
Designing knowledge plane to optimize leaf and spine data center

Mujahid Sultan†, Dodi Imbuido‡, Kam Patel‡, James MacDonald‡ and Kumar Ratnam‡
†Department of Computer Science, Ryerson University, Toronto, Canada

‡Aytra Inc. 18 Wynford Dr. Toronto, Canada
mujahid.sultan@ryerson.ca; {dodi.imbuido, james.macdonald, kam.patel, kumar}@aytra.com ∗

Abstract—In the last few decades, data center architecture
evolved from the traditional client-server to access-aggregation-
core architectures. Recently there is a new shift in the data
center architecture due to the increasing need for low latency
and high throughput between server-to-server communications,
load balancing and, loop-free environment. This new architecture,
known as leaf and spine architecture, provides low latency and
minimum packet loss by enabling the addition and deletion of
network nodes on demand. Network nodes can be added or
deleted from the network based on network statistics like link
speed, packet loss, latency, and throughput.

With the maturity of Open Virtual Switch (OvS) and Open-
Flow based Software Defined Network (SDN) controllers, network
automation through programmatic extensions has become possi-
ble based on network statistics. Separation of control plane and
data plane has enabled automated management of network and
Machine Learning (ML) can be applied to learn and optimize
the network.

In this publication, we propose the design of an ML-based
approach to gather network statistics and build a knowledge
plane. We demonstrate that this knowledge plane enables data
center optimization using southbound APIs and SDN controllers.
We describe the design components of this approach - using a
network simulator and show that it can maintain the historical
patterns of network statistics to predict future growth or decline.
We also provide an open-source software that can be utilized in
a leaf and spine data center to provide elastic capacity based on
load forecasts.

I. INTRODUCTION

A. Background

The traditional design of IP networks is decentralized - for
resiliency. Networking devices (e.g., switches and routers) are
designed to be independent - by coupling the routing and the
data. Performance is mainly achieved by merchant silicon or
custom application-specific integrated circuits, thus leading to
inflexible control of the devices. Recently with the ONF [1]
consortium’s push to produce networking devices equipped
with south-bound APIs (OpenFlow [2]) the networking devices
have become more accessible. Traditional switches used to
have a single unit responsible for forwarding policy and a
physical layer which carried out these policies. With the advent
of OvS [3], OpenFlow and SDN controllers [4], the physical
layer called data plane is separated from the policy layer called
control plane - opening new opportunities for automation.

Maturity of Open Virtual Switch (OvS) has led to the
development of many enterprise-class SDN controllers also

∗Note: A slightly modified version of this pre-print is accepted for
publication by IEEE Cloud 2020.

known as network operating systems (NOS), for example,
NOX [5], ONOS [6], OpenDaylight [7] and Ryu [8]. These
SDN controllers separate policies from the data.

The data plane, responsible for forwarding packets, relies
on the control plane for the forwarding rules or policies. The
control plane keeps and manages policies, which are being
called flow rules, traditionally known as forwarding rules. These
flow rules dictate the networking policies to the data plane.
The data plane is kept unaware of the network topology and
relies on the control plane to populate their forwarding tables.
Though this is a fairly new paradigm, however, it has seen
success in many business domains [9], in the form of policies
managed and deployed to hundreds of network devices from a
single centralized control plane.

When the policies are developed independently of the
historical network traffic patterns, these are called static policies.
If the policies are learned based on the historical network traffic,
these are called dynamic policies. In this publication, we stream
network performance metrics to Machine Learning (ML) layer
and build dynamic policies based on predictions by the neural
network. We use these dynamic policies to add and or remove
spine nodes to achieve desired network topologies in the leaf
and spine data center.

B. Motivation

Dynamic policies have been applied to the network devices
using numerous network optimization and improvement tasks
such as network availability [10], MPLS optimization [11],
load balancing in data centers [12], and resilience for smart
grid communications [13]. To date, there has not been any
significant development that uses ML in developing the dynamic
policies.

In this study, we created a spine and leaf network and
learned network traffic patterns using ML. Based on patterns
found in the ML layer, we update flow rules in real-time using
southbound APIs to optimize the network.

Road map: The rest of the paper is organized as follows:
Related work is summarized in Section II. In Section III we
describe experimental setup for network simulation, control
plane and the forecast engine. In Section IV we discuss the
results and in Section V we present some future directions.

II. LITERATURE REVIEW

A comprehensive list of SDN controllers and their perfor-
mance and maturity comparison is given by [14], [15], and

1

ar
X

iv
:2

00
9.

08
49

2v
1

 [
cs

.N
I]

 1
7

Se
p

20
20

2

an overview of knowledge defined networking can be found
at [16]. Monitoring latency with OpenFlow is investigated by
[17]. Data path performance of the spine-leaf data center is
described by [18]. An OpenDaylight based MPLs controller
is investigated by [11]. To improve the quality of service,
[19] used leaf and spine architecture. Long short-term memory
(LSTM) [20] based traffic prediction method to assist light path
reconfiguration in hybrid data center networks is investigated by
[21]. None of these studies investigated network optimization
using LSTM from the entire metric set of the leaf and spine
data center perspective nor implemented any streaming engine.

III. EXPERIMENTAL SETUP

Monitoring latency with OpenFlow was investigated by [17].
We use this method and software in our experiments. To conduct
our experiments, we simulated a leaf and spine network using
Mininet [22], as shown in Fig. 1. We streamed the spine switch
layer traffic to a Kafka [23] server. In the ML layer, we used
the LSTM neural network-based application, which consumes
Kafka streams to predict spine node latency. We are developing
knowledge plane components to deploy dynamic policies to the
network via southbound APIs. The design components of our
application and the data center simulation are briefly described
below.

Fig. 1. The Architecture of a leaf and spine network with two "leaf"
and five "spine" nodes. We use the POX SDN controller with southbound
OpenFlow based APIs to access the network. Network traffic is streamed to
the ML layer using Kafka topics. LSTM neural network is used to interpret
and forecast network metrics. The inference is passed to the Knowledge Plane
which controls the network in real-time (by adding or deleting nodes).

A. The network
Mininet1 is a network emulator to mimic large networks on

a single computer or virtual machine developed by [22]. We
created a leaf and spine network segment with five spine and
three leaf nodes using Mininet and transferred some large files
between leaf nodes to generate the traffic.

1Available at https://github.com/mininet

B. The SDN Controller (POX)

We used POX2, a python implementation of NOX [5] SDN
controller which is based on the OvS [24]. A python script
integrates POX to capture and stream network traffic. We
used the Kafka-python3 to generate traffic topics, which are
consumed by the ML layer.

C. The Forecast Engine

The Kafka-python consumer is used to gather network traffic
streams. We used the LSTM neural network for predicting the
network metrics. Fig. 2 shows a single layer of the typical
LSTM. We experimented with several architectures of LSTM
to lower the validation error for the network latency. Below
we briefly describe the input of the LSTM for our network
simulation.

The Latency of a link at time t is defined by vector Lt, the
fabric link speed by vector Ft and edge or leaf link speed
by vector Et giving us time series for each link in the spine
network. These metrics can be written in vector form as:
Lt =

[
Lt−n, Lt−(n−1), . . . , Lt−2, Lt−1

]
,

Ft =
[
Ft−n, Ft−(n−1), . . . , Ft−2, Ft−1

]
and

Et =
[
Et−n, Et−(n−1), . . . , Et−2, Et−1

]
. And in matrix form

for each spine link can be written as:LtFt
Et

 =

Lt−n, Lt−(n−1), . . . , Lt−2, Lt−1

Ft−n, Ft−(n−1), . . . , Ft−2, Ft−1

Et−n, Et−(n−1), . . . , Et−2, Et−1

A three-dimensional tensor represents the number of links
with the third dimension for the switch label. Each input is
normalized separately, and a different loss function is used, as
the link latency is measured in different units than the speed.
We implemented a 1-D convolutional net layer to sample the
network traffic. Different architectures were tried. We used two-
layered stacked LSTM with a random-dropout layer designed
as three inputs and one output, as shown in Fig. 2. To train
the model we used Keras [25] v2.3.0 python library with
TensorFlow [26] v2.1 backend.

σi σf Tanho σg

× +

× ×

Tanh

c〈t−1〉

Memory in

h〈t−1〉

Hidden in

L〈t〉 F 〈t〉 E〈t〉Input

c〈t〉

Memory out

h〈t〉

Hidden out

h〈t〉Output

Fig. 2. Design of a single LSTM unit with the input of three network
metrics (Lt, Et, and Ft) streamed from the python-Kafka engine.

2available at: https://github.com/noxrepo/pox
3https://kafka-python.readthedocs.io/en/master/

3

Fig. 3. Top - Switches with low predicted latency; Bottom - Prediction
of hourly latency by LSTM for all switches for 120 hours (microseconds).
Switches with low predicted latency (switch 0 and 4) can be removed from
the network without any impact on the overall health of the network.

IV. RESULTS AND USAGE

Fig. 3 (bottom part) shows the predicted average latency
of the entire network for 120 hours (5 days). In the top part
of Fig. 3, two low latency switches are shown, which are
good candidates to be programmatically removed by the SDN
controller - to save cost without any significant impact on the
network health (switches below 6 microseconds latency). A
similar analysis can be done if the overall predicted network
latency goes beyond some predefined thresh-hold to add new
nodes in the network. This programmatic addition and deletion
of the network resources can make the leaf and spine networks
cost-effective.

In recent years, companies are opting for a more disag-
gregated approach to network equipment and software. The
decoupling of the hardware and software has enabled companies
to implement the best of the breed hardware with the most
suitable software stack to avoid the common problem of vendor
lock-ins. This decoupling has become the basis of improving
architecture agility. The architecture and design of the ML-
based control plane, described in this publication, enables
companies to achieve the desired architectures.

V. CODE AVAILABILITY AND FUTURE RESEARCH

Python code for data center simulation on Mininet using
OvS, POX SDN controller, Kafka streaming engine, and
LSTM layer can be found at https://github.com/SultanMu/leaf-
spine-knowledge-plane.git. We are currently developing south-
bound SDN components to enforce dynamic policies to the
network. This work has also opened other opportunities, with
the availability of vXlan [27], we plan to learn and predict
the edge [28] workloads and add/remove nodes (eastbound or
westbound) in real-time.

REFERENCES

[1] O. S. Specifiation, “v1. 5, open network foundation, september 27, 2013.”
[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[3] O. S. S. ONF, “1.3. 0,” 2012.

[4] K. Kirkpatrick, “Software-defined networking,” Communications of the
ACM, vol. 56, no. 9, pp. 16–19, 2013.

[5] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “Nox: towards an operating system for networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[6] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking, 2014, pp. 1–6.

[7] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a model-driven sdn controller architecture,” in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014. IEEE, 2014, pp. 1–6.

[8] K. Morita, I. Yamahata, and V. Linux, “Ryu: Network operating system,”
in OpenStack Design Summit & Conference, 2012.

[9] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” Queue,
vol. 11, no. 12, pp. 20–40, 2013.

[10] G. Nencioni, B. E. Helvik, A. J. Gonzalez, P. E. Heegaard, and
A. Kamisinski, “Impact of sdn controllers deployment on network
availability,” arXiv preprint arXiv:1703.05595, 2017.

[11] E. Husni and A. Bramantyo, “Design and implementation of mpls sdn
controller application based on opendaylight,” in 2018 International
Symposium on Networks, Computers and Communications (ISNCC).
IEEE, 2018, pp. 1–5.

[12] T. Kim, S.-G. Choi, J. Myung, and C.-G. Lim, “Load balancing on
distributed datastore in opendaylight sdn controller cluster,” in 2017
IEEE Conference on Network Softwarization (NetSoft). IEEE, 2017, pp.
1–3.

[13] A. Aydeger, K. Akkaya, and A. S. Uluagac, “Sdn-based resilience for
smart grid communications,” in 2015 IEEE Conference on Network
Function Virtualization and Software Defined Network (NFV-SDN).
IEEE, 2015, pp. 31–33.

[14] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “Sdn controllers:
A comparative study,” in 2016 18th Mediterranean Electrotechnical
Conference (MELECON). IEEE, 2016, pp. 1–6.

[15] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[16] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcón,
M. Solé, V. Muntés-Mulero, D. Meyer, S. Barkai, M. J. Hibbett
et al., “Knowledge-defined networking,” ACM SIGCOMM Computer
Communication Review, vol. 47, no. 3, pp. 2–10, 2017.

[17] K. Phemius and M. Bouet, “Monitoring latency with openflow,” in
Proceedings of the 9th International Conference on Network and Service
Management (CNSM 2013). IEEE, 2013, pp. 122–125.

[18] M. Alizadeh and T. Edsall, “On the data path performance of leaf-
spine datacenter fabrics,” in 2013 IEEE 21st annual symposium on
high-performance interconnects. IEEE, 2013, pp. 71–74.

[19] K. C. Okafor, I. E. Achumba, G. A. Chukwudebe, and G. C. Ononiwu,
“Leveraging fog computing for scalable iot datacenter using spine-leaf
network topology,” Journal of Electrical and Computer Engineering, vol.
2017, 2017.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] H. Shi and C. Wang, “Lstm-based traffic prediction in support of period-
ically light path reconfiguration in hybrid data center network,” in 2018
IEEE 4th International Conference on Computer and Communications
(ICCC). IEEE, 2018, pp. 1124–1128.

[22] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,” in
Proceedings of the 8th international conference on Emerging networking
experiments and technologies, 2012, pp. 253–264.

[23] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, vol. 11, 2011,
pp. 1–7.

[24] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross,
A. Wang, J. Stringer, P. Shelar et al., “The design and implementation
of open vswitch,” in 12th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 15), 2015, pp. 117–130.

[25] F. Chollet et al., “Keras,” https://keras.io, 2015.
[26] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[27] M. Mahalingam, D. G. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, “Virtual extensible local area network (vxlan):
A framework for overlaying virtualized layer 2 networks over layer 3
networks.” RFC, vol. 7348, pp. 1–22, 2014.

[28] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

https://keras.io

	I Introduction
	I-A Background
	I-B Motivation

	II Literature Review
	III Experimental Setup
	III-A The network
	III-B The SDN Controller (POX)
	III-C The Forecast Engine

	IV Results and usage
	V Code availability and future Research
	References

