
Machine Learning for Performance Prediction of Spark Cloud Applications

Alexandre Maros, Fabricio Murai,
Ana Paula Couto da Silva, Jussara M. Almeida

Department of Computer Science
Universidade Federal de Minas Gerais, Brazil

{alexandremaros,murai,
ana.coutosilva,jussara}@dcc.ufmg.br

Marco Lattuada, Eugenio Gianniti,
Marjan Hosseini, Danilo Ardagna

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano, Italy

{marco.lattuada,eugenio.gianniti,
marjan.hosseini,danilo.ardagna}@polimi.it

Abstract—Big data applications and analytics are employed
in many sectors for a variety of goals: improving customers
satisfaction, predicting market behavior or improving processes
in public health. These applications consist of complex software
stacks that are often run on cloud systems. Predicting execution
times is important for estimating the cost of cloud services and
for effectively managing the underlying resources at runtime.
Machine Learning (ML), providing black box solutions to
model the relationship between application performance and
system configuration without requiring in-detail knowledge of
the system, has become a popular way of predicting the perfor-
mance of big data applications. We investigate the cost-benefits
of using supervised ML models for predicting the performance
of applications on Spark, one of today’s most widely used
frameworks for big data analysis. We compare our approach
with Ernest (an ML-based technique proposed in the literature
by the Spark inventors) on a range of scenarios, application
workloads, and cloud system configurations. Our experiments
show that Ernest can accurately estimate the performance of
very regular applications, but it fails when applications exhibit
more irregular patterns and/or when extrapolating on bigger
data set sizes. Results show that our models match or exceed
Ernest’s performance, sometimes enabling us to reduce the
prediction error from 126-187% to only 5-19%.

Keywords-Performance prediction; Spark; Machine learning

I. INTRODUCTION

Big data applications have become widespread in various
domains, such as natural language processing [1], public
health [2], and social media analytics [3]. These applications
are characterized by very heterogeneous and irregular data
accesses and computation patterns, often built on the top
of massively parallel algorithms. At the same time, cloud
computing platforms, such as Amazon EC2, Google Cloud,
and Microsoft Azure1, have also grown substantially in
popularity in recent years. These platforms offer virtualized
environments, which allow users to dynamically adjust the
allocated resources to match the application’s current needs.
Therefore, they offer a suitable execution environment for
the often highly distributed and variable processing require-
ments of big data applications.

1http://aws.amazon.com, http://cloud.google.com, and
http://azure.microsoft.com, respectively.

For all these reasons, users and enterprises started adopt-
ing cloud services to run their applications as a more cost-
effective alternative to the traditional local server architec-
ture [4]. This type of infrastructure often relies on distributed
programming platforms, such as Apache Spark. Spark is
a fast and general engine for large-scale data processing
whose adoption has steadily increased and which probably
will be the reference big data engine for the next five to
ten years2. Spark facilitates the implementation of a variety
of applications, from relational data processing (e.g., SQL
queries) to machine learning algorithms 3.

Cloud computing services often have an extensive list
of possible configurations that may be allocated for an
application. The user should choose the type of instances
(processing nodes), the total number of cores, among oth-
ers. These choices may drastically affect the application’s
execution time and thus should be carefully planned. The
performance prediction of a given application at a target
configuration becomes then a key task to support the proper
planning and management of the available resources.

There is a great body of work on performance prediction,
most relying on traditional techniques such as analytical
models [5, 6, 7, 8] and simulation [9, 10]. Some studies have
focused specifically on modeling the performance of parallel
applications [11], more recently addressing also specific
characteristics of cloud environments [8]. Yet, these tech-
niques require detailed knowledge of the system, which is
not always available, and often rely on simplifying assump-
tions at the cost of losing accuracy. Thus, they are either
not capable of capturing the intricacies and complexities of
cloud-based big data applications or are too complex for
practical use (i.e., cannot support real-time prediction).

In contrast, some recent studies have exploited supervised
machine learning (ML) models for performance prediction
of large systems [12, 13, 14, 15]. These techniques are
often referred to as black box solutions because they try to
learn from previously collected data and make predictions
without the knowledge of the system internals. Supervised

2http://fortune.com/2015/09/25/apache-spark-survey
3https://databricks.com/blog/2016/09/27/spark-survey-2016-

released.html

ar
X

iv
:2

10
8.

12
21

4v
1

 [
cs

.D
C

]
 2

7
A

ug
 2

02
1

ML models require a training phase in which they use exper-
imental data coming from different configurations to learn a
prediction function. The experiments to collect these training
data may be time-consuming. However, model training takes
place offline, and once trained, the prediction of the learned
ML model is fast and usually very accurate.

We here aim at investigating the cost-benefits of using su-
pervised ML models in the performance prediction of Spark
applications. Specifically, given a set of features extracted
from a target Spark application (e.g., size of the input data)
and from a platform configuration (e.g., number of cores),
we want to predict with reasonable accuracy the application
execution time when running on the target platform. Our
goal is to learn a prediction model based on data (i.e., sets
of features and execution times) from prior executions of
the same application under various configurations.

The aforementioned problem can be framed as a regres-
sion task. The ML literature includes several algorithms for
solving regression problems [16]. To our knowledge, the
state-of-the-art in using ML algorithms to predict the perfor-
mance of Spark applications is the work by Venkataraman et
al. [12]. The proposed solution, referred to as Ernest model,
exploits only four features which are functions of the dataset
size and of the number of cores and relies on non-negative
least squares (NNLS) regression.

In other words, we address the following question: To
which extent can we offer more accurate predictions by
exploiting other regression algorithms and/or other features?
To that end, we consider four classic ML techniques, namely
linear regression (LR), neural network (NN), decision tree
(DT), and random forest (RF) [16], and build two different
approaches. Our first approach, referred to as black box,
relies only on features that capture knowledge available
prior to the application execution, similarly to the Ernest
model (but, as mentioned, using different ML methods). Our
second approach, referred to as gray box, includes a richer
set of features capturing more details of the application
execution (e.g., number of tasks running within a single
stage, their average execution time, etc.). We evaluate both
approaches, comparing them against the Ernest model, on
different scenarios, covering different application workloads
and platform configurations, and also investigating the im-
pact of the size of the training set on prediction accuracy.

Our experimental results show that the Ernest model is
able to accurately estimate the performance of very regular
applications (errors are in the range 1.5-10.5%), but its
accuracy falls short when the application presents more
irregular behavior or dataset extrapolation capabilities are
required (error up to 187%). In contrast, our approach is
able to address these scenarios by providing highly accurate
predictions (the largest error is less than 20%). Moreover,
our experiments reveal that there is no clear winner among
the four ML techniques tested, and different techniques have
to be explored to select the best one for the scenario.

II. RELATED WORK

The performance analysis and prediction of big data
applications running on the cloud can be tackled from
different perspectives. The most traditional ones rely on
analytical models [5, 6, 7, 8] and simulation [9, 10]. Yet,
recent studies have employed supervised machine learning
models for performance prediction [12, 13, 14, 15], which
is the focus of this paper. One such example is a regression
model proposed by the Spark creators [12]. The model uses
a reduced set of features, which are functions of the data set
size and of the number of cores. The estimation of the model
parameters was based on non-negative least squares. The
black-box prediction models we apply in our work exploit
variants of the features used by the Ernest model. Yet, in-
stead of non-negative least squares we use the more general
`1-regularized least squares for parameter estimation, and
we also consider a set of alternative regression techniques.

Mustafa et al. [13] proposed a prediction platform for
Spark SQL queries and machine learning applications,
which, similarly to our gray box models, also exploits
features related to each stage of the Spark application.
This implies the existence of previous knowledge of the
application profile. However, some of these features (e.g.,
numbers of nonShuffledRead, shuffledReadRecords and in-
putPartitions4) are at a lower level compared to ours, and
thus require a finer-grained analysis of the Spark log to be
computed. The authors reported prediction errors of 10% for
SQL queries and about 25% for machine learning jobs. As
we will show, our approach achieves better accuracy, and our
experimental design considers more recent Spark workloads,
including deep learning use cases.

CherryPick [15] is a system that leverages Bayesian
optimization to find near-optimal cloud configurations that
minimize cloud usage costs for MapReduce and Spark appli-
cations. Unlike other studies, the goal was not to accurately
predict applications performance, but rather design a model
that is accurate enough to distinguish the best configuration
from the rest. Similar ideas were also exploited in the design
of Hemingway [14], which embeds the Ernest model and
is specialized in the identification of the optimal cluster
configuration for Spark MLlib based applications.

In a related, but different direction, Nguyen et al. [17]
proposed a strategy to generate training data to fit a perfor-
mance model. The model is meant to be used for predicting
which Spark settings yield the smallest application execution
time (i.e., capacity planning). In contrast, we here compare
alternative ML models and feature sets in the task of
predicting the performance of an application running on
a given configuration. Yet, given the significantly higher
accuracy we achieve with respect to the state of art method,
we argue that the proposed solution can be beneficial for
addressing the capacity planning problem as well [18, 19].

4https://spark.apache.org/docs/latest/rdd-programming-guide.html

https://spark.apache.org/docs/latest/rdd-programming-guide.html

III. MACHINE LEARNING MODELS

In this section, we present the proposed regression models
as well as the Ernest [12] model, here taken as reference.
Each model learns a function that estimates the execution
time of an application starting from its characteristics and
from infrastructure settings. In this work, we consider three
classes of applications: SQL based workloads, traditional
machine learning algorithms, and SparkDL (Deep Learning
pipelines for Spark). SparkDL relies also on TensorFlow [20]
as an external library for deep network models evaluation.
Details of the applications will be presented in Section IV-A.

We here aim at designing models that produce accurate
estimates of execution time. In the future, we plan to use
these estimates to drive decisions on the best size of a cluster
before it is deployed, i.e., for determining the minimum
amount of resources that must be allocated to meet deadline
constraints. Next, we present the regression techniques and
the features used by each considered model.

A. Overview of Model Techniques

The reference model, Ernest [12], is based on linear
regression, with coefficients estimated through non-negative
least squares (NNLS). This is a variant of the least squares
algorithm with the added restriction that coefficients must
be non-negative. This restriction ensures that each term
provides a non-negative contribution to the overall execution
time, preventing estimation of negative execution times.

As alternative to Ernest, we consider four classic ML
models for regression: `1-regularized linear regression
(LASSO)5, neural network, decision tree, and random forest.
Linear regression (LR) was chosen for being easily inter-
pretable. Decision tree (DT) and random forest (RF), in turn,
capture non-linear relationships in the data besides allowing
interpretability as well. Lastly, neural networks (NN) can
capture non-trivial interactions among the input features
albeit less interpretable. Investigating different models is
important to analyzing the performance differences across
applications and identifying the solution that is best for
each scenario. We refer to [21] for a description of the
aforementioned regression techniques.

B. Sets of Features

Table I shows the features used by the analyzed models. In
addition to those exploited by the Ernest model, we consider
two feature sets which differ by the required level of detail of
the application execution. Each feature set is used as input to
each of the four regression techniques presented in Section
III-A (LR, NN, DT, RF), thus producing eight models. We
distinguish these models by the feature set used, referring
to them as black box and gray box models.

The Ernest and the black box models use only features
which are based on the number of cores and on the input

5The `1-regularized least squares method does not require non-negative
parameters, being thus more general than the NNLS method used in Ernest.

data size, which are available a priori (before execution
starts). The black box models use variants of the features
exploited by Ernest. The data size and the number of
cores are respectively the most basic information about
application and infrastructure. The logarithm of the number
of cores encodes the cost of reducing operations in parallel
frameworks [22]. Lastly, the ratio of data size to the number
of core captures the time spent in parallel processing.

The gray box models leverage features available a priori
and features only available a posteriori. The latter are asso-
ciated with the Spark DAG (directed acyclic graph), which
represents the sequence of stages executed by Spark when
running an application6. Features associated with the DAG
can be extracted from the application logs after execution
completion, and thus may be used to predict the application
execution time. In general, since the relationship between
these metrics and running time only holds for the same DAG,
the DAG structure of an application must be fixed across
different numbers of cores to be able to build a model to
predict its performance.

The information provided by the DAG was encoded as
features as follows. For each stage of the DAG, we extracted
the number of tasks, the maximum and the average execution
time of the tasks, the maximum and the average shuffle time,
the maximum and the average number of bytes transmitted
among the stages. Such information can be easily extracted
by parsing Spark logs of previous executions. Moreover, for
SparkDL, not only the number of cores assigned to Spark
executors but also the inverse of the total number of cores
available in the cluster are included as features. It is worth
noting that our SparkDL runs were performed without the
usage of GPUs to accelerate TensorFlow computation since
the embedded deep network models are used for inference
and are already trained. In the scenario we considered, the
performance speedup achieved by GPUs would not justify
the additional cost of virtual machines instances.

We emphasize that while full information for all data
points in the training set was used to learn the gray box
models, we use only the information available before the
runs to evaluate these models on the test set. Specifically,
DAG-related features in the test set were replaced by their
respective averages from the training data. The rationale is
that when using an ML model for prediction, we cannot
use these features’ actual values to estimate completion time
since they are only available a posteriori.

IV. EXPERIMENTAL SETUP

In this section, we first describe the applications used
as workloads in our experiments (Section IV-A) and tar-
get platforms on which these applications were executed
(Section IV-B). We then discuss the splitting of data into

6https://data-flair.training/blogs/dag-in-apache-spark/

https://data-flair.training/blogs/dag-in-apache-spark/

Table I: Sets of features used by different models analyzed.

Model Features

Ernest [12]

- Ratio of data size to number of cores
- Log of number of cores
- Square root of ratio of data size to number of cores
- Ratio of squared data size to number of cores

Black box models

- Ratio of data size to number of cores
- Log of number of cores
- Data size
- Number of cores
- Number of TensorFlow cores (SparkDL only)

Gray box models

All black box models features and:
- Number of tasks
- Max/avg time over tasks
- Max/avg shuffle time
- Max/avg number of bytes transmitted between stages
- Inverse of number of TensorFlow cores (SparkDL only)

training and test sets (Section IV-C), model parameteriza-
tion (Section IV-D) and the metrics used to evaluate them
(Section IV-E).

A. Workloads

To evaluate the accuracy of the performance prediction
models, we consider three applications, which are represen-
tatives of different types of workloads: a query (Query 26
from the TPC-DS industry benchmark7), an ML benchmark
(K-means from Sparkbench8), and an ad-hoc benchmark for
image processing we developed based on SparkDL library
9. We ran each application in various scenarios, as shown
below, to build our training and test sets.

Query 26 is an interactive query, representative of SQL-
like workloads, which includes a small number of tasks and
stages (i.e., 10). It was run for various input data set sizes:
250 GB, 750 GB, and 1000 GB.

The K-means clustering algorithm is the core of many ML
applications. It is an unsupervised learning technique that is
used on its own but also to perform preliminary analyses in
some classification tasks. As other ML algorithms, K-means
is an iterative workload, usually characterized by larger
execution time variability. It was run for Spark dataframes
with 100 features, with values uniformly distributed in the
[0,1] range and the number of rows varying in 5, 10, 15 and
20 million. We found that the DAG was the same for all the
data sizes, containing exactly 15 stages.

Lastly, the SparkDL based workload is an example of a
high-level deep learning application on Spark. It is a binary
image classification using InceptionV3 as featurizer and
linear SVM as classifier. The number of images in the input
varied in 1000, 1500 and 2500 while the number of stages
is 8. As anticipated in Section III-B, the SparkDL benchmark
is characterized by additional features and, hence, is the
most complex of the three considered workloads. SparkDL
heavily relies on TensorFlow which affects the application
completion times. When SparkDL runs, the number of

7http://www.tpc.org/tpcds
8https://codait.github.io/spark-bench
9https://github.com/databricks/spark-deep-learning.

cores allocated to Spark workers can be limited, but spark-
submit parameters cannot control the number of cores for
TensorFlow, which uses all the cores available in the cluster.
For this reason, also the TensorFlow number of cores (which
corresponds to the number of cores available in the cluster)
was included in the feature set of both black and gray box
models while its inverse is used in the gray box models only.

B. Hosting Platforms

We ran Spark applications on two platforms, Microsoft
Azure and a private IBM Power8 cluster, which are repre-
sentatives of different computing environments. As a public
cloud, Microsoft Azure is potentially affected by resource
contention. Thus, application executions might experience
more variability. In contrast, IBM Power8 was fully dedi-
cated to run our benchmarks without any other concurrent
activity (thus with no resource contention).

Query 26 and SparkDL were executed on Microsoft Azure
using the HDInsight service with workers based on 6 D13v2
virtual machines (VMs), each with 8 CPU cores and 56
GB of memory running Spark 2.2.0 on Linux. SparkDL
application requires, in addition, that TensorFlow and Keras
are available on the Spark cluster: versions 1.4.0 and 2.1.5
were used, respectively. The executors memory was set to 10
GB. K-means was run on a Power8 deployment that includes
Hortonworks distribution 2.6, same as Microsoft Azure, with
4 VMs, each with 12 cores and 58 GB of RAM, for a
total of 48 CPU cores available for Spark workers, plus a
master node with 4 cores and 48 GB of RAM. The executors
memory, in this case, was set to 4GB.

For Query 26 and K-means, we ran experiments varying
the number of Spark cores between 6 and 44 cores (step
of 2), repeating the execution with the same configuration 6
times. For SparkDL, we varied the number of cores between
2 and 48 (step of 2), repeating each experiment with the
same configuration (i.e., the number of images and cores) 5
times. By considering different workloads, hosting platforms
and setup configurations, we build a rich set of scenarios to
test our prediction models.

C. Training and Test Sets

To learn and evaluate the ML models, data coming from
the experiments are split into training and test sets. The
former is used to learn the model, whereas the latter is used
to evaluate its accuracy. Since hyper-parameters tuning is
performed for each ML technique (see Section IV-D), a sub-
set of the training data is used for cross-validation to reduce
over-fitting. For each workload, we evaluate the accuracy
of the prediction models in terms of core interpolation and
data size extrapolation capabilities, acknowledging the fact
that the data available for learning the models (training set)
might have been obtained via experiments on setups different
from the one for which the prediction is needed (test set).
Figure 1 and Table II summarize the scenarios considered.

http://www.tpc.org/tpcds
https://codait.github.io/spark-bench
https://github.com/databricks/spark-deep-learning.

4 8 12 16 20 24 28 32 36 40 44

Number of cores

C1
C2
C3
C4
C5
C6

Train/CV Cores Test Cores

(a) Query 26

4 8 12 16 20 24 28 32 36 40 44 48

Number of cores

C1
C2
C3
C4
C5
C6
C7

Train/CV Cores Test Cores

(b) K-means

0 4 8 12 16 20 24 28 32 36 40 44 48

Number of cores

C1
C2
C3

Train/CV Cores Test Cores

(c) SparkDL

Figure 1: Core interpolation scenario: train-test split in each case for Query 26, K-means and SparkDL.

In the core interpolation scenarios, we consider runs with
the same dataset size (reported in Table II) and verify the
capabilities of the trained models of interpolating the number
of cores. Figure 1 shows the various scenarios (y-axis) of
core interpolation built for each workload based on different
splits of the data into training and test sets: in each row
(case number), blue boxes represent configurations for which
the data were used as part of the training set (and cross-
validation) and red crosses indicate configurations used as
part of the test set10. We designed scenarios such that larger
case numbers are associated with harder predictions, as
their training data include samples from a smaller range of
experiments w.r.t. the number of cores.

For example, for both Query 26 and K-means, scenario
C1 is built by alternating configurations in the sequence of
the number of cores (x-axis) as training and test data. For
Query 26, data from experiments with the number of cores
equal to 6, 10, . . . , 40 and 44 are put in the training data
(blue boxes) while the remaining samples are included in
the test set (red cross). We gradually incremented the gap
between the number of cores of consecutive configurations
included in the training data. We varied the gap in cases 4,
5, 6, and 7 to assess its impact on model accuracy. Since
there is a large difference in the application completion time
in the runs where the number of cores is small, we always
included the data for the smallest number of cores in the
training set. For SparkDL, we proceeded along the same
lines but limiting the number of cases to three.

In the data size extrapolation scenarios, we put the runs
with the largest dataset size (spanning across all available
cores configurations) in the test set while the runs with the
other dataset sizes in the training data, as shown in the two
rightmost columns of Table II. Moreover, training sets are
further reduced by removing runs according to the same
schema presented for core interpolation. By doing so, in
these experiments we evaluate at the same time the core
interpolation and the data size extrapolation capabilities. In
other words, these experiments differ from the core interpo-

10Since the experiments with Query 26 on 20 cores presented some
anomalies, we chose to remove them from the training and testing data
(see Figure 1a).

Table II: Workload data sizes in different scenarios

Workload Core Interpolation Data Extrapolation
Training Test Training Test

Query 26 [GB] 750 750 250, 750 1000
K-means [Rows] 15 15 5, 10, 15 20

SparkDL [Images] 1500 1500 1000, 1500 2000

lation scenarios because: (i) the dataset sizes in training and
test sets are no longer the same, (ii) in the test set we also
include observations where the number of cores is the same
as in some observations of the training set (but again with
different dataset sizes).

D. Hyper-parameter Tuning

An inhouse Python library was developed on the top
of PyTorch 0.4.011 (for neural network training) and of
scikit-learn 0.19.112 (for all the other techniques) to explore
different values of hyper-parameters as shown in Table III.
For every algorithm, we used the Mean Squared Error (MSE)
to select the values that led to the best model. The hyper-
parameters more frequently used are reported in bold in the
table. For black box models, this evaluation was done via 5-
fold cross-validation, while gray box models, which require
much longer training times due to the larger feature set, were
parameterized based on hold-out cross-validation.

To prevent over-fitting, a regularization term is added to
LR (Linear Regression) and NN (Neural Network). For LR,
LASSO was chosen providing `1-norm. The use of intercept
and the penalty constant α are the set of available hyper-
parameters and are shown in Table III

For the NN algorithm, the `2 penalty Frobenius norm
[23] was used. Also rectified linear unit function ReLU was
selected in general as the best activation function. In all
cases, the training data size was not large; therefore, we set
the number of minibatches to 1 in order to consume the
whole input at once. The main hyper-parameter considered
to evaluate the performance was the optimizer. Adam and
Stochastic Gradient Descent (SGD) were evaluated as possi-
ble candidates. The former was selected as our experiments
showed that it converges much faster than the latter. The
number of epochs was set to 10,000.

11https://pytorch.org
12https://scikit-learn.org

Table III: Hyper-parameters for ML techniques

Linear Regression (LR)
Hyper-Parameter Values
Penalty α 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0
Fit intercept True, False

Neural Network (NN)
Hyper-Parameter Values
Layers n 1, 2, 3
Perceptrons/Layer all combinations in [3, 4, 5]n

Activation Functions sigmoid, ReLU, tanh
`2 Penalty 0.0001, 0.001, 0.01, 0.05, 0.1
Learning Rate 0.001, 0.01, 0.1
β1 0.7, 0.8, 0.9
Minibatches 1
Optimizer Adam, SGD

Decision Tree (DT) & Random Forest (RF)
Hyper-Parameter Decision Tree Random Forest
Max Depth 3, 5, 10, No Limit 3, 10, 20, No Limit
Max Features auto, sqrt, log auto, sqrt, log
Min samples to split 2.0 2.0
Min samples per leaf 1%, 5%, 10%, 20%, 30% 1, 2, 4
Criterion MSE, fMSE, MAE MSE, MAE
Trees NA 5, 10, 50, 100

DT and RF share many hyper-parameters and their values,
therefore, are grouped in Table III. Max Depth is the
maximum depth of the tree which is specified to avoid
over-fitting. Max Features is used to select the number of
available features to consider when searching for the best
split. A value of auto implies a maximum number of features
equal to the total number of features. Values of sqrt and log
imply a maximum equal to the square root and the base-2
logarithm of the number of features, respectively. Minimum
Samples to Split/per Leaf is used for setting, respectively,
the minimum number of samples required to split a node
and the minimum percentage/number of samples required
to be a leaf. Criterion is the function used to measure
the quality of a split: MSE stands for mean square error
(minimizes `2 loss), fMSE stands for mean squared error
with Friedman’s improvement score for potential splits and,
last, MAE stands for mean absolute error (minimizes `1
loss). Parameter number of trees, the number of trees in
the forest, only applies to RF. A range of values is explored
to analyze diminishing return effects on the error.

E. Performance Metrics

We evaluate the performance of each model based on
the mean absolute percent error (MAPE) of the predicted
response time, as it is more widely used in the performance
literature [24] than MSE (used for hyper-parameter tuning).
Also, it allows us to consolidate results across experiments
with different execution times. MAPE measures the relative
error (in absolute terms) of the prediction with respect to the

true response times, i.e., MAPE (%) = 100
N

N∑
k=1

∣∣∣yk − ŷk
yk

∣∣∣,
where N is the number of data points, yk is the response
time measured on the operating system, and ŷk is the pre-
dicted response time from the learned model. For each setup,
10 runs were executed for the LR, DT and RF algorithms,
and average MAPE across all 10 runs are reported. For

Table IV: ML Models training times (in minutes)

LR NN DT RF
training time 1 908 3 56

Table V: MAPE (%) of execution time estimates on Power8
for Query 26 (core interpolation; fixed data size of 750 GB
for all datasets).

Gray Box Models Black Box Models ErnestDT LR NN RF DT LR NN RF
C1 20.6 63.4 12.3 18.8 8.4 1.0 6.7 2.4 1.5
C2 16.7 72.6 16.1 19.9 7.9 1.2 20.1 6.0 1.6
C3 18.0 98.5 36.3 18.9 11.2 1.2 3.1 8.0 1.7
C4 21.7 300.6 18.9 27.2 12.9 1.1 4.4 9.7 1.6
C5 35.7 229.7 30.8 35.0 12.5 1.2 23.0 12.0 1.6
C6 27.0 414.1 26.3 32.3 8.9 1.2 5.4 6.9 1.7

NN, which has much longer training times, we performed
a single run (i.e., random train-test split). For each of the
gray box models (which include all features from black box
models plus some others), Table IV reports the average time
to perform the full training campaign (including the hyper-
parameter tuning phase). Experiments were run on a Ubuntu
18.04 Virtual Machine with 8 cores and 10 GB of memory
hosted within an Intel Xeon Silver 4114 Ubuntu 16.04 server
with 20 cores and 48 GB of memory.

V. EXPERIMENTAL RESULTS

In this section, we present our prediction results for each
workload on two sets of scenarios, namely core interpolation
and data extrapolation. For each set, we report results
for every case described in Section IV-C. We discuss the
accuracy of the models described in Section III, referring to
each of them as gray box or black box, and, within each
category, specifying the ML technique employed (LR, NN,
DT or RF). We compare them against the reference model
(Ernest) with respect to MAPE on the test set.

A. Results for Query 26

Tables V and VI show the MAPE results for core inter-
polation and data extrapolation scenarios, respectively, for
Query 26. In both cases, we generally observe that: (i)
MAPE of black box models is smaller than that of their
gray box counterparts, (ii) Ernest performs relatively well
– MAPE within 1.5 − 1.7% for interpolation and within
7.3 − 8.0% for extrapolation, and (iii) best results are ob-
tained by black box LR model, which achieves even smaller
MAPE values than Ernest. DT and RF yield larger MAPE
on the extrapolation scenarios, which can be explained by
the fact that their execution time predictions are based on
the averages of observed values from the training set.

B. Results for K-means

Tables VII and VIII show the results for core interpolation
and data extrapolation scenarios, respectively, for K-means.
In contrast to the results for Query 26, we generally observe
that (i) Ernest performs extremely poorly in both sets of sce-
narios, (ii) for interpolation, black box RF achieves the best

Table VI: MAPE (%) of execution time estimates on Power8
for Query 26 (data extrapolation; 250 GB, 750GB for
training and 1000GB for testing).

Gray Box Models Black Box Models ErnestDT LR NN RF DT LR NN RF
C1 38.2 28.6 7.0 39.6 15.6 3.9 9.9 19.4 7.5
C2 42.5 23.5 24.8 33.6 16.0 4.0 10.3 16.6 7.4
C3 39.0 36.7 11.2 37.2 21.1 3.7 7.8 19.0 7.3
C4 42.2 33.3 13.5 35.4 25.5 4.0 25.4 23.5 7.3
C5 32.5 12.4 9.8 35.1 19.0 4.4 31.8 17.3 7.6
C6 37.0 24.8 24.8 37.3 17.3 4.9 18.1 19.5 8.0

Table VII: MAPE (%) of execution time estimates on
Power8 for K-means (core interpolation; 15M points for
training and 15M points for test).

Gray Box Models Black Box Models ErnestDT LR NN RF DT LR NN RF
C1 27.7 184.3 77.9 24.8 16.0 50.8 38.3 5.0 126.7
C2 28.7 225.0 109.6 54.7 16.9 46.3 18.1 13.7 148.1
C3 22.9 278.3 435.7 26.0 18.5 42.1 10.3 14.0 161.3
C4 33.8 300.6 445.1 26.3 21.4 41.9 23.6 14.2 176.5
C5 27.1 543.4 1146.1 22.5 22.9 42.3 31.3 19.3 187.0
C6 33.9 414.1 170.8 91.3 15.2 48.2 10.6 12.0 159.9
C7 22.6 363.1 626.0 31.3 17.4 41.8 33.2 14.8 178.1

Table VIII: MAPE (%) of execution time estimates on
Power8 for K-means (data extrapolation; 5M, 10M, and 15M
points for training and 20M points for test).

Gray Box Models Black Box Models ErnestDT LR NN RF DT LR NN RF
C1 24.0 20.2 22.9 27.1 19.8 40.0 32.5 12.5 93.4
C2 35.6 16.0 121.3 20.7 14.5 39.6 29.1 16.5 107.8
C3 66.7 31.9 134.1 32.6 14.4 41.4 28.0 16.5 119.6
C4 28.8 24.2 118.9 25.8 13.3 31.8 68.4 16.0 127.9
C5 42.0 34.0 27.5 26.7 15.3 25.7 60.0 19.5 121.4
C6 75.7 37.7 37.1 24.2 11.0 52.6 26.7 14.9 109.8
C7 32.6 43.1 148.1 42.6 20.8 34.5 96.4 17.9 129.5

results, and (iii) for extrapolation, gray box LR outperforms
its black box counterpart more often than not. Although DT
and RF achieve the best results on extrapolation, this may
not hold true in cases when the data size of observations
in the test set is much larger (or smaller) than that of the
observations in the training set (i.e., differences are more
extreme than those than captured by our scenarios). In those
cases, we expect the other models to outperform DT and RF.

C. Results for SparkDL

Finally, results for SparkDL are shown in Tables IX
and X for the core interpolation and data extrapolation
scenarios, respectively. For interpolation, the black box DT
and RF tend to yield the best predictions, although LR also
performs well, achieving smaller MAPE than Ernest. The
gray box models do not provide significant improvements
(except for a few cases) but often incurs great degradation in
MAPE. In contrast, for extrapolation, the additional features
estimated by gray box models combined with non-linear
models (notably NN and RF) very often improve upon
their black box counterparts. However, the black box LR
is still the model with best performance, achieving a MAPE
roughly 5 times smaller than that obtained by Ernest.

Table IX: MAPE (%) of execution time estimates on Azure
for SparkDL (core interpolation; 1500 images for training
and 1500 images for testing).

Gray Box Models Black Box Models ErnestDT LR NN RF DT LR NN RF
C1 5.2 28.7 4.7 4.5 5.1 7.3 4.6 5.1 10.5
C2 5.8 5.7 13.3 4.8 5.5 6.2 8.6 5.7 6.3
C3 8.9 7.5 5.4 6.0 5.5 5.5 5.7 4.9 5.7

Table X: MAPE (%) of execution time estimates on Azure
for SparkDL (data extrapolation; 1000 and 1500 images for
training and 2500 images for testing).

Gray Box Models Black Box Models ErnestDT LR NN RF DT LR NN RF
C1 37.0 10.7 25.7 34.7 35.9 7.5 34.1 36.7 43.5
C2 36.3 10.0 31.4 37.0 41.5 7.6 15.3 41.9 37.4
C3 36.9 14.7 9.9 34.5 41.0 7.8 33.3 41.1 36.8

VI. DISCUSSION

The previous section presented the prediction accuracy of
each model on three quite different workloads for various
scenarios. Ernest performs well (MAPE < 11%) in the
simplest scenarios considered (i.e., Query 26 and core inter-
polation for SparkDL). Yet, in the other scenarios, the large
MAPE values yielded by the model make it unsuitable for
production environments. In fact, in the worst case, the error
reaches up to 187%, showcasing the need for new techniques
to overcome Ernest’s limitations. Our goal was to compare
alternative techniques against the simple linear regression
(with NNLS estimation) applied by Ernest, investigating the
extent to which the additional information (i.e., features)
used by gray box models increases prediction accuracy.

From the previous results, we observe that no single ML
technique outperforms all the others in every scenario. More-
over, even a slight change in the composition of training
and test sets (i.e., considering a different case number) may
impact the technique that performs best. For example, in the
data extrapolation experiments with K-means, the best gray
box model is the one with LR as regression technique in
cases C1, C2, C3 and C4, with RF in cases C5 and C6, and
with DT in the last case (C7). Similarly, the best black box
model is obtained with RF in cases C1 and C7, and DT in
the remaining five cases.

The comparison between the best gray box models and the
reference Ernest model leads to two different situations. In
scenarios where applications are characterized by regularity
(i.e., Query 26 and SparkDL with fixed data size), Ernest
yields very good results with MAPE values smaller than
10%, whereas the best gray box model generally achieves
worse performance (MAPE of best models is in the range
7.0-30.8%). Yet, in the remaining scenarios, which are char-
acterized by a larger variability in the application execution
times, the best gray box model outperforms the Ernest model
by a large margin. The MAPE range of the latter is 37.4-
187.0% while the largest error of the best gray box model
is only 33.9% (C6 of core interpolation with K-means).

However, recall that gray box models do use DAG-related
features which are not available for the test instance at
prediction time (a priori), and thus are replaced by the
averages from the training data. Thus, even though the gray
box models are able to outperform Ernest in some scenarios,
such feature approximations may indeed cause accuracy
degradation, as it hides significant differences that may exist
between runs in the training and test sets. Black box models,
in turn, extract features only from information available
before an application starts execution (i.e., available at
prediction time), and thus do not suffer from this issue.
Also, our results show that the best black model always
outperforms the results of the Ernest method (possibly due to
the use of more effective ML techniques) and almost always
outperforms the results of the gray box model, despite using
fewer features. Thus, this approach is preferable over the
others. In the worst case (C5 of core interpolation with K-
Means) the MAPE of the best black box model is only
19.3%, which is quite suitable in a production environment.

Finally, the black box LR model produces the best results
for Query 26, in spite of Ernest’s good performance on this
application. Indeed, the black box LR model outperforms
Ernest in all scenarios analyzed, which indicates the benefits
of using a different parameterization technique as well as
slightly different feature set. However, there are scenarios
where Ernest performs well (i.e., core interpolation with
SparkDL), for which the best black box models are indeed
DT and RF, though the black box LR performs quite
similarly. The latter is indeed the best model also in data
extrapolation scenario with SparkDL: it achieves MAPE
values in the range 7.5-7.8%, while Ernest yields values
in the range 36.8-43.5%. Yet, there is no clear winner in
the K-means experiments. For core interpolation, the best
results are produced with RF in all cases but C6, for which
NN is the best performer. For data extrapolation, the best
technique is DT in 5 out of 7 cases and RF in the others.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the accuracy of alternative
supervised ML techniques and different feature sets in the
performance prediction of Spark applications. Experimental
results on a rich set of different scenarios demonstrated
that our black box models are able to achieve at least the
same accuracy of Ernest and, in many scenarios, even more
accurate predictions. The percentage error is reduced from
126.7-187.0% to only 5.0-19.3% when applications present
irregular patterns and/or when it is needed to extrapolate the
application behavior on larger data sets. However, we also
showed that there is not a single ML technique that always
outperforms the others, hence different techniques have to
be evaluated in each scenario to choose the best model. As
future work, we plan to study the performance of Spark
deep learning applications when GPU-based clusters are
used and develop capacity planning solutions to identify, at

deployment time, the minimum cost cluster configuration so
as to guarantee application runs within an a priori deadline.

ACKNOWLEDGEMENTS
This work has been partially supported by the project ATMOSPHERE

(https://atmosphere-eubrazil.eu), funded by the Brazilian Ministry of Sci-
ence, Technology and Innovation (Project 51119 - MCTI/RNP 4th Co-
ordinated Call) and by the European Commission under the Cooperation
Programme, Horizon 2020 (grant agreement no 777154).

REFERENCES
[1] J. Hirschberg and C. D. Manning, “Advances in natural language

processing,” Science, vol. 349, no. 6245, pp. 261–266, 2015.
[2] R. Fang, S. Pouyanfar, Y. Yang, S.-C. Chen, and S. S. Iyengar,

“Computational health informatics in the big data age: A survey,”
ACM Comput. Surv., vol. 49, no. 1, pp. 12:1–12:36, Jun. 2016.

[3] N. A. Ghani, S. Hamid, I. A. T. Hashem, and E. Ahmed, “Social
media big data analytics: A survey,” Computers in Human Behavior,
2018.

[4] C. Low, Y. Chen, and M. Wu, “Understanding the determinants of
cloud computing adoption,” Industrial Management & Data Systems,
vol. 111, no. 7, pp. 1006–1023, 2011.

[5] R. D. Nelson and A. N. Tantawi, “Approximate analysis of fork/join
synchronization in parallel queues,” IEEE TC, vol. 37, no. 6, pp. 739–
743, 1988.

[6] V. Mak and S. Lundstrom, “Predicting performance of parallel com-
putations,” IEEE TPDS, vol. 1, no. 3, pp. 257–270, 1990.

[7] S. K. Tripathi and D.-R. Liang, “On performance prediction of parallel
computations with precedent constraints,” IEEE TPDS, vol. 11, pp.
491–508, 2000.

[8] D. Ardagna, E. Barbierato, A. Evangelinou, E. Gianniti, M. Gribaudo,
T. B. M. Pinto, A. Guimarães, A. P. Couto da Silva, and J. M.
Almeida, “Performance prediction of cloud-based big data applica-
tions,” in ICPE ’18, 2018, pp. 192–199.

[9] M. Bertoli, G. Casale, and G. Serazzi, “JMT: performance engineering
tools for system modeling,” SIGMETRICS Performance Evaluation
Review, vol. 36, no. 4, pp. 10–15, 2009.

[10] K. Wang and M. M. H. Khan, “Performance prediction for apache
spark platform,” in HPCC-CSS-ICESS, 2015, pp. 166–173.

[11] D. Ardagna, S. Bernardi, E. Gianniti, S. K. Aliabadi, D. Perez-Palacin,
and J. I. Requeno, “Modeling performance of hadoop applications: A
journey from queueing networks to stochastic well formed nets,” in
ICA3PP, 2016, pp. 599–613.

[12] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient performance prediction for large-scale advanced
analytics.” in NSDI, 2016, pp. 363–378.

[13] S. Mustafa, I. Elghandour, and M. A. Ismail, “A machine learning
approach for predicting execution time of spark jobs,” Alexandria
Engineering Journal, vol. 57, no. 4, pp. 3767 – 3778, 2018.

[14] X. Pan, S. Venkataraman, Z. Tai, and J. Gonzalez, “Heming-
way: Modeling distributed optimization algorithms,” CoRR, vol.
abs/1702.05865, 2017.

[15] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu,
and M. Zhang, “Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics,” in NSDI, 2017, pp. 469–482.

[16] M. J. Zaki and W. Meira Jr, Data mining and analysis: fundamental
concepts and algorithms. Cambridge University Press, 2014.

[17] N. Nguyen, M. M. H. Khan, and K. Wang, “Towards automatic tuning
of apache spark configuration,” in CLOUD, 2018, pp. 417–425.

[18] E. Gianniti, M. Ciavotta, and D. Ardagna, “Optimizing quality-aware
big data applications in the cloud,” IEEE TCC, pp. 1–16, 2018.

[19] A. Maros, F. Murai, A. P. da Silva, J. M. Almeida, M. Lattuada,
E. Gianniti, M. Hosseini, and D. Ardagna, “Machine Learning for
Performance Prediction of Spark Cloud Applications,” in CLOUD,
2019, pp. 99–106.

[20] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous distributed systems,” 2016.

[21] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[22] P. S. Pacheco, An introduction to parallel programming. Morgan
Kaufmann, 2011.

https://atmosphere-eubrazil.eu

[23] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The
Johns Hopkins University Press, 1996.

[24] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik,
Quantitative System Performance. Prentice-Hall, 1984.

