
Dynamic Virtual Machine Placement Considering
CPU and Memory Resource Requirements

Abdelkhalik Mosa and Rizos Sakellariou
School of Computer Science

The University of Manchester, UK
{abdelkhalik.mosa,rizos}@manchester.ac.uk

Abstract—In cloud data centers, cloud providers can offer
computing infrastructure as a service in the form of virtual
machines (VMs). With the help of virtualization technology,
cloud data centers can consolidate VMs on physical machines
to minimize costs. VM placement is the process of assigning
VMs to the appropriate physical machines. An efficient VM
placement solution will result in better VM consolidation ratios
which ensures better resource utilization and hence more energy
savings. The VM placement process consists of both the initial
as well as the dynamic placement of VMs. In this paper, we
are experimenting with a dynamic VM placement solution that
considers different resource types (namely, CPU and memory).
The proposed solution makes use of a genetic algorithm for the
dynamic reallocation of the VMs based on the actual demand
of the individual VMs aiming to minimize under-utilization and
over-utilization scenarios in the cloud data center. Empirical eval-
uation using CloudSim highlights the importance of considering
multiple resource types. In addition, it demonstrates that the
genetic algorithm outperforms the well-known best-fit decreasing
algorithm for dynamic VM placement.

Index Terms—dynamic VM placement, genetic algorithm, CPU
and memory resource allocation.

I. INTRODUCTION

The Cloud computing paradigm offers computing resources
in the form of elastic, on-demand, measured services over a
network [1]. Cloud data centers rely on virtualization technol-
ogy to consolidate multiple virtual machines (VMs) on a single
physical machine (PM), which saves energy and consequently
minimizes CO2 emissions and associated costs [2].

In a cloud data center, a VM placement solution can
consolidate VMs by allocating VMs to suitable PMs in a
way that achieves the cloud provider’s objectives [3]. VM
placement is a two-fold process, which includes initial (static)
placement, and dynamic re-placement of the VMs. The initial
VM placement receives new VM placement requests and
assigns VMs to PMs based on the requested VM size. Due to
the dynamic nature of cloud data centers (e.g. VMs’ workload
changes over time [4]), initial VM placement techniques may
result in suboptimal placement solutions that can lead to either
over-provisioning or under-provisioning of resources. Over-
provisioning indicates that the allocated resources exceed the
required resource demand which leads to under-utilization
of the PMs. Under-provisioning means that the allocated
resources do not meet the demand which eventually leads to
PM over-utilization. Under-utilization leads to energy waste
and higher costs, while over-utilization increases the number

of service level agreement violations (SLAVs). Dynamic VM
placement uses a live migration utility to reallocate VMs and
achieve an efficient VMs-to-PMs assignment. A dynamic VM
placement solution can help mitigate the costs associated with
under-utilization or over-utilization.

A high proportion of current VM placement solutions con-
sider only CPU resources and ignore other types of resource
such as memory, storage, or network bandwidth. However,
considering different types of resources (or characteristics)
including memory or network bandwidth becomes critical as
many VMs may be either memory-intensive or bandwidth-
intensive, which suggests that the CPU is not the most deciding
resource type in such cases.

This paper explores the problem of allocating VMs along
more than one of these characteristics by proposing a dynamic
demand-based VM placement solution that considers both
CPU and memory requirements. The proposed solution adopts
a genetic algorithm (GA) aiming to minimize under-utilization
as well as over-utilization of both CPU and memory to ensure
better overall utilization and reduce any SLAVs.

In the remainder of this paper, Section II describes some ex-
isting solutions that use either heuristics or meta-heuristics for
dynamic VM placement. Following this, Section III describes
the objective of dynamic VM placement. Then, Section III
briefly presents the dynamic VM placement solution using a
GA. Finally, Section V describes the conducted experiments
and results and the paper is concluded in Section VI.

II. RELATED WORK

Initial VM placement has been extensively studied in the
literature [3]. The dynamic reallocation of VMs is typically
achieved using heuristics or meta-heuristics. Examples of
dynamic VM placement solutions that use heuristics to reduce
energy consumption while keeping SLAVs below a certain
level include [5]–[8]. Many dynamic VM placement solutions
use meta-heuristics to dynamically reallocate VMs among
PMs based on a predefined objective function. Some of these
solutions adopt a genetic algorithm [9], [10]; an ant colony
system [11], while others use particle swarm optimization [12].
However, many of these solutions only consider a single type
of resource, often CPU [5], [6], [10], [12]. Other solutions
consider multiple resources using a genetic algorithm, but they
only solve the initial VM placement and ignore the dynamic
reallocation of the VMs [13]. There is scope for research

Dynamic virtual machine placement considering CPU and memory resource requirements

1

This is a peer-reviewed, accepted author manuscript of the following article: Mosa, A., & Sakellariou, R. (2019). Dynamic virtual machine placement considering CPU and 
memory resource requirements. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD) (pp. 196-198). IEEE. https://doi.org/10.1109/CLOUD.2019.00042



considering different types of resources, an area explored
by this paper, which proposes a CPU- and memory-aware
dynamic VM placement solution based on a genetic algorithm.

III. PLACEMENT OBJECTIVE

The main objective for the VM placement is to utilize the
PMs efficiently. Therefore, we are introducing an objective
function that seeks to utilize the PMs efficiently by minimizing
the estimated under-utilization per each resource type (CPU
and memory), while reducing SLAVs by minimizing the
estimated over-utilization at each scheduling interval. Under-
utilization is defined as the ratio of available (or unused)
capacity divided by the total capacity of a given resource
type. Over-utilization is defined as the demand that exceeds
the capacity of a given resource type.

Minimize (
n∑

r=1

(W̄ r + Ōr)) (1)

In Equation 1, n represents the number of resource types (CPU
and memory in this paper but this could be generalized to
storage, bandwidth, etc); W̄ r is the average under-utilization
per resource type r of all PMs running at a scheduling interval;
and Ōr is the average over-utilization per resource type r for
all PMs running on the current scheduling interval.

IV. DYNAMIC VM PLACEMENT USING A GENETIC
ALGORITHM

The proposed dynamic VM placement solution solves both
the initial and dynamic VM placement problems. For the initial
VM placement, it adopts a power-aware best-fit decreasing
(BFD) heuristic [5] that allocates VMs based on the resource
requirements defined by VM types. Then, dynamic realloca-
tion of the VMs may happen during each scheduling interval
(periodically every five simulated minutes) using a GA that
searches for a VMs-to-PMs mapping that can reduce under-
utilization and over-utilization based on the objective function
defined by Equation 1.

Algorithm 1 shows the pseudo-code of the GA for the
dynamic reallocation of the VMs after initial placement. The
GA runs at each scheduling interval and for a specified number
of times according to the number of generations. At each
scheduling interval, the algorithm tries to find source and target
PMs. The source and target PMs are the PMs that are either
a source or a target of VMs’ migrations. Source PMs are the
ones that are not switched off and host running VMs, while
target PMs are the ones that are not over-utilized before of after
the VMs’ migration. The initial population for VMs-to-PMs
mapping is created by mutating the current mapping. For each
generation, the GA first selects the parent using tournament
selection, applies uniform crossover, mutates the VMs and
evaluates the candidate VMs-to-PMs mapping based on the
objective function (Section III).

Once the GA finds the best VMs-to-PMs mapping for a
given scheduling interval, it will enact VM migration to reflect
the new VMs-to-PMs mapping.

Algorithm 1 Dynamic reallocation of VMs using a GA
1: Input: schedulingIntervals, generations;
2: for all (schedulingIntervals) do
3: Store current VMs-to-PMs mapping;
4: Find source and target PMs;
5: Build initial population of VMs-to-PMs mapping;
6: Evaluate candidate mappings using Equation 1;
7: for all (generations) do
8: Select parents for crossover;
9: Crossover based on the cross over ratio;

10: Mutate VMs using only the source PMs (active);
11: Evaluate candidate mappings using Equation 1;
12: Select population for next generation;
13: Save best allocation found so far;
14: Build migration map from the best found allocation;
15: Apply VM migration based on the migration map;

V. EXPERIMENTAL EVALUATION

A. Simulation Settings

The CloudSim simulation toolkit [14] is used to simulate a
cloud data center, which consists of two types of PMs, namely,
HP ProLiant ML110 (2 cores at 1860 MHz each) and HP
ProLiant ML110 G5 (2 cores at 2660 MHz each) that can
host four different VM types. CloudSim generates synthetic
CPU and RAM utilization traces every five simulated minutes
based on a uniform normal distribution with values between
zero and one. The simulation works for a whole day, and
the dynamic reallocation of the VMs takes place every five
minutes (scheduling interval). For testing different capabilities,
we have also skewed memory utilization to be more than 50%
in some experiments.

Using the baseline BFD heuristic for dynamic VM place-
ment, this starts migrating VMs from over-utilized PMs when
the utilization level of the CPU or memory is 100%. It chooses
VMs with minimum memory sizes for migration from over-
utilized PMs to minimize the total migration time.

B. Performance Metrics

1) Average overall under-utilization (AOUU):
AOUU is the average of ACUU and ARUU, which
correspond to average under-utilization per CPU and
memory, respectively.

2) Average overall SLA violations (AOSLAVs):
AOSLAVs estimates the average number of SLA viola-
tions and is calculated as follows:

AOSLAV s =
1

2
(OCSLAV s + ORSLAV s),

where OCSLAVs represents CPU SLA violations for all
active PMs and is estimated as follows:

OCSLAV s =
RequestedCPU −AllocatedCPU

RequestedCPU
.

Dynamic virtual machine placement considering CPU and memory resource requirements

2



Fig. 1. AOSLAVs and AOUU using different data center sizes (#VMs,#PMs)

The ORSLAVs represents memory SLA violations for
all active PMs and is estimated as follows:

ORSLAV s =
RequestedRam−AllocatedRam

RequestedRam
.

Experiment 1: Normal CPU and memory utilization:
Figure 1 summarizes the results of the proposed GA-based
solution as opposed to the baseline BFD heuristic using
different data center sizes ranging from 100 to 5000 PMs that
host 200 to 10,000 VMs. The X-axis shows the AOSLAVs
and AOUU (for different sizes of the data center) with the
Y-axis showing their values as a percentage. The experiments
run for a whole day of simulation time except the instances
with 4,000 and 10,000 VMs that run for only 6 hours due to
memory constraints.

Experiment 2: Skewed memory utilization: This experiment
skews memory utilization (over 50%) to assess the reaction
of both solutions to the increase in memory requirements.
Figure 2 shows that the ACUU of the proposed GA-based
solution is 45.95% compared to 57.97% of the baseline BFD
solution, which means around 20% improvement in CPU
utilization. Moreover, the ARUU is 22.56% and 38.69% for the
proposed GA-based solution and the baseline BFD solution,
respectively, which means memory utilization is improved
by around 40%. In Figure 2, the size of the circle defines
the AOSLAVs. The proposed GA-based solution managed to
reduce the AOSLAVs by around 70%.

VI. CONCLUSION AND FUTURE WORK

This paper addresses the dynamic VM placement problem
by considering both CPU and memory resource requirements
of VMs. The paper makes use of a genetic algorithm for the
dynamic reallocation of the VMs. The candidate solutions are
evaluated against an objective function that aims to reduce
over-utilization as well as under-utilization of PMs to min-
imize the resulting SLAVs and improve overall utilization.
Possible directions for future work include: (1) considering
other types of resources such as network bandwidth or storage;
(2) conducting more experiments using real workload traces.

Fig. 2. Average CPU and memory under-utilization along with AOSLAVs in
an increased memory utilization scenario

REFERENCES

[1] P. Mell and T. Grance, “The nist definition of cloud computing,”
Communications of the ACM, vol. 53, no. 6, p. 50, 2010.

[2] VMWare, “Server Consolidation and Containment
With Virtual Infrastructure.” [Online]. Available:
http://www.vmware.com/pdf/server consolidation.pdf

[3] I. Pietri and R. Sakellariou, “Mapping virtual machines onto physical
machines in cloud computing: A survey,” ACM Computing Surveys
(CSUR), vol. 49, no. 3, p. 49, 2016.

[4] C. Hyser, B. McKee, R. Gardner, and B. J. Watson, “Autonomic virtual
machine placement in the data center,” Hewlett Packard Laboratories,
Tech. Rep. HPL-2007-189, vol. 189, 2007.

[5] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397–
1420, 2012.

[6] X. Wang, X. Liu, L. Fan, and X. Jia, “A decentralized virtual machine
migration approach of data centers for cloud computing,” Mathematical
Problems in Engineering, vol. 2013, 2013.

[7] Y. Liu, X. Sun, W. Wei, and W. Jing, “Enhancing energy-efficient and
qos dynamic virtual machine consolidation method in cloud environ-
ment,” IEEE Access, vol. 6, pp. 31 224–31 235, 2018.

[8] T. H. Nguyen, M. D. Francesco, and A. Yla-Jaaski, “Virtual machine
consolidation with multiple usage prediction for energy-efficient cloud
data centers,” IEEE Transactions on Services Computing, pp. 1–1, 2018.

[9] C. T. Joseph, K. Chandrasekaran, and R. Cyriac, “A novel family genetic
approach for virtual machine allocation,” Procedia Computer Science,
vol. 46, pp. 558 – 565, 2015, proceedings of the International Conference
on Information and Communication Technologies, ICICT 2014.

[10] A. Mosa and N. W. Paton, “Optimizing virtual machine placement for
energy and sla in clouds using utility functions,” Journal of Cloud
Computing, vol. 5, no. 1, p. 17, 2016.

[11] F. Farahnakian, A. Ashraf, T. Pahikkala, P. Liljeberg, J. Plosila, I. Porres,
and H. Tenhunen, “Using ant colony system to consolidate vms for green
cloud computing,” IEEE Transactions on Services Computing, vol. 8,
no. 2, pp. 187–198, 2015.

[12] S. Wang, Z. Liu, Z. Zheng, Q. Sun, and F. Yang, “Particle swarm
optimization for energy-aware virtual machine placement optimization
in virtualized data centers,” in 2013 International Conference on Parallel
and Distributed Systems, Dec 2013, pp. 102–109.

[13] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement in
virtualized data center environments,” in 2010 IEEE/ACM Int’l Confer-
ence on Green Computing and Communications & Int’l Conference on
Cyber, Physical and Social Computing. IEEE, 2010, pp. 179–188.

[14] R. N. Calheiros, R. Ranjan, C. A. F. De Rose, and R. Buyya, “Cloudsim:
A novel framework for modeling and simulation of cloud computing
infrastructures and services,” arXiv preprint arXiv:0903.2525, 2009.

Dynamic virtual machine placement considering CPU and memory resource requirements

3


	Dynamic Virtual Machine Placement Considering CPU and Memory Resource Requirements
	Abstract
	I. INTRODUCTION
	II. RELATED WORK
	III. PLACEMENT OBJECTIVE
	IV. DYNAMIC VM PLACEMENT USING A GENETIC ALGORITHM
	V. EXPERIMENTAL EVALUATION
	VI. CONCLUSION AND FUTURE WORK
	REFERENCES



