’s execution.

For example, different runs of the single-source shortest path

problem in this model may give different shortest paths to a

node but they all will be of the same length, or different runs

of a maxflow problem may use different edges for flow, but

all runs would give the same maxflow value.

The transaction model for task execution is based on op-

timistic concurrency control [9]. This is a lock-free model

of execution, and a transaction reads only committed data.

A transactional task is committed only if it does not conflict

with any other concurrently committed task. The conflicts

are defined based on the notion of read-write or write-write
conflicts, as in database systems [3].

The optimistic execution of a transactional task involves the

following four phases: read phase, compute phase, validation
phase, and update phase. The task execution begins by first

obtaining a start timestamp for the transaction. This is a

logical timestamp, and it indicates the sequence number of

the latest committed transaction such that the updates of all

committed transactions with timestamps up to that value have

been written to the global storage. A transactional task reads

the required data items from the global storage into its local

memory buffers. In the compute phase, all updates are written

to the private buffer memory. After the compute phase, a

validation is performed to check for conflicts. The validation

procedure ensures that no concurrently committed transaction

with commit timestamp larger than the start timestamp of

the transaction being validated has modified any items in

its read-set or write-set. Otherwise, we have a conflicting

concurrent transaction already committed, and therefore this

transaction must be aborted and re-executed. On successful

validation, the transaction is assigned a commit timestamp.

Commit timestamps are monotonically increasing, without

any gaps. On committing, the transaction writes the buffered

updates to the global storage and any new tasks created by the

transactional task are added to the set of tasks to be executed.

The motivation in adopting the optimistic execution ap-

proach is to exploit latent parallelism present in many graph

problems by performing parallel execution of tasks on different

vertices of the graph, assuming that the probability of conflicts

among concurrently executed tasks would be low. We show

here through experimental evaluations that this assumption

holds for several graph problems.
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IV. PROGRAMMING ABSTRACTIONS

The programming primitives provided in Beehive are based

on three abstractions: First, it provides a distributed global

object storage system maintained in the main memory of

the computing cluster nodes for storing the input graph data

for the program. The global object storage system provides

key-value based location-transparent access, eliminating any

explicit use of message-passing primitives in the program.

Second, it uses the task-pool paradigm [4]. A distributed pool

of tasks is maintained in the system. Third, it provides a pool

of worker threads on each cluster node. A worker thread picks

a task from the task-pool for execution using the transactional

computing model.

public class Worker extends Thread {
Set<Node> readSet, writeSet;
public void run() {
while(true) {
Task task = Workpool.getTask();
finished = false;
while (!finished) {
tnxnId = beginTransaction();
readSet = new Set(); //read objects
writeSet = new Set(); //updated objects
newTasks = doTask(task);
status = validator.validate(txnId, readSet,

writeSet);
if (status == commit) {
Workpool.reportCompletion(txnId, writeSet,

newTasks);
finished = true;

}
else { abortTransaction( txnID );
}
}

}
}
abstract TaskSet doTask(Task t) {
// Application defined implementation
}

}
Fig. 1. Base Class for Worker

We now illustrate the primitives provided for transaction-

based parallel programming. For this purpose we use the graph

coloring problem. The color of a node is indicated by a positive

integer, with 0 indicating that the node is not colored. In the

beginning, none of the nodes are colored. A task is created for

each graph node and added to the task-pool to color it such

that the color assigned to the node is different from those of its

neighbors. The framework provides the abstract Worker thread

class, as shown in Figure 1. It fetches a task from the local

task-pool, implemented by the Workpool server, by calling

its getTask method. The worker then calls beginTransaction
primitive to execute the task computation as a transaction.

It passes the task to the doTask method for execution. This

is an abstract method in the base Worker class, and its

implementation should be provided by a problem-specific

concrete worker class. Figure 2 shows the GraphColorWorker
class defined for the graph coloring problem. It implements the

doTask method. This method performs the computation and

updates the read/write sets of the transaction. It also returns

a set of new tasks to be added to the task-pool. For coloring

public class GraphColorWorker extends Worker {
public TaskSet doTask(Task task) {
TaskSet newTasks = new TaskSet();
Node u = storage.getNode( task.nodeId );
// u is target node to be colored
// Read all neighbor nodes of u
Set<Node> Nbrs = getNeighbors( u );
Vector<Integer> NbrColors = getNbrColors(NBrs);
Collections.sort( NbrColors );
int targetColor = 1;
// Find smallest unassigned neighbor color
foreach (Integer color in NbrColors) {
if (color > targetColor ) {

break;
} else if (color == targetColor) {

targetColor++;
}

}
u.color = targetColor;
writeSet.add(u);//add node u to write-set
readSet.add(Nbrs);//add neighbors to read-set
//No new task is created in this example
return null;

}
}

Fig. 2. Example of Worker for Graph Coloring Problem

a node, it reads the colors of the neighbor nodes, and assigns

to the target node the smallest number color not used by any

of its neighbors. The write-set contains the task’s target node,

and the read-set contains all the neighbors.

After the execution of the doTask method, the worker

thread performs transaction validation by invoking the validate
method of the validator object, which represents the interface

to the global validation service. The read-set and the write-

set are passed as parameters to the validation function. On

successful validation, the task is removed from the task-pool

by invoking the reportCompletion method of the Workpool

server. The set of updated objects (write-set) and the set of

new tasks are passed as parameters to this method. The new

tasks are distributed to different cluster nodes according to

the specified load distribution policies. If validation fails, the

worker thread re-executes the task as a new transaction.

The termination of a parallel program execution is detected

by the run-time system when the following three conditions

hold at all computing nodes in the cluster: (1) all worker

threads are idle, (2) there are no pending tasks in the local

task-pool, and (3) there are no messages in the communi-

cation network. The framework detects the termination and

communicates it to the application program.

V. SYSTEM-LEVEL ABSTRACTIONS

Each node of the computing cluster runs a multithreaded

Java process called Computation Engine (CE). The computa-

tion engines running on the cluster nodes collectively imple-

ment the core abstractions and the runtime environment for

executing a parallel program. One of the cluster nodes executes

the Transaction Validation Service (TVS), which is used to

check for conflicts among concurrent transactions. Figure 3

shows a conceptual view of this system architecture. A Com-

putation Engine contains the following four components: an

object storage server, a Workpool server, a local validator, and

a pool of worker threads. The storage server in a Computation
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Engine is RMI based, and all such servers running in the

cluster together implement the distributed key-value based

object storage service. The Workpool server implements a

local task-pool and facilitates distribution of tasks to the other

cluster nodes. The Computation Engine also contains a local

validator for hierarchical validation of transactions. We present

below the programming abstractions together with a brief

overview of the framework architecture.

A. Global Object Storage Service

The framework provides the abstraction of a key-value

based object storage service, supporting location-transparent

access to graph data, which is stored as node objects. The

base Node class contains a core set of data items such as the

node-id and information about the edges to its neighbor nodes.

A node object is accessed using the node-id as the access

key. In addition to providing primitives for reading or writing

a node object, the storage service also provides mechanisms

for fine-grain remote operations on a node object to either

read/update its member data or remotely invoke execution of

one of its methods on its storage server. A parallel program

can modify the graph structure at runtime to add/remove nodes

and edges. The storage system supports mechanisms for data

caching and dynamic relocation of data items, which can be

utilized to improve data locality for tasks. The unit of data

relocation is a node object. The object relocation mechanism

can be used by an application for clustering of graph data.

The distributed object storage system is implemented by the

set of storage servers contained in the Computation Engines.

The storage server in a Computation Engine stores objects

for a subset of the keys in the global key-space. The location

of an object is determined using a hash-based scheme, which

identifies its default location, referred to as its home site. The

objects can be relocated at runtime from their default location

to any other Computation Engine. The home site of an object

maintains its current location information.

At each Computation Engine, an object called StorageSys-
tem implements the global storage system abstraction, pro-

viding location-transparent data access. When accessing an

object, the StorageSystem first contacts the currently known

storage server responsible for that object. If that server no
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Fig. 4. Stable Timestamp and Commit Timestamp

longer holds the object, it responds with the address of its

new location. If the new location is not known, the home site

of the object is contacted, which always records its current

location. The new location is cached for future references.

B. Transaction Validation Service

The validation of transactions is performed in a hierarchical

manner to make the validation procedure efficient. In our

experiments we found that for some problems 70% of abort

decisions could be made locally. A transactional task is first

validated by the local validator in its Computation Engine. A

transaction invokes the validate method of the local validator,

specifying its start-timestamp and its read/write sets. The

local validator first checks for conflicts with any of the local

transactions that committed after the given start-timestamp. If

no conflict is found, then the validation request is forwarded

to the global Transaction Validation Service (TVS); otherwise

the transaction is aborted. TVS performs a similar checking for

conflicts. If no conflicts are found, the transaction is assigned a

commit timestamp by TVS using the monotonically increasing

CTS (Commit Timestamp) counter, and a commit response is

sent to the task. The task then writes the modified data to

the shared storage and reports completion to the Workpool,

which removes the task from the pool and communicates its

transaction’s completion to TVS.

TVS maintains a table to record, for each data item, the

commit-timestamp of the latest transaction that modified it.

To validate a transaction, for each item in its read-set and

the write-set, the last update timestamp value for that item in

the table is compared with the transaction’s start-timestamp.

If the start-timestamp is less than the update timestamp value

of any of the items, then the transaction is aborted. In case of

no conflicts, the transaction is assigned a commit-timestamp,

which is is recorded in the table for each item in the write-set.

TVS keeps track of the completed transactions and main-

tains a counter called STS (Stable Timestamp), which reflects

the largest commit timestamp value up to which all committed

transactions are known to have completed and written their

updates to the global storage. The STS value is used for

assigning the start-timestamp for new transactions. Figure 4

shows an example where the most recent commit timestamp

assigned to a transaction is 20, and all transaction with commit

timestamp value up to 15 have written their updates to the

global storage. The transaction with commit timestamp value

of 18 has completed by writing its updates to the global storage

but those with timestamps 16 and 17 have not yet reported

completion. STS would be advanced to 18 only after these

two transactions report completion to the validation service.
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Each new transaction requires reading the STS value from

the validation service for its start-timestamp. To reduce the

load due to such read requests, the validation service con-

tinuously piggybacks the current STS value in its validation

response messages. Each Computation Engine maintains a

cached value of STS, which is used for assigning start-

timestamps to local transactions. This scheme reduces the load

on TVS without any impact on the abort rate.

C. Task-Pool Service

Each Computation Engine runs a Workpool server, which

implements a task-pool. The set of Workpool servers executing

on the cluster nodes collectively support distribution and

scheduling of tasks in the cluster. The getTask method of the

local Workpool is called by a worker thread to fetch a task

for execution. The programming framework provides the base

Task class which contains some basic information about the

task, such as its taskId, nodeId of the target node for which

the task is intended, and an affinity specification to provide

hints for executing the task on a particular cluster node.

The Workpool server provides three operations to the ap-

plication programs for adding new tasks to the task-pool.

The method addTask(T) puts task T in the local task-pool

or selects a location according to the specified affinity level.

The broadcast(T) method creates a copy of the given task

in the task-pool of each of the Computation Engines in the

cluster. This primitive is generally used for executing some

initialization task at each of the Computation Engines. For

example, in the graph coloring program, we execute a start-up

task at each Computation Engine to create a coloring task for

each of the graph nodes stored in its local storage server. The

third method for adding tasks to the task-pool is the report-
Completion method, which is called by a transactional task

when it is committing. One of the parameters of this method

is a set of new tasks created by the task computation. These

new tasks are distributed across the Computation Engines in

the cluster according to the affinity level in each task and a

configurable distribution policy.

VI. DESIGN REFINEMENTS

A. Remote Data Access Mechanisms

Our initial design [18] supported reading and writing of

an entire node object by a task computation. This imposed

performance overheads due to the serialization cost when

accessing a remote object. We realized that in most cases

only a small subset of a node’s data items are needed to

be read or written in a computation task. This motivated us

to develop support for fine-grain operations in the distributed

storage system. For this purpose we introduced programming

primitives for a task to get or put the value for a member in

the remote node object. We also provided the exec primitive

for remote invocation of a node’s methods at its storage server.

One of the main requirements in designing the above APIs

was to keep in mind that the Beehive framework is agnostic

of the application-level data. Application program can extend

the Node class, but the storage framework is unaware and

independent of this application-defined node structure. Hence

remote get/put operations and exec invocations are carried

out by runtime inspection of the code to retrieve or alter the

node properties. We use the Java Reflection functionality for

this purpose. While runtime inspection of code may incur a

slight overhead, this is compensated by the reduction in the

serialization costs when the entire node is read or written.

Additionally, we also implemented two mechanisms to reduce

the cost of remote data access. One is to support caching of

remote data objects, and the second mechanism aggregates

multiple remote data access operations into one RMI call to

amortize the remote communication overheads.

B. TVS Design Refinements

Our experiments with large graph problems indicated high

memory consumption by TVS due to the increasing size of the

table used for storing update timestamps of modified objects.

This motivated us to develop a scheme to periodically truncate

the table by removing some entries. For this purpose, TVS pe-

riodically sets a timestamp value called Truncation Timestamp
(TTS) to a value less than STS by some fixed window size.

If an item in the table is not being accessed by any current

request and its update timestamp is smaller than TTS, then it

is removed from the table. Any validation request with start-

timestamp less than TTS is aborted because information about

transactions committed with timestamp below TTS has been

discarded. In our experiments we found that setting difference

between STS and TTS to 1000 resulted in reducing the table

size by 75% to 80% without causing any observable impact

on the abort rate. The truncation scheme used here has some

conceptual similarity to the scheme used in [1].

C. Fault Tolerance

Fault-tolerance in Beehive is based on coordinated check-

pointing. One worker thread is responsible for coordination of

system checkpointing. It first brings the system to a quiescent

state in which no tasks are being executed by any worker

thread and there are no messages in communication. Each

Computation Engine then saves its local checkpoint state.

Task execution resumes only after all Computation Engines

have checkpointed their state. The checkpoint state of a

Computation Engine includes the state of its storage server

component and the state of the local task-pool. All worker

threads are inactive in this state. Therefore, there is no need

to checkpoint the state of the worker threads. The checkpoint

state of TVS includes the values of the CTS and STS counters,

which have the same value in the quiescent state. No other

state of TVS is needed to be saved in the quiescent state.

Failure detection is based on a heartbeat protocol. A monitor

thread exists in each Computation Engine to periodically send

heartbeat messages to a failure detector process. If no heartbeat

is received within a specified interval the Computation Engine

is considered failed. The failure detector then shuts down the

system and restarts it in the recovery mode. When restarted in

the recovery mode, each Computation Engine reads its check-

point file and loads the checkpointed state. All Computation
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Engines are then in the quiescent state. At this point, the master

instructs them to resume task processing.

VII. PROGRAMMING WITH BEEHIVE

In this section we present examples of parallel programs

for a set of graph problems to illustrate the abstractions

provided by our framework for the transactional model of

parallel programming. We present here the program structures

for computing graph coloring, single-source shortest paths

(SSSP), and k-nearest nodes (KNN). Using the SSSP problem,

we illustrate how incremental computations can be supported

by the Beehive model when the graph structure is modified

after executing an analytics program. We also use these

problems for performance evaluation experiments.

A. Single-Source Shortest Path (SSSP) Problem
This program computes the shortest distance path from a

given source node to each of the other nodes in an undirected

graph. Each node maintains its currently known distance to the

source node, and the id of the predecessor node on the shortest

path to the source. When the currently known distance of a

node to the source node decreases, new tasks are created for

each of its neighbor nodes. Initially, a start-up task is executed

at the source node to create a task for each of its neighbors. A

task in this program contains the following additional fields:

senderId containing the id of the node whose distance has

changed, and distance indicating the new distance of this

node from the source. Figure 5 shows the implementation

of the doTask method in the worker class for this problem.

We include one additional optimization to reduce generation

of redundant tasks. We outline it below but omit these details

from the code shown in Figure 5. We do not generate a task for

a node if we find that the new task execution at the target node

will not reduce its distance to the source. For this purpose, each

node also maintains information about the currently known

distances of its neighbors to the source node. This information

is updated when a task is received from a neighbor.

public class SPWorker extends Worker {
public TaskSet doTask(Task task) {
TaskSet newTasks = new TaskSet();
String nodeId = task.nodeId;
String senderId = task.senderId;
Node u = storage.getNode(nodeId);
Edge e = u.neighbors.get( senderId );
if (u.distance > t.distance + e.weight) {

writeSet.add( u );
u.distance = t.distance + e.weight;
u.predecessor = t.senderId;
Set<String> nbrIds = u.neighbor.keys();
foreach (String nbr in nbrIds) {
Task t = new Task();
t.nodeId = nbr; // target node
t.senderId = u.nodeId;
t.distance = u.distance;
newTasks.add( t );

}
}
return newTasks;

}
}

Fig. 5. Worker for Single-Source Shortest Path

B. K-Nearest Nodes (KNN) Problem

For a given undirected graph, this program computes for

each node the list of its k nearest nodes and their distances.

The structure of this program is very similar to the program for

the single-source shortest path problem. Therefore, we omit

the presentation of its code. Each node maintains a list of

its currently known k-nearest nodes. The task computation

in this program involves updating this list. If execution of a

task results in updating this list for the target node because

of adding new nodes to the list or by decreasing the distance

value for a node already in the list, new tasks are created for

the direct neighbors of the target node. Each task contains the

sender node’s id, and a list containing the ids and the distances

of its k-nearest nodes. Based on this information, the execution

of this task updates the target node’s list of k-nearest nodes.

This can then result in creation of new tasks. Initially, one task

is generated for each node, which computes its initial list of

k-nearest nodes based on the distances to the direct neighbors

and it then creates a task for each of its direct neighbors.

C. Supporting Incremental Computations

We have utilized the transactional programming model of

Beehive for supporting incremental computations in dynami-

cally evolving graph data structures [19]. This eliminates the

need of re-executing the program for a large graph when only

some small number of updates are made to the graph structure.

For example, after executing the SSSP program on a graph, we

consider the following kinds of updates to the graph: changing

the distance value of an edge, and adding or removing an

edge. Increasing the distance value of an edge which is not

a “predecessor edge” requires no re-computation, but other

changes require that each of the two nodes joined by that

edge should “send” an SSSP task to the other node, similar

to the task creation in Figure 5. Similarly, adding a new edge

between two nodes requires very similar computation tasks to

be initiated. In the case of an edge deletion, there are two

cases to consider. If none of its two nodes is the predecessor

of the other, then no re-computation needs to be initiated.

Otherwise, for the node that had this deleted edge pointing to

its predecessor, a transactional task is executed to determine

which of its neighbors should become its new predecessor and

what is its new distance to the source. This task would then

initiate new such tasks for its neighbor nodes. If such a task

results in changing the distance of a node, then further creation

of new such tasks is needed for that node’s neighbors.

VIII. PERFORMANCE EVALUATIONS

We conducted several experiments to evaluate the per-

formance of the transactional programming model and the

mechanisms provide by the Beehive framework. We used the

problems described in Section VII for our evaluations. Our

experiments were driven by the following goals. Specifically

we wanted to evaluate the performance of the optimistic

execution model for different graph problems in terms of

the abort rates. We also wanted to study how the execution

times for a problem depend on the graph size, the number
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of tasks created and committed, and the number of cluster

nodes. We also wanted to evaluate the performance benefits

of the framework-level mechanisms such as object caching,

reflection-based remote operations, and hierarchical validation.

We conducted these experiments on a cluster computer

where each node had 8 CPU cores of 2.8 GHz and 22 GB main

memory, connected with 40-gigabit network. For all problems,

we generated random graphs with average node degree of 67.

1) Performance of Optimistic Execution and Hierarchical
Validation: We used the graph coloring, SSSP, and KNN

problems to evaluate the performance of the optimistic ex-

ecution model. For the graph coloring problem we evaluated

the benefits of the hierarchical validation scheme.

The data shown in Table I for the graph coloring shows

that the optimistic approach performs well for this problem.

Table I presents the number of transactions committed and the

number of transactions aborted. For the aborted transactions,

the numbers are given separately for those aborted in local

validation and those by the TVS. The number of transactions

committed represents the number of tasks that were needed

to be executed to solve the given problem. We make the

following observations based on these experiments. In this

program the number of tasks executed and committed is the

same as the number of nodes in the graph. For this problem

the probability of transactions committing ranged from 95% to

99%, indicating low contention among tasks. The number of

aborts is significantly lower for this problem, indicating a high

degree of parallelism. The fraction of local aborts is low here,

but its impact is insignificant as the total number of aborts

Graph size (number of nodes)
200K 400K 1000K

Local Aborts 1192 1223 906
TVS Aborts 9196 8382 7136
Total Commits 200K 400K 1000K
Fraction of local abort 11.4% 12.7% 11.2%
Prob. of Task commit 0.95 0.97 0.99

TABLE I
ABORT/COMMIT STATISTICS FOR THE GRAPH COLORING PROBLEMS

tends to be quite low.

Similarly we found that optimistic approach performs well

for the SSSP and KNN problems. For these problems we found

that the abort rates tend to in 1-3% range, indicating that these

problems perform well under the optimistic execution model.
2) Scaling-out on Cluster with Graph Sizes: We executed

on different number of cluster nodes the parallel programs for

graph coloring, and KNN using different size input graphs

to assess the scale-out performance. Figures 6 and 7 show

the execution times for these programs for different graphs

and cluster sizes. For all these problems, as the number of

cluster nodes is increased for a given problem, initially we

see a significant and almost linear decrease in the execution

time, but it then gradually levels off for larger cluster sizes.

This starts happening when the remote data access costs start

dominating. Figure 9 shows the execution times of the SSSP

program on a 12-node cluster for graphs with number of nodes

200K, 400K, 1-million, and 2-million. These programs have

different characteristics in regard to the memory demands and

computation load imposed by the tasks and the task-pool. In

the case of the graph coloring problem, the number of tasks

created is equal to the number of graph nodes. No new tasks

are created dynamically by a task computation.

We also noticed that some problems could not complete

when executed on a small number of cluster nodes. We

found that two factors influenced this. One is the memory

requirement of the storage server in a Computation Engine for

storing the graph data. The other is the storage requirement

for its Workpool server for storing tasks.
3) Performance of Dynamic Task Creation Model: For the

SSSP and KNN problems we found that a large number of

tasks were created, and many of them did not result in any

useful computation. Such tasks are effectively futile and waste

computing resources. For the SSSP problem we included an
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optimization, as discussed earlier, to reduce the number of such

redundant tasks. On a 10-node cluster, the SSSP program for

a 1-million node graph executed close to 500 million tasks,

and committed close to 12.5 million of them. The number of

total completed tasks was about 40 times the committed tasks.

This indicates a large number of redundant tasks.

For the KNN problem, the number of tasks committed

depends on the value of parameter k along with the graph size.

Figure 8 shows for a 20K node graph the execution times and

the number of tasks committed for different values of k by this

program’s execution on a 10-node cluster. The number of tasks

committed increase linearly with the value of k. However, the

execution time tends to increase in a super-linear manner due

to the overheads incurred when the number of tasks in the

system is high.

IX. DISCUSSION AND CONCLUSION

The transactional model of parallel programming presented

here provides a conceptually simple approach for harnessing

amorphous parallelism in graph problems. Our experiments

show that this approach performed well for graph coloring,

SSSP, and KNN problems. Our experience in parallel program-

ming with the Beehive framework presented here validates the

simplicity of its transaction-based programming model.

Our experiments indicate that for a given problem, scaling-

out beyond certain cluster size has marginal performance

benefits. Typically, this occurs because the remote data access

latencies start dominating the execution times. Also, executing

a program for a large graph on a small number of cluster nodes

can lead to poor performance due to the overheads imposed

by the framework level mechanisms. These overheads stem

from transaction management functions and synchronization

of access to the data structures in the taskpool and the storage

system. In contrast to message-passing based programming

models, the approach presented here does not require signif-

icant conceptual redesign of the algorithm. We have shown

here that a parallel program for a problem can be developed

through simple adaptation of a sequential algorithm. This

is facilitated by the transactional computing model coupled

with the abstraction of a global object store implemented

in the RAM of cluster nodes. However, the implementation

of the algorithm needs to be driven towards amortizing or

reducing remote data access cost. To reduce the cost of remote

data access we provide mechanisms for fine-grain remote

operations, data caching, and aggregation of remote calls.

The Beehive model allows graph structure to be modified

by the transactional tasks. This makes Beehive suitable for

dynamic and evolving graph structures. We have also de-

scribed here the ability of this model in supporting incremental

computations for dynamic graph structures. Moreover, Beehive

model allows analysis of complex and rich graph structures,

such as hypergraphs, with different kinds of edges between

vertices, and vertices can represent entities of different types.
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