
Logchain: Blockchain-assisted Log Storage
William Pourmajidi

Department of Computer Science, Ryerson University
Toronto, Canada

william.pourmajidi@ryerson.ca

Andriy Miranskyy
Department of Computer Science, Ryerson University

Toronto, Canada
avm@ryerson.ca

Abstract—During the normal operation of a Cloud solution,
no one usually pays attention to the logs except technical
department, which may periodically check them to ensure that
the performance of the platform conforms to the Service Level
Agreements. However, the moment the status of a component
changes from acceptable to unacceptable, or a customer com-
plains about accessibility or performance of a platform, the
importance of logs increases significantly. Depending on the scope
of the issue, all departments, including management, customer
support, and even the actual customer, may turn to logs to
find out what has happened, how it has happened, and who
is responsible for the issue. The party at fault may be motivated
to tamper the logs to hide their fault. Given the number of
logs that are generated by the Cloud solutions, there are many
tampering possibilities. While tamper detection solution can be
used to detect any changes in the logs, we argue that critical
nature of logs calls for immutability. In this work, we propose
a blockchain-based log system, called Logchain, that collects the
logs from different providers and avoids log tampering by sealing
the logs cryptographically and adding them to a hierarchical
ledger, hence, providing an immutable platform for log storage.

Index Terms—Blockchain; Hierarchical Ledger; Log tamper-
ing; Log storage

I. INTRODUCTION

Logs are evidential documents [1]. That is, they contain the
truth about the Quality of Service (QoS) that was delivered and
can be used to draw conclusions that may affect the credibility
of a service provider. Logs are also a key element in computer
forensic investigations [2]. Log tampering has many forms and
can be done by many different parties. Let us define tamper-
motivation as the desire of one or more of the parties involved
in a platform, infrastructure, or Cloud solution to access a
critical log and to tamper this log by adding, removing, or
manipulating a part of the log or the entire log. Below, we
explore a few tamper-motivation situations that relate to each
of the key participants in various types of Clouds.

In a private Cloud, where all stakeholders belong to the
same company and (more or less) are trying to reach the
same goal, a special type of tamper-motivation may exist.
Imagine a financial company that has established a private
Cloud. The management team has asked the IT department to
establish a minute-by-minute backup of their data. Later, the
company’s primary storage is affected by a hardware failure.
The IT department finds out that the per-minute backup has
stopped working three days ago and had sent several alerts
to the IT team, but the IT department has not checked these
alerts. The IT department may be motivated to take advantage

of having access to the logs, remove the alert messages, and
show the management the tampered log, hence saving their
jobs.

In a community Cloud, there are additional tamper-
motivations. To survive, a community Cloud requires a clear
definition of responsibilities, maintenance tasks, operational
tasks, and control. Each partner is responsible for a subset
of Cloud elements and together, all partner, ensure that the
community Cloud remains operational and available. In case
of an unfortunate incident, a party may be motivated to tamper
the logs that show their fault, and, even worse, try to tamper the
logs and fabricate a scenario in which another party becomes
the main reason behind failure and, therefore, responsible for
the caused damage.

In a public Cloud, many tamper-motivations exist. Clients
using Infrastructure-as-a-Service do not have direct access to
the bare-metal servers, core networks, and their related logs.
Consider a scenario in which a public Cloud client deploys
an application on an elastic Cloud environment. The client
enables auto-scaling feature provided by the Cloud provider
and defines a rule that when the memory usage exceeds 80%,
the Cloud provider should allocate 20% extra memory space
to the deployed application. Imagine that the client receives
complaints related to the application performance from its
users. The client suspects inadequate performance of the auto-
scaling function as a root cause of the problem and asks the
Cloud provider to send a detailed report of elastic memory
allocation. The IT team of the Cloud provider checks their
logs and finds out that the auto-scaling feature has worked
intermittently, hence the performance issue. If the client finds
out the truth, there may be a potential lawsuit on the horizon.
Thus, the IT team may be motivated to tamper the log before
sending it to the client.

To generalise the above-mentioned examples, in many inci-
dents, there are parties who may be motivated to tamper the
logs and in many cases, if the party succeeds, the incident,
most likely, will forever remain a cold case. The same issue
arises for the Cloud monitoring environment [3], [4]. A
complete monitoring system requires full access to the Cloud
resources and only Cloud providers have such level of access.
Therefore, the majority of Cloud monitoring solutions are built
by Cloud providers. While this is beneficial to the Cloud
providers, it leaves Cloud clients with no option to verify
the accuracy of provided monitoring details. One solution
is to deploy the monitoring service on a trusted third-party

ar
X

iv
:1

80
5.

08
86

8v
1

 [
cs

.C
R

]
 2

2
M

ay
 2

01
8

platform that can be used by the Cloud client and the Cloud
provider [3], [4]. However, this solution still requires a single
trusted party, which is a constraint.

As shown above, the importance of a tamper-proof log
system for Cloud solutions is significant. In other words, a
traceable, verifiable, and immutable log system is required to
establish trust among Cloud participants. Although a number
of solutions for log tampering detection are available [5], [6],
we argue that log tampering detection is not good enough and
one should ensure that logs are tamper-proof, i.e., immutable.

The goal of this paper is to create a prototype of an
immutable log system (called Logchain) using blockchain
technology as a means to store and verify the collected logs.
Our prototype constructs a Logchain-as-a-service (LCaaS) that
receives logs or their hashes and stores them in an immutable
hierarchical ledger; clients can use its API to interact with the
solution and send, verify, and retrieve data from this immutable
storage. The source code of the prototype can be accessed
via [7].

II. LITERATURE REVIEW

Digital forgery and tampering of digital artefacts and files
long existed. Many solutions have been proposed to detect
or prevent such undesired activities. Particular to files (which
are the main form of storage for logs), various file verification
techniques exist to ensure that the file at hand is not tampered.
More than five decades ago, Peterson et al. described the use
of cyclic codes to verify that a given array of bits is original
or a change has happened [8]. Similar principles, known as
checksum [9], [10], have been widely used in many areas
to validate the integrity of files on various storage systems.
One of the modern popular hashing techniques is a family
of Secure Hash Algorithms (SHA) [11] which is used as a
means to verify content, author or a property of a digital
artefact. For example, source code management system git [12]
generates SHA-1 [11] signature for a commit and uses it to
trace the commit throughout the entire lifecycle of the source
code [13]. However, the commits can be altered after the
changes were committed, making them mutable. In addition to
tools, many verification-as-a-service platforms offer integrity
control for the uploaded data. Verification-or-integrity-as-a-
service solutions, such as arXiv [14], offer a repository for
electronic documents and ensure their integrity. The main
drawback for these services is that one must trust the central
authority (running the platform).

As for Cloud solutions, many of the previous methods are
applicable. However, the complexity of Cloud environment
(in particular, redundant systems and load balancers) and
the scale of generated logs bring more challenges for the
storage, access, and verification of the logs. Sharma [15] points
out the complexity of mega-scale Cloud environment and
suggest incorporation of various cryptographic algorithms and
digital signature to achieve high integrity for storing critical
information in the Cloud. Liu et al. [16] focus on the data
storage integrity verification for Big Data in the areas of

Cloud and IoT, stating that data integrity is critical for any
computation-related system.

Bharath and Rajashree [17] suggest the use of a mediator,
known as third-party auditor (TPA), which verifies the integrity
of the data and sends the integrity report to the users. However,
this still requires trust in a third-party or central authority.
The problem of trust in the third-party can be alleviated by a
properly implemented distributed ledger [18], [19], [20].

Current blockchain implementations of the distributed
ledgers already have notary proof-of-existence services [18];
e.g., Poex.io [21], launched in 2013. Poex.io verifies the
existence of a computer file at a specific time, by storing
a timestamp and the SHA-256 [11] of the respective file in
a block that will be eventually added to a blockchain. The
service is anonymous: the files are not stored or transferred to
the provider’s servers. Since the digital signature of the file is
permanently stored in a decentralised blockchain, the provider
can verify the integrity and existence of such a file (at a point
of submission to the blockchain) anytime in the future. Charac-
teristics of cryptographic hash function [22] allow a provider to
claim, with high certainty, that if the document had not existed
at the time when its hash was added to the blockchain, it would
have been very difficult to embed its hash in the blockchain
after the fact. Additionally, embedding a particular hash and
then adopting a future document to match the embedded hash
is also almost impossible [22]. However, proof-of-existence
solutions can not be used as a scalable log management
systems, as they consider files individually, with no search
function to locate the appropriate file or block. Moreover,
Cloud solutions consist of thousands of hardware and software
components, each of which generates large volume of logs [4].
The current solutions are not feasible for storing these volumes
of logs, because the current public blockchains can handle
limited number of concurrent transactions [18].

III. LCAAS

LCaaS is a hierarchical blockchain framework, graphically
shown in Figure 1. The figure depicts a two-level hierarchy,
but the number of levels can be increased if a use-case requires
it. Current blockchain consensus protocols require every node
of the network to process every block of the blockchain, hence
a major scalability limitation. We overcome this limitation by
segmenting a portion of a blockchain and locking-it-down in
a block of a higher-level blockchain, i.e., we create a two-
level hierarchy of blockchains. Validating the integrity of a
high-level block, confirms the integrity of all the blocks of the
lower-level blockchain and leads to reduction of the number
of operations needed to validate the chain.

We have built a prototype application that sits on top of
a basic blockchain and converts it to a hierarchical ledger.
Our primary goal is to bring scalability to blockchain for the
situations in which the number of data items that need to be
stored in a blockchain is large (e.g., operational logs of a cloud
platform). At its current state, the prototype can load data
from a log file and converts it to several blocks. Then the
prototype will mine the blocks and puts them in a blockchain.

Algorithm 1: Generation of hash and nonce for a block.
Our implementation instantiates Hasher using SHA-256.

Input : block index, timestamp, data, previous hash
Output: current hash, nonce

1 content = concatenate(index, timestamp, data,
previous hash);

2 content = Hasher(content); // to speedup computing

3 nonce = 0;
4 repeat
5 nonce = nonce + 1;
6 current hash = Hasher(concatenate(nonce, content)

);
7 until prefix of current hash = difficulty target;
8 return current hash, nonce;

Finally, the prototype has the ability to convert the blockchain
to circled blockchains and forms a hierarchical ledger. The
current version of the prototype has not implemented the API
component of the LCaaS.

A. Key Elements

1) Blocks: are atomic units of storage. Our implementation
of blocks is similar to the existing blockchain solutions. A
block contains the following variables: nonce, index, times-
tamp, data, previous hash, and current hash. nonce is an
arbitrary random number that is used to generate1 a specific
current hash. index is a unique sequential ID for each block.
timestamp indicates the time when the block is created. data
is a composite data type and contains information about
logs. current hash is generated by concatenating all of the
above-indicated variables and adding the current hash of the
previous block, referred to as previous hash. In other words,
the current hash of the i-th block becomes the previous hash
of block i+ 1.

One has to iterate through several values of nonce, to
generate the current hash for a given block that matches
the defined difficulty target. The target can be set during
the initialisation of the LCaaS and may be adjusted later, if
needed. The difficulty target is often defined as the number
of zeros that must appear at the beginning of the desired
current hash; the larger the number of zeros – the longer it
will take (on average) to produce current hash satisfying the
difficulty target requirement. Blocks are linked together based
on a hash-binding relation. Formally, we show the creation of
the current hash in Algorithm 1.

2) Blockchains: blocks that are linked together will result
in a blockchain. An i-th block in a blockchain relies on cur-
rent hash of block i−1 (as was discussed in Section III-A1);
if data in an earlier block, say, block m is tampered, the
link among all the subsequent blocks, m + 1 to i will be
broken and one will have to recompute current hash (updating
nonce values) of each block from m to i. Mining, as a

1One may use different hashing functions. Currently, the most popular hash
function in the blockchain community is SHA-256.

computationally expensive task, consists of taking the data
in the Block, along with its timestamp and previous hash
and find a nonce that — when put together and hashed —
results in a hash that matches the desired difficulty target of
a blockchain. The difficulty target is often proposed as the
number of required 0s at the beginning of the desired hash. Our
implementation of blockchains and mining operations have the
same characteristics of any other blockchain.

3) Circled Blockchain (CB): is a closed-loop blockchain
that has a genesis and a terminal block (defined in Sec-
tions III-A4 and III-A5). The terminal block is the tail of a
blockchain and indicates that the blockchain can not accept
any more blocks. The terminal block converts a blockchain
to the CB and makes it ready to be submitted to a new
Superblock, defined in Section III-A6.

One needs to specify in advance the maximum number
of blocks that can be appended to the CB or the maximum
amount of time that CB stays ‘open’ until the terminal block is
added to it, whichever comes first. These values would depend
on the use-case. The goal is to create a CB with a reasonable
number of blocks in it (denoted by ni for the i-th CB). If
the frequency of log submission is high – a short window
of time is preferred, otherwise, a larger window of time may
be beneficial. The maximum amount of time should be fairly
short to minimise the risk of tampering the whole CB: say, 24
hours or less.

4) Genesis Blocks (GB): is the first block of any
blockchain. This block has predefined characteristics. Its pre-
vious hash and current hash are set to zero (as there are no
prior blocks) and it has a null data element . Its primary
purpose is to indicate the start of a new blockchain. We
extended the genesis block definition, creating two different
types of genesis blocks.

Absolute Genesis Block (AGB) is placed as the first block
of the first blockchain. An AGB has the same characteristics
as GB, with previous hash and current hash set to zero and
data element set to null.

Relative Genesis Block (RGB) is placed at the beginning of
every subsequent CB after the first CB. An RGB current hash
and previous hash are set to the current hash of the terminal
block of the previous Superblock.

5) Terminal Block (TB): is similar to a genesis block, but
it is added at the end of a blockchain to “close” it and
produce a CB. The TB’s data element has details about the
CB that it has terminated. The elements are as follows. The
aggr hash is created by generating a hash (e.g., using SHA-
256) of concatenated current hash values of all blocks in
that CB (AGB or RGB to the block prior to the terminal
block). The data element may also store four optional values,
namely timestamp from, timestamp to, block index from, and
block index to. These optional values can be used by the
search API to locate the required CB that contains the block
or blocks that a user is looking for. Then, as with any other
block, we produce a current hash of the terminal block as per
Algorithm 1.

Fig. 1. Graphical representation of Superblockchain

6) Superblock: exhibits the features of a regular data block
and has nonce, index, timestamp, data, previous hash, and
current hash. The only differentiator is that its data element
stores all of the field of a TB of a CB (index, data, etc.).

7) Superblockchain: is a blockchain consisting of Su-
perblocks. The blocks are “chained”: current hash of a previ-
ous Superblock becomes previous hash of the next one.

B. API

The API, enabling users to interact with LCaaS, is as
follows. There are two data submission functions: submit raw
and submit digest. The former allows the client to submit
the actual log file, the latter – just the file’s digest (e.g.,
SHA-based digest computed using OpenSSL dgst [23]), thus,
preserving the privacy of the log and reducing the amount of
transmitted data. Both functions return, on success, timestamp
and block index of the transaction and, on failure, details of
the error.

In addition to the file, the user may provide optional
parameters that will be preserved in the blockchain, such as log
file name, and starting and ending time stamps in this log file.
These optional parameters may help to speed up the search
for existing record in the blockchain, as discussed below.

For verification of an actual log file, one should use function
verify raw, for verification of the digest-based representation
of the file – verify digest. The functions would return the
status of submission and number of blocks that matches the
submitted data, if no block is found, the API will return zero.
In case of an error, the API will return the failed status along
with the error’s description.

To improve the scalability of our solution, we introduced
API function verify tb. This function provides an assurance
(in the cryptographic sense [22]) that a sequence of blocks was
not tampered, as discussed in the beginning of Section III.

To improve accessibility of our solution, we introduced API
function search that accepts a block index, time interval based
on block’s timestamp values, or log records time intervals

(using optional variables defined in Section III-A5 and III-A6)
and returns the block elements as well as the TB elements
associated with the block(s) found by search. The API func-
tions may be implemented using REST and HTTP POST
operation [24]; other methods of delivery are also acceptable.

C. Practical Considerations

We built a prototype implementing core elements of
the LCaaS [7]. However, for production implementations,
we recommend building LCaaS on top of enterprise-grade
blockchain services, such as IBM Blockchain [25] or Mi-
crosoft Blockchain [26]. For the private implementation, one
can use one of the Hyperledger frameworks, such as Hy-
perledger Fabric [27], and build a hierarchical ledger on
top of it. Furthermore, public blockchain services, such as
Ethereum [28] can be used, but may not be financially feasible
for a large number of logs. Essentially, one will need to create
a single blockchain for Superblockchain and additional ones
for each of the CBs.

IV. ANALYSIS

LCaaS exhibits the following characteristics.
Distributed Ledger is shared between Cloud users and

Cloud providers. Each participant has read-only and manage-
able access to some or all of the items in the ledger.

Immutability: hash of each block is created as per pseudo
code shown in Algorithm 1. It incorporates the hash of a
previous block; thus, any changes to the previous blocks would
“break” the blockchain guarantying immutability.

Cryptographically sealed: nonces are used as a proof of
work method to ensure that generated hashes meet the config-
ured difficulty target. The hashes include all the elements in a
block, including its timestamp, and nonce.

This hierarchical structure and its embedded recursive ap-
proach enhance the scalability, accessibility, and privacy of
the hierarchical ledger compared to traditional blockchain
platforms.

Scalability Improvement: relying on Superblocks, many
Superblocks can be generated at the same time and then added
to a Superblockchain at the same time. This will bring parallel
processing feature for situations where multiple sources of data
are generating data that needs to be put in the blockchain. For
example, a platform may consist of twenty servers and each
server can be associated with one Superblockchain.

Accessibility Improvement: API-based verification is added
to the hierarchical ledger so users can submit raw data or
digest values to check the consistency of their data.

Privacy Improvement: to improve privacy, an entire Su-
perblockchain is reserved for a client to ensure that
blockchains from different clients are not mingled. Further-
more, a user will only need to send the TB to the LCaaS to
verify the integrity of the entire CB. Additionally, the option
to store the hash value of data as opposed to real data, would
bring additional confidentially to the clients.

V. SUMMARY

The proposed LCaaS can act as a hierarchical ledger and
a repository for all logs generated by Cloud solutions and
can be accessed by all Cloud participants (namely, providers
and users) to establish trust among them. Using verification
services, a Cloud user can verify the logs provided by the
Cloud provider against the records in the hierarchical ledger
and finds out if the logs were tampered with or not.

In the future, we are planning to test LCaaS with existing
blockchain solutions to find integration points that can be used
to implement LCaaS on top of such solutions.

ACKNOWLEDGEMENT

This research is funded in part by NSERC Discovery Grant
No. RGPIN-2015-06075.

REFERENCES

[1] R. Accorsi, “Log data as digital evidence: What secure logging protocols
have to offer?” in 33rd Annual IEEE Int. Computer Software and
Applications Conference, COMPSAC’09., vol. 2. IEEE, 2009, pp. 398–
403.

[2] D. Reilly, C. Wren, and T. Berry, “Cloud computing: Forensic challenges
for law enforcement,” in Int. Conference for Internet Technology and
Secured Transactions (ICITST). IEEE, 2010, pp. 1–7.

[3] M. Siebenhaar, R. Hans, R. Steinmetz et al., “Role-based templates for
cloud monitoring,” in 2014 IEEE/ACM 7th Int. Conference on Utility
and Cloud Computing. IEEE, 2014, pp. 242–250.

[4] W. Pourmajidi, J. Steinbacher, T. Erwin, and A. Miranskyy, “On chal-
lenges of cloud monitoring,” in 2017 Conf. of the Center for Adv. Studies
on Collaborative Research (CASCON). IBM Corp., 2017, pp. 259–265.

[5] M. Sato and T. Yamauchi, “Vmm-based log-tampering and loss detection
scheme,” Journal of Internet Technology, vol. 13, no. 4, pp. 655–666,
2012.

[6] R. T. Snodgrass, S. S. Yao, and C. Collberg, “Tamper detection in audit
logs,” in Proceedings of the Thirtieth international conference on Very
large data bases-Volume 30. VLDB Endowment, 2004, pp. 504–515.

[7] W. Pourmajidi and A. Miranskyy. (2018) LCaaS. [Online]. Available:
https://github.com/WilliamPourmajidi/LCaaS

[8] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,”
Proceedings of the IRE, vol. 49, no. 1, pp. 228–235, 1961.

[9] F. Cohen, “A cryptographic checksum for integrity protection,” Comput-
ers & Security, vol. 6, no. 6, pp. 505–510, 1987.

[10] G. Sivathanu, C. P. Wright, and E. Zadok, “Enhancing file system
integrity through checksums,” Citeseer, Tech. Rep., 2004.

[11] P. Gallagher, “Secure hash standard (shs),” FIPS PUB, pp. 1–27, 2008.

[12] Git. [Online]. Available: https://git-scm.com
[13] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and

P. Devanbu, “The promises and perils of mining git,” in 6th Int. Working
Conf. on Mining Software Repositories, MSR’09. IEEE, 2009, pp. 1–10.

[14] arXiv. [Online]. Available: http://www.arXiv.org/
[15] S. Sharma, “A strongly trusted integrity preservance based security

framework for critical information storage over cloud platform,” Inter-
national Journal of Applied Information Systems, vol. 11, no. 6, pp. 3–7,
Nov 2016.

[16] C. Liu, C. Yang, X. Zhang, and J. Chen, “External integrity verification
for outsourced big data in cloud and iot: A big picture,” Future
Generation Computer Systems, vol. 49, pp. 58–67, 2015.

[17] P. Bharathi and S. Rajashree, “Secure file access solution for public
cloud storage,” in Information Communication and Embedded Systems
(ICICES), 2014 International Conference on. IEEE, 2014, pp. 1–5.

[18] S. Underwood, “Blockchain beyond bitcoin,” Commun. ACM, vol. 59,
no. 11, pp. 15–17, Oct. 2016.

[19] M. Mainelli and M. Smith, “Sharing ledgers for sharing economies: an
exploration of mutual distributed ledgers (aka blockchain technology),”
Journal of Financial Perspectives, vol. 3, no. 3, pp. 38–58, 2015.

[20] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in Security and Privacy Wkshps (SPW), 2015
IEEE. IEEE, 2015, pp. 180–184.

[21] M. Araoz and E. Ordano. (2013) The original blockchain notary
service. [Online]. Available: http://www.poex.io/

[22] P. Rogaway and T. Shrimpton, “Cryptographic hash-function basics:
Definitions, implications, and separations for preimage resistance,
second-preimage resistance, and collision resistance,” in International
workshop on fast software encryption. Springer, 2004, pp. 371–388.

[23] Dgst. [Online]. Available: https://wiki.openssl.org/index.php/Manual:
Dgst(1)

[24] R. T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture,” ACM Trans. Internet Tech., vol. 2, no. 2, pp. 115–150,
2002.

[25] IBM Blockchain. [Online]. Available: https://www.ibm.com/blockchain/
[26] Microsoft Blockchain. [Online]. Available: https://azure.microsoft.com/

en-us/solutions/blockchain/
[27] Hyperledger Fabric a blockchain framework. [Online]. Available:

https:https://www.hyperledger.org/projects/fabric
[28] Ethereum. [Online]. Available: https://www.ethereum.org/

