
A Comparative Study of Containers and Virtual
Machines in Big Data Environment
Qi Zhang1, Ling Liu2, Calton Pu2, Qiwei Dou3, Liren Wu3, and Wei Zhou3

1IBM Thomas J. Watson Research, New York, USA
2College of Computing, Georgia Institute of Technology, Georgia, USA
3Department of Computer Science, Yunnan University, Yunnan, China

Abstract—Container technique is gaining increasing attention
in recent years and has become an alternative to traditional
virtual machines. Some of the primary motivations for the
enterprise to adopt the container technology include its
convenience to encapsulate and deploy applications, lightweight
operations, as well as efficiency and flexibility in resources
sharing. However, there still lacks an in-depth and systematic
comparison study on how big data applications, such as Spark
jobs, perform between a container environment and a virtual
machine environment. In this paper, by running various Spark
applications with different configurations, we evaluate the two
environments from many interesting aspects, such as how
convenient the execution environment can be set up, what are
makespans of different workloads running in each setup, how
efficient the hardware resources, such as CPU and memory, are
utilized, and how well each environment can scale. The results
show that compared with virtual machines, containers provide
a more easy-to-deploy and scalable environment for big data
workloads. The research work in this paper can help practitioners
and researchers to make more informed decisions on tuning their
cloud environment and configuring the big data applications, so
as to achieve better performance and higher resources utilization.

Keywords-virtual machine; container; cloud computing;

I. INTRODUCTION

The expanding and flourishing of IoT (Internet of things)
has brought us into the era of big data. It is no doubt
that cloud computing is being widely adopted for big data
processing. To provide an elastic and on demand resource
sharing, different kinds of commercial clouds, such as public
cloud, private cloud, hybrid cloud, and etc., have been
established, where virtual machines are used as building
blocks of the cloud infrastructure to gain higher hardware
resources utilization while preserving performance isolation
among different computing instances.

Despite its advantages, virtual machine based cloud also
faces many challenges when running big data workloads.
One example is its weak resilience. Although multiple virtual
machines can share a set of hardware, the resources in
one virtual machine cannot be easily shifted to another.
Although many smart ideas have been proposed to enable
efficient resource management for VMs [27], [23], [34],
resource sharing in virtual machine environment remains to
be a challenging issue [30], and it is still not unusually to
observe application performance degradation due to not being

able to handle peak resources demands, even when there
exist free resources [37], [36]. Another example is the poor
reproducibility for scientific research when the workloads are
moved from one cloud environment to the other [15]. Even
though the workloads are the same, their dependent softwares
could be slightly different, which leads to inconsistent results.

Recently, container-based techniques, such as Docker[3],
OpenVZ [8], and LXC(Linux Containers) [5], become
an alternative to traditional virtual machines because of
their agility. The primary motivations for containers to be
increasingly adopted are their conveniency to encapsulate,
deploy, and isolate applications, lightweight operations, as well
as efficiency and flexibility in resource sharing. Instead of
installing the operating system as well as all the necessary
softwares in a virtual machine, a docker images can be
easily built with a Dockerfile [3], which specifies the initial
tasks when the docker image starts to run. Besides, container
saves storage by allowing different running containers to
share the same image. In other words, a new image can be
created on top of an existing one by adding another layer.
Compared to traditional virtual machines, containers provide
more flexibility and versatility to improve resource utilization.
Since the hardware resources, such as CPU and memory, will
be returned to the operating sytem immediately. Because there
is no virtualization layer in a container, it also incurs less
performance overhead on the applications. Therefore, many
new applications are programmed into containers.

Performance comparison between containers and virtual
machines has attracted many researchers [18], [26], [31], [12],
[20], [14], [28], [24], [32], [29]. For example, researchers
from IBM [20] have compared the performance of a docker
container and a KVM virtual machine by running benchmarks
such as Linpack, Stream, Fio, and Netperf. Their work was
focusing on single container or virtual machine performance,
and many of the workloads are micro benchmarks, which
are very different from the big data workloads running in
the cloud. Efforts have also been made to explore the era
of using Docker containers in various cloud platforms, such
as PaaS clouds and IoT clouds [13], [17], but there lacks
the performance study. Although some pioneers investigated
the performance of containers and virtual machines in the
big data era [28], [14], they either lacks in-depth scalability
analysis, which is a critical cloud performance criteria, or their

ar
X

iv
:1

80
7.

01
84

2v
1 

 [
cs

.D
C

] 
 5

 J
ul

 2
01

8



experimental environment contains only one physical machine,
which is not a representative setup of a cloud. Therefore, how
the big data workloads perform and scale in a container cloud
versus a virtual machine cloud remains to be an open issue.

In this paper we conduct an extensive comparison
study between containers and virtual machines in big data
environment with three objectives: First, we investigate how
much conveniency containers and virtual machines can bring
to the system administrators. Specifically, we focus on how
fast a big data computing environment can be setup from
the scratch. A shorter setup time not only indicates an
easier job for the system administrators, but also brings
shorter latency, thus better experience to the users. This is
an important factor that the cloud service providers usually
take into their considerations. Second, we measure the impact
of using containers and virtual machines on the performance
and scalability of different big data workloads. Each big
data job consists of multiple executors, and all the executors
are distributed in the containers or virtual machines. The
performance of the big data jobs studied in this paper can
also reflect that of many other applications running inside a
container or a virtual machine. Third, we analyze the reasons
why containers and VMs can have different impacts on the big
data workloads. In order to have a deeper understanding, we
collected and compared many runtime system level metrics,
such as resources utilization. We believe that this study will
benefit both scientists and application developers to make more
informed design decisions in terms of configuring, tuning, and
scaling big data cloud.

The rest of the paper is organized as following: the
background of the container technology and its comparison to
the virtual machine technology, as well as the Spark big data
platform, are introduced in section II, section III discusses the
related researches efforts, the experimental setup and results
are shown and analyzed in section IV, and the paper is
concluded by section V.

II. BACKGROUND

In this section, we first introduce the principle of the
container technology, compare its architecture with that of the
virtual machines, and explains why it is becoming increasingly
popular. Then, we briefly explain Spark [35], which is used
as a big data platform in this study.

A. Container v.s. Virtual Machine(VM)

A container is similar to an application, which runs as a
process on top of the operating system(OS) and isolates with
each other by running in its own address space. Nevertheless,
more than a normal process, a container not only includes
the application executable, but also packs together all the
necessary softwares that the application needs to run with,
such as the libraries and the other dependencies. Cgroups [6]
and namespaces [7] are two particular features that enables
different containers running on the same physical machine.
Cgroups, also named as control groups, is a Linux kernel
mechanism to control the resources allocation. It allows

system administrators to allocate resources such as CPU,
memory, network, or any combination of them, to the running
containers. The resources allocated to each container can
be adjusted dynamically, and the container cannot use more
resources than being specified in the cgroups. Namespace
provides an abstraction of the kernel resources, such as process
IDs, network interfaces, host names, so that each container
appears to have is own isolated resources. With namespaces,
for instance, processes running in different containers will not
conflict with each other even when they have the same process
ID.

Fig. 1. Architecture comparison virtual machine v.s. container

Figure 1 shows the architecture comparison between a
container and a VM. There are three major differences between
these two technologies. First, a container is more lightweight
than a VM. A container includes only the executables and its
dependencies and different containers on the same machine
share the same OS(operating system). While a VM contains
a full set of OS, and different VMs do not share the OS. A
VM can run an OS that is different from its host machine,
while the container needs to use the same OS as the host.
Second, the hypervisor, such as VMware ESXi [10] and
KVM [22], is necessary in a VM environment, while it is
not required for containers. For a VM, it needs to act as an
independent machine which has the control of all its resources.
However, in fact, a VM runs in a non-priviledged mode
which does not have the capability to execute many privileged
instructions. Therefore, a hypervisor is needed to translate a
VM instruction into an instruction that can be executed by
the host. On the contrary, since a container does not need to
execute any priviledged instruction, it communicates with the
OS through the system calls, thus no other layer is required
in between. Third, each VM has its own image file, while
different containers may share some of their images. More
specifically, container images are created in a layered manner,
in which a new image can be created upon an existing image
by adding another layer that contains the difference between
the two. The image files of different VMs are isolated from
each other.

Researchers and practitioners are paying increasing interest
and attentions to the container technology for a number of
reasons. On one hand, using container is more cost effective.



As a lightweight solution, the size of a container is usually
within tens of MB while that of a VM can take several GB.
Also, to run the same application, a container usually takes less
hardware resources since it does not need maintain an OS. On
the other hand, since there is no hypervisor, containers are able
to provide better application performance, especially when the
applications need to talk to the I/O devices.

B. Spark

Apache Spark [35] is an open source cluster computing
system. In contrast to Hadoop’s two-stage disk-based
MapReduce paradigm, Spark provides a resilient distributed
data set (RDD) and caches the data sets in memory across
cluster nodes. Therefore, it can efficiently support a variety
of compute-intensive tasks, including interactive queries,
streaming, machine learning, and graph processing. Spark is
introduced as a unified programming model and engine for big
data applications. It is gaining popularity as a big data cloud
platform.

III. RELATED WORK

With the increasing popularity of container technologies,
many research efforts have been made to explore the
advantages of containers, improve container performance and
security, as well as to compare the containers with the VMs.

Carl [15] explored the common challenges that prevent the
reproducibility of many research projects, and examined how
the Docker container technology can solve them. For example,
many projects require specific dependencies to reproduce
similar results as the original researchers, but it is difficult to
simply provide a installation script due to different underlying
OS and hardwares the project is running on. Docker solves
this issue by providing a lightweight binary image in which
all the softwares have already been installed. Paolo et al.
[19] investigated the advantages of using Docker to chain
together the execution of multiple containers to run the
pipeline application such as Genomic pipelines. Douglas et al.
[21] suggested that the flexibility and the reproducibility of the
containers will drive its adoption in HPC environments. Many
researches have also discussed the advantages of using the
container technology in cloud computing. For example, David
[13] proposed that the Platform-As-A-Service(PaaS) cloud can
benefit from containers by its easy deployment, configuration,
as well as convenient management of the applications in the
cloud.

In terms of container performance and security, Roberto
[25] presented a performance evaluation of using containers
in the field of Internet of Things. By running containers on
top of a single board computer device such as Raspberry
Pi 2, Roberto showed an almost negligible impact of the
containerized layer compared to native execution. Miguel et al.
[33] revealed the possibility of using container technologies,
such as Linux VServer, OpenVZ, and Linux Containers, to
achieve a very low overhead HPC environment compared to
the native setups. Thanh [16] analyzed the security of Docker
from its internal mechanisms as well as its interacts with

the security features of the Linux kernel. Sergei et al. [11]
enhanced the container security by using Intel SGX trusted
execution support to prevent outside attacks.

Comparative study between containers and VMs has
attracted many attentions [18], [26], [31], [12], [20], [14],
[28], [24], [32]. For example, Janki et al. [14] compares
the performance of Spark jobs running in a container cluster
and a VM cluster, but the cluster used in their experiments
is fix-sized, and only one physical machine is used, which
is not a representative setup of a cloud environment. Claus
[26] compared the virtualization principle between containers
and VMs. The author also illustrated containers as a more
suitable technology to package applications and manage the
PaaS cloud, due to the better support of microservices from
the containers. Wes et al. [20] used a suite of benchmark
workloads, such as Linpackto, Stream, Fio, and Netperf, to
compare the performance of containers and VMs by stressing
their CPU, memory, storage, and networking respectively.
Their results showed that both VMs and containers introduced
negligible overhead for CPU and memory performance,
while container performs better for disk and network I/O
intensive applications, especially when there is random disk
I/O. Kyoung-Taek et al. [28] briefly compared container
and VM boot up time, as well as their computational
performance by letting each of them compute 100000
factorial. Roberto [24] did a comparative study of power
consumption between containers and VMs, and showed that
both technologies consumed similar power in idle state and in
CPU/Memory stress tests, while containers introduced lower
power consumption for network intensive applications.

IV. PERFORMANCE STUDY AND ANALYSIS

A. Setup

Our experimental environment consists of a five-node
cluster, and each node is a physical machine with 8 Intel
i7-3770 3.40GHz CPU, 16GB memory, and 1TB disk. The
Ubuntu 16.04 LTS 64-bit is running as the OS on the five
machines as well as the in all the VMs. Spark 2.0.2 is used
as the big data platform. Docker 1.12.6 and KVM 2.5.0
are used to manage the containers and VMs. As shown in
the Figure 2, each of the five physical machine is equipped
with a Realtek RTL8111 network card, which are connected
through a TP-LINK TL-SG1024DT network switch. Since
Spark follows a master-slave architecture, we use one physical
machine as a master node, while the other four machines
as slave machines. All the Spark tasks are running in either
containers or VMs. In the VM setup, a network bridge is
created on each physical machine, which not only enables
multiple VMs on the same physical machine to share the
network card, but also allows VMs on different physical
machines to communicate with each other. While Docker
containers are running, Flannel [2] is used for containers to
communicate across physical machines. Flannel runs as an
agent on each machine and allocates a subnet lease out of a
larger and preconfigured network address space. As also shown
in Figure 2, there is a Collectd [1] daemon running on each



of the slave machine, and a InfluxDB [4] running the master
machine. The daemon collects various system metrics, such as
CPU and memory utilization, every single second, and writes
them as the time series data into the InfluxDB.

Fig. 2. Experimental setup

The workloads we used in this paper and their
configurations are listed as follows:

• Kmeans, a method of vector quantization for cluster
analysis in data mining. The input data contains 20
dimensions, 5 million samples. The job runs for 5
iterations.

• Logistic Regression, a statistical method for analyzing
a dataset in which there are one or more independent
variables that determine an outcome. The input data
includes 10 thousands examples and 20 thousands
features.

• Pagerank, an algorithm that counts the number and
quality of links to a page to determine a rough estimate
of how important the website is. The input data includes
300 thousands pages, and the job runs for 3 iterations.

• SQL Join, a task that consumes two different data sets
and join them together to find data pairs in both sets that
share a same value. The input data has information about
90 million user visits and 1 million pages.

B. Deployment Conveniency

Easy deployment is one of the benefits brought by
virtualization technologies. For example, instead of doing
all the setups from the scratch, a VM can be easily
moved from one physical machine to another to create an
identical setup for either backup or migration purposes. As a
lightweight virtualization technology, how much convenience
can containers bring to system administrators is the question
that worth being investigated.

In this subsection, we compare the time spent on creating
a virtualized and containerized Spark cluster on a single
physical machine. Each cluster consists of 3 VMs or 3 Docker
containers respectively. The cluster setup is divided into three
steps in both cases. The first step is building images. In the
VM case, virt-manager [9] is used as a graphic tool to create

a VM image from an ISO file. This step includes creating the
disk image file and installing the VM OS. Since each VM
runs on its own image, the image file needs to be copied 3
times in order to setup a three-VM cluster. In the container
cluster case, Dockerfile [3] is used to create docker images.
According to the Dockerfile, the Docker engine automatically
downloads an Ubuntu base image from the Docker repository,
and then executes the commands specified in the Dockerfile to
copy the necessary files to the specific locations in the image.
After being created, the size of each VM image is 4.1GB,
while that of a single container image is 1.1GB, which is
only 1/4 of that of a VM image. Besides, since Docker image
is organized in a shared and layered manner, a new Docker
image can be created based on an existing image, and only the
incremental bytes need to be saved to the disk. The second step
is setting up the Spark environment in each running instance.
This step includes installing the JDK(Java Development Kit),
configuring the Spark runtime, enabling SSH communication
without using password, and etc. This step is almost the same
no matter in a VM or in a Docker container environment. The
only difference is that in the VM, we create a script which will
be automatically executed after the VM starts. Meanwhile, for
a docker container, the software environment is setup on the
host machine beforehand, so that the Dockerfile can clone such
environment into the container image accordingly. The third
step is starting the Spark cluster using the scripts shipped with
the Spark source code. Since staring the Spark executable on
each node is independent of whether the executable is running
in a VM or a container, this step is exactly the same for the
two scenarios.

In order to compare the efficiency between setting up a
VM Spark cluster and a container Spark cluster, we put the
above steps into documents, ask 15 students to setup both
clusters by following the instructions in the documents. The
total time as well as time spent on each step is recorded. The
students we choose are from a BigData class for graduates,
they are familiar with how Spark works and they have previous
experiences on setting up a Spark cluster. The students are also
required to read through the documents beforehand to make
sure they understand every step. Therefore, the time they spent
can mostly reflect the complexity of setting up a VM cluster
and a container cluster.

As shown in table I, it takes 23 minutes to create a cluster
using Docker containers, while using VMs takes 46 minutes,
which is 100% longer. By investigating the time taken by
each of the three steps, we observe that containers save most
of its time during the image building phase. There are two
reasons. First, since containers share the same OS with the
physical machine, installing the OS can be skipped. Second,
since image files can be shared among different containers,
only one image file needs to be built to setup the cluster.
While using VMs, however, a image file needs to be copied
multiple times, since each VM needs its own image to start
with.The time spent on setting up Spark and starting cluster
is similar between using containers and VMs.



TABLE I
COMPARISON OF TIME SPENT ON BUILDING A THREE-NODE SPARK
CLUSTER USING CONTAINERS V.S. VIRTUAL MACHINES (MINIUTES)

Total Build Image Setup Spark Start Cluster
VM 46 28 13 5
Container 23 6 12 5

C. Bootup Efficiency

Bootup latency refers to the period from starting a VM or
container to the time that it can provide services to clients.
This is an important factor that cloud service providers usually
consider. There are several reasons. On one hand, a shorter
bootup latency means a smaller latency to provide services,
which brings better user experiences. On the other hand, faster
bootup also allows more elastic resource allocation, since the
resources do not have to be reserved for the VM or Docker
that is starting up. Therefore, in this subsection, we show the
difference of the bootup latency between Docker containers
and VMs, and also investigate the reasons that lead to such
difference.

Fig. 3. Bootup latency (cross in the figure means failed to bootup that
amount of virtual machines).

Figure 3 compares the bootup latency of Docker containers
and VMs by varying the number of instances that boot up.
In each set of experiments, all the instances are started in
a sequential manner, and we measure the time between the
first instance starts up and the last instance finishes booting
up. Note that no applications is initialized after the boot up.
There are several interesting observations: on one hand, the
physical machine can hold more Docker containers than VMs.
We noticed that it is very difficult to start new VMs when
there are around 250 idle VMs on the host. For example, it
takes more than 1000 seconds to boot up one VM, and the
physical machine responses very slowly and is almost not
useable. On the contrary, it takes only 987 seconds to start
512 Docker containers, which is on average 1.89 seconds per
container bootup. On the other hand, to start the same amount
of instances, Docker containers take much less time than the
VMs, especially when the number of instances is large. We
can see that when there are only 2 Docker containers or VMs,
their bootup latency is almost identical. However, when this
number increases to 256, Docker containers takes 479 seconds
while the VM spends 24295 seconds, which is 50.72 times

longer.

(a) VM (b) Docker container

Fig. 4. Physical machine memory utilization during the virtual machine or
docker container bootup.

In order to gain a better understanding of why there is
such a huge difference between the Docker and VM bootup
efficiency, we measured the memory usage of the physical
machine, and the results are shown in Figure 4. We also
collected the CPU and disk I/O statistics but decided not to
show them here. This is because the CPU utilization is pretty
low during the whole process, and there is not much disk
I/O contention since all the instances are started sequentially.
There are several interesting observations from this figure.
First, both VM and Docker container start with less memory
than being specified. Figure 4(a) shows, on average, a VM uses
0.23GB memory after it boots up, although each instance is
allowed to take up to 2GB memory. This mechanism allocates
resources to a VM or Docker container only when needed,
which minimizes the idle resources in each instance. Second,
a Docker container takes less memory than a VM after it boot
up. while a VM takes 0.23GB, Figure 4(b) shows a Docker
container only takes 0.03GB memory. This is because a VM
needs to maintain an operating system while a container can
share the same operating system with the physical machine.
This is also the reason why the same physical machine can
hold larger numbers of containers than VMs.

D. Application Performance

In this section, we measure and compare the performance
and the scalability between a container environment and a
VM environment. Different Spark workloads, as specified in
section 2, are used as benchmarks. Specifically, in each set
of the experiment, the size of the Spark cluster increases
from 4 to 64 containers or VMs, and all the containers or
VMs are equally distributed among all the slave machines. In
other words, the number of containers or VMs running on the
each slave machine changes from 1 to 16. Every single Spark
workload runs with each size of the cluster, and the execution
time is collected by an average of 5 runs. Figure 5 shows the
results, which compare the execution time of each workloads
running in container environment and VM environment. For
every workload evaluated, its execution time decreases first
and then increases with the growing number of the containers
or VMs. Taking the SQL Join workload for an example. Its



(a) Kmeans (b) Logistic Regression (c) Pagerank (d) SQL Join

Fig. 5. Execution time of different Spark workloads running with containers and virtual machines (cross in the figure means the workload failed to finish).

(a) 2 containers/machine (b) 4 containers/machine (c) 8 containers/machine (d) 12 containers/machine

(e) 2 VMs/machine (f) 4 VMs/machine (g) 8 VMs/machine (h) 12 VMs/machine

Fig. 6. Average CPU utilization of all the slave machines running with containers and virtual machines, the workload is PageRank.

execution time decreases from 242 seconds to 208 seconds
when the total number of containers increases from 4 to 8.
The execution time then further decreases to 186 seconds
when the Spark size grows to 12 containers. Similar trend can
also be observed when the VM is used. The decrease of the
execution is because a Spark job usually consists of multiple
tasks that can be parallelly executed in different containers
or VMs. Given the same job with fixed number of tasks, the
more containers or VMs to use, the higher parallelism the job
has, which leads to shorter execution time. However, since
each container or VM needs to access hardware resources,
when the number of containers or VMs on the same physical
machine increases, the resources contention becomes more
intensive, which in turn brings impacts on the performance of
the containers or VMs. This is why the execution time of SQL
Join, as well as the other three workloads shown in Figure 5,

increases when more containers or VMs are added to the Spark
cluster. There is also an obvious difference in the execution
time of the same workload between running with containers
and VMs, which distinguishes the scalability between the two
environments. First, for each single workload, its execution
time is shorter in a container environment than that in a
VM environment with the same size. For example, when
PageRank runs in a cluster size of 32, it takes 118 seconds
to finish when containers are used while 316 seconds when
the VMs are used. This result indicates that as a lightweight
virtualization approach, containers bring less runtime overhead
than the VM to the applications running inside. The reason
is because both the hypervisor layer and the VM OS create
additional overhead for the applications, in terms of context
switch, privileged instruction translation, prolonged network
or disk I/O path, and etc. Second, with the increase of the



(a) 2 containers/machine (b) 4 containers/machine (c) 8 containers/machine (d) 12 containers/machine

(e) 2 VMs/machine (f) 4 VMs/machine (g) 8 VMs/machine (h) 12 VMs/machine

Fig. 7. Average memory utilization of all the slave machines running with containers and virtual machines, the workload is PageRank.

cluster size, containers provide a more scalable environment
than VM. For Logistic Regression, its execution time is 145
seconds in the container environment while 149 seconds in the
VM environment when the cluster size is 4, the execution time
only differs by 2.76%. However, when the cluster size expands
to 44, Logistic Regression needs 238 seconds to finish in the
container environment, whereas in the VM environment, it
takes 3643 seconds, which is 14.31 times higher. Furthermore,
when the cluster size increases to 48 or larger, the workload
fails its execution due to too many aborted tasks in the
VM environment. While in container environment, it can still
successfully finish in a reasonable time.

In order to understand the reason why containers have a
much better scalability than VMs, we collect system level
metrics such as CPU and memory utilization on each of the
slave machine, and the average number is shown in Figure 6
and 7. Figure 6 shows the average CPU utilization of the 4
slave machines with different cluster sizes while the PageRank
is running. The total CPU utilization is divided into three
categories: user level CPU, system level CPU, and the wait
time. We observe that the CPU is mostly spent on the user
level and CPU wait, no matter in the container environment
or in the VM environment, and no matter what the cluster
size is. This is because the PageRank workload is a user level
application, and most of its instructions can run without being
trapped into the kernel. A more important observation is that
the CPU spent more time on wait with the increase of the
cluster size, especially when VM is used. For instance, the
average CPU wait time is less than 10% in both container
and VM environment when the cluster size is 8. However,

when the cluster size increases to 48, the average CPU wait
time in container environment is far less than that in the VM
environment, which can be demonstrated by comparing Figure
6(d) with Figure 6(h). In the VM environment, the user level
CPU that can be utilized by each task is much less than
that in the container environment. The high CPU wait time
also indicates large amount of disk I/O with long latencies.
Therefore, many tasks aborted due to timeout. Recall Figure
5(c), this also explains why the PageRank failed in a 48 VMs
cluster while successfully finished in 183 seconds in a 48
containers cluster.

The average memory utilization statistics of the 4 slave
machines during the PageRank execution is also collected
and shown in Figure 7. The memory utilization is also
divided into three categories: cached memory, used memory,
and free memory. There are several interesting observations.
First, comparing Figure 7(a) with Figure 7(e), although 2GB
memory is assigned to each container and VM to start with, 2
containers on each slave machine takes less than 2GB memory
while 2 VMs takes about 4GB memory before the workload
starts running. Note that different from the containers or VMs
in section IV-C, in this set of experiments, they need to run
a data generation job before the execution of the evaluated
big data workloads This is largely because a container does
not need to main a full OS, while VM does. Second, the
memory allocation is more flexible for containers than for
VMs. By comparing Figure 7(c) and Figure 7(g), it shows that
on one hand, the amount of memory allocated to a container
is very small at the beginning, and then increases based on the
demands of the applications in the container. However, a VM



occupies more memory at the beginning. On the other hand,
a container releases its memory after it finishes its workload,
while a VM still holds the memory even after it becomes idle.

V. CONCLUSIONS AND FUTURE WORK

We have presented an in-depth experimental study between
virtual machine and Docker container in Spark big data
environment. Our extensive measurement study shows a
number of interesting observations: (i) Dockers container
is more convenient than virtual machine for system
administrators both in deployment and bootup stages. (ii)
with different big data workloads, Dockers container shows
much better scalability than virtual machines. (iii) with the
same workload, Dockers container achieves higher CPU and
memory utilization. We conjecture that our study results can
help practitioners and researchers to make more informed
decisions on tuning their cloud environment and configuring
their big data applications, so as to achieve better performance
and higher resources utilization. Many more aspects of
container and virtual machine environment will be explored
as our future work. For instance, how efficient is the
container migration versus the virtual machine migration, and
what impact will such migration mechanisms have on the
performance of big data applications running in the cloud.
Another direction is to compare the design and organization
of the image file between containers and virtual machines, and
investigate its impact on the applications performance.

REFERENCES

[1] Collectd. https://collectd.org/.
[2] CoreOS/Flannel. https://github.com/coreos/flannel.
[3] Docker. https://www.docker.com/.
[4] InfluxDB. https://www.influxdata.com/.
[5] Linux Containers. https://linuxcontainers.org/.
[6] Linux control groups. http://man7.org/linux/man-pages/man7/cgroups.

7.html.
[7] Linux namespaces. http://man7.org/linux/man-pages/man7/namespaces.

7.html.
[8] OpenVZ. https://openvz.org/Main Page.
[9] Virtual Machine Manager. https://virt-manager.org/.

[10] VMware vSphere Hypervisor. https://www.vmware.com/products/
vsphere-hypervisor.html.

[11] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell, et al. Scone:
Secure linux containers with intel sgx. In OSDI, pages 689–703, 2016.

[12] A. Babu, M. Hareesh, J. P. Martin, S. Cherian, and Y. Sastri. System
performance evaluation of para virtualization, container virtualization,
and full virtualization using xen, openvz, and xenserver. In Advances
in Computing and Communications (ICACC), 2014 Fourth International
Conference on, pages 247–250. IEEE, 2014.

[13] D. Bernstein. Containers and cloud: From lxc to docker to kubernetes.
IEEE Cloud Computing, 1(3):81–84, 2014.

[14] J. Bhimani, Z. Yang, M. Leeser, and N. Mi. Accelerating big data
applications using lightweight virtualization framework on enterprise
cloud. In High Performance Extreme Computing Conference (HPEC),
2017 IEEE, pages 1–7. IEEE, 2017.

[15] C. Boettiger. An introduction to docker for reproducible research. ACM
SIGOPS Operating Systems Review, 49(1):71–79, 2015.

[16] T. Bui. Analysis of docker security. arXiv preprint arXiv:1501.02967,
2015.

[17] A. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito.
Exploring container virtualization in iot clouds. In Smart Computing
(SMARTCOMP), 2016 IEEE International Conference on, pages 1–6.
IEEE, 2016.

[18] P. R. Desai. A survey of performance comparison between virtual
machines and containers. ijcseonline. org, 2016.

[19] P. Di Tommaso, E. Palumbo, M. Chatzou, P. Prieto, M. L. Heuer, and
C. Notredame. The impact of docker containers on the performance of
genomic pipelines. PeerJ, 3:e1273, 2015.

[20] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated
performance comparison of virtual machines and linux containers. In
Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium On, pages 171–172. IEEE, 2015.

[21] D. M. Jacobsen and R. S. Canon. Contain this, unleashing docker for
hpc. Proceedings of the Cray User Group, 2015.

[22] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the
linux virtual machine monitor. In Proceedings of the Linux symposium,
volume 1, pages 225–230, 2007.

[23] R. Knauerhase, V. Tewari, S. Robinson, M. Bowman, and
M. Milenkovic. Dynamic virtual machine service provider allocation,
Jan. 2 2004. US Patent App. 10/754,098.

[24] R. Morabito. Power consumption of virtualization technologies: an
empirical investigation. In Utility and Cloud Computing (UCC), 2015
IEEE/ACM 8th International Conference on, pages 522–527. IEEE,
2015.

[25] R. Morabito. A performance evaluation of container technologies on
internet of things devices. In Computer Communications Workshops
(INFOCOM WKSHPS), 2016 IEEE Conference on, pages 999–1000.
IEEE, 2016.

[26] C. Pahl. Containerization and the paas cloud. IEEE Cloud Computing,
2(3):24–31, 2015.

[27] C. Peng, M. Kim, Z. Zhang, and H. Lei. Vdn: Virtual machine
image distribution network for cloud data centers. In INFOCOM, 2012
Proceedings IEEE, pages 181–189. IEEE, 2012.

[28] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y. Kwon, and B.-J. Kim.
Performance comparison analysis of linux container and virtual machine
for building cloud. Advanced Science and Technology Letters,
66:105–111, 2014.

[29] P. Sharma, L. Chaufournier, P. Shenoy, and Y. Tay. Containers and
virtual machines at scale: A comparative study. In Proceedings of the
17th International Middleware Conference, page 1. ACM, 2016.

[30] S. Singh and I. Chana. A survey on resource scheduling in
cloud computing: Issues and challenges. Journal of grid computing,
14(2):217–264, 2016.

[31] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson.
Container-based operating system virtualization: a scalable,
high-performance alternative to hypervisors. In ACM SIGOPS
Operating Systems Review, volume 41, pages 275–287. ACM, 2007.

[32] M. G. Xavier, M. V. Neves, and C. A. F. De Rose. A performance
comparison of container-based virtualization systems for mapreduce
clusters. In Parallel, Distributed and Network-Based Processing (PDP),
2014 22nd Euromicro International Conference on, pages 299–306.
IEEE, 2014.

[33] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. De Rose. Performance evaluation of container-based
virtualization for high performance computing environments. In Parallel,
Distributed and Network-Based Processing (PDP), 2013 21st Euromicro
International Conference on, pages 233–240. IEEE, 2013.

[34] Z. Xiao, W. Song, and Q. Chen. Dynamic resource allocation using
virtual machines for cloud computing environment. IEEE transactions
on parallel and distributed systems, 24(6):1107–1117, 2013.

[35] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. HotCloud, 10(10-10):95,
2010.

[36] Q. Zhang, L. Liu, J. Ren, G. Su, and A. Iyengar. iballoon: Efficient vm
memory balancing as a service. In Web Services (ICWS), 2016 IEEE
International Conference on, pages 33–40. IEEE, 2016.

[37] Q. Zhang, L. Liu, G. Su, and A. K. Iyengar. Memflex: A shared memory
swapper for high performance vm execution. IEEE Transactions on
Computers, 2017.

https://collectd.org/
https://github.com/coreos/flannel
https://www.docker.com/
https://www.influxdata.com/
https://linuxcontainers.org/
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://openvz.org/Main_Page
https://virt-manager.org/
https://www.vmware.com/products/vsphere-hypervisor.html
https://www.vmware.com/products/vsphere-hypervisor.html

	I Introduction
	II Background
	II-A Container v.s. Virtual Machine(VM)
	II-B Spark

	III Related Work
	IV Performance Study and Analysis
	IV-A Setup
	IV-B Deployment Conveniency
	IV-C Bootup Efficiency
	IV-D Application Performance

	V Conclusions and Future Work
	References

