
Copyright © 2021 IEEE
© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

ar
X

iv
:2

01
2.

08
86

6v
2

 [
cs

.D
C

]
 1

3
Ja

n
20

21

Container Orchestration on HPC Systems
Naweiluo Zhou1, Yiannis Georgiou2, Li Zhong1, Huan Zhou1, Marcin Pospieszny3

High Performance Computing Center Stuttgart (HLRS), Germany1

Ryax Technologies, Lyon, France2

Institute of Bioorganic Chemistry of the Polish Academy of Sciences,
Poznan Supercomputing and Networking Center,Poznan, Poland3

Email: naweiluo.zhou@hlrs.de, yiannis.georgiou@ryax.org
li.zhong@hlrs.de, huan.zhou@hlrs.de, marcin.pospieszny@man.poznan.pl

Abstract—Containerisation demonstrates its efficiency in ap-
plication deployment in cloud computing. Containers can en-
capsulate complex programs with their dependencies in isolated
environments, hence are being adopted in HPC clusters. HPC
workload managers lack micro-services support and deeply inte-
grated container management, as opposed to container orchestra-
tors (e.g. Kubernetes). We introduce Torque-Operator (a plugin)
which serves as a bridge between HPC workload managers and
container Orchestrators.

Index Terms—HPC Workload Manager; Orchestration; Con-
tainerisation; Torque; Slurm; Kubernetes; Singularity; Cloud
Computing

I. INTRODUCTION

Cloud computing demands high-portability. Containerisa-
tion ensures compatibility of applications and their environ-
ment by encapsulating applications with their libraries and
configuration files [1], thus enables users to move and de-
ploy programs easily among clusters. Containerisation is a
virtualisation technology [2]. Rather than starting a holistically
simulated OS on top of the host kernel as in a Virtual Machine
(VM), a container only shares the host kernel. This feature
makes containers more lightweight than VM. Containers are
dedicated to run micro-services and one container mostly
hosts one application. Nevertheless, containerised applications
can become complex, e.g. thousands of separate containers
may be required in production. Production can benefit from
container orchestrators that can provide efficient environment
provisioning and auto-scaling.

High Performance Computing (HPC) systems are tradition-
ally applied to perform large-scale financial and engineering
simulation, which demands low-latency and high-throughput.
The typical HPC jobs are large workloads that are often
host-specific and hardware-specific. HPC systems are typically
equipped with workload managers. A workload manager is
composed of a resource manager and a job scheduler. A
resource manager [3] allocates resources (e.g. CPU, memory),
schedules jobs and guarantees no interference from other
user processes. A job scheduler determines the job priorities,
enforces resource limits and dispatch jobs to available nodes
[4]. Two main-stream workload managers are TORQUE [5]
and Slurm [6]. Slurm includes both resource managers and job
schedulers, while originally Torque only incorporates resource
managers and later extends with job schedulers. Overall, HPC

workload managers lack micro-service supports and deeply-
integrated container management capabilities in which con-
tainer orchestrators manifest their efficiency.

We herein describe a plugin named Torque-Operator. It
serves as a bridge between the HPC workload manager Torque
and the container orchestrator Kubernetes [7]. Kubernetes has
been widely adopted, as it has a rapidly growing community
and ecosystem with plenty of platforms being developed upon
it. Furthermore, we propose a testbed architecture composed of
an HPC cluster and a big data cluster where Torque-Operator
enables scheduling container jobs from the big data cluster to
the HPC cluster. The rest of the paper is organised as follows.
Firstly, Section II briefly views the related work. Next, we
describe the proposed architecture of our testbed and Torque-
Operator in Section III. Followed, some preliminary results are
given in Section IV. Lastly, Section V concludes this paper and
proposes future work.

II. RELATED WORK

Torque-Operator extends WLM-Operator [8] with Torque
support. Both operators share similar mechanisms, i.e. sched-
ule container jobs from cloud clusters to HPC clusters, nev-
ertheless, their implementation varies significantly as Torque
and Slurm have different structures and parameters.

WLM-Operator only allows submission of Slurm batch jobs
wrapped in a Kubernetes yaml file from a cluster managed
by Kubernetes. It invokes Slurm binaries i.e. sbatch, scancel,
sacct and scontol to transfer and manage Slurm jobs to a Slurm
cluster. The operator creates virtual nodes which correspond
to each Slurm partition, e.g. one virtual node corresponds to
one Slurm partition and contains the information of its corre-
sponding partition. Virtual node is a concept in Kubernetes. It
is not a real worker node, however, it enables users to connects
Kubernetes to other APIs and allows developers to deploy pods
(a Kubernetes term) and containers with their own APIs. Jobs
on the virtual node can be scheduled to the worker nodes.
WLM-Operator creates a dummy pod on the virtual node in
order to transfer the Slurm batch job to a specific Slurm
partition. When the batch job completes, another dummy pod
is generated to transfer the results to the directory specified in
the submitted yaml file.

In Kubernetes terminology, WLM-Operator creates a new
object kind i.e. Slurmjob. The operator includes a service

program red-box that builds a gRPC proxy between Slurm and
Kubernetes. gRPC proxy defines a service and implements a
server and clients. The service defines the methods and their
message types of responds and requests in a .proto format
file. The server implements: 1) the interfaces 2) and runs a
gRPC server which listens to the requests from clients and
dispatches them to the right services. The client defines the
identical methods as the server.

III. TORQUE-OPERATOR AND PLATFORM DESCRIPTION

We firstly illustrate the design of our platform architec-
ture, then describe the structure of Torque-Operator. Torque-
Operator is written in Golang programming language. Singu-
larity [9] is the runtime container of our choice. Singularity is
starting to be applied in many HPC centres [10], as it provides
a secure means to capture and distribute software and computer
environment. For example, execution of a Singularity container
only demands a user privilege, while a Docker container
[11], which is a container runtime widely adopted in cloud
systems, requires root permission. Kubernetes supports Docker
by default, though it can be adjusted to perform services for
Singularity by adding Singularity-CRI [12]. Table I manifests
the list of core applications that construct the testbed.

Orchestrator Kubernetes, Torque
Container runtime & its support Singularity, Singulairy-CRI
Operator Torque-Operator
Compiler Golang compiler

TABLE I
THE LIST OF CORE APPLICATIONS FOR THE TESTBED.

A. Platform Architecture

The architecture of our platform is designed to serve as
the testbeds for the EU research project CYBELE1. The
platform is composed of an HPC cluster with Torque as its
workload manager and a big data cluster with Kubernetes as
its orchestrator. Its architecture is illustrated in Fig. 1. Noting
that Fig. 1 is for illustration purpose, the number of nodes and
the queues can vary in the testbeds.

In Torque, nodes are grouped into queues. Each queue is
associated with resources limits such as walltime, job size.
One node can be included in multiple queues. The HPC cluster
is composed of a head node which controls the whole cluster
nodes and compute nodes which perform computation. The
Torque login node in Fig. 1 also serves as one of the worker
nodes in the Kubernetes cluster. The Kubernetes cluster incor-
porates a master node which schedules the jobs and worker
nodes which execute the jobs. A virtual node indicated in
Fig. 2 transfers Torque jobs to the Torque cluster. The Torque
job submitted from the Kubernetes login node is scheduled
by Kubernetes master node to the virtual node. The virtual

1CYBELE: Fostering Precision Agriculture and Livestock Farming
through Secure Access to Large-Scale HPC-Enabled Virtual Industrial
Experimentation Environment Empowering Scalable Big Data Analytics
https://www.cybele-project.eu/

head

node

compute

node

compute

node

compute

node

login

node

master

node

worker

node

worker

node

Torque clusterKubernetes cluster (VM)i

Queue batch

Fig. 1. Architecture of the testbed. The login node belongs to both Kubernetes
and Torque clusters. One queue (named batch) is shown in the Torque cluster.

Red-box

virtual node

Queue batch

Torque binaries

Fig. 2. Architecture of Torque-Operator. This is the internal architecture of
the login node as in Fig. 1. The virtual node corresponds to the Torque queue
(named batch) in Fig. 1

node transfers the abstracted Torque jobs to the Torque queue
through the Torque login node. The merits of this architecture
are: 1) it provides users with flexibility to run containerised
and non-containerised jobs, 2) the containerised applications
can be better scheduled to Torque cluster by taking advantage
of the scheduling policies of Kubernetes.

B. Structure of Torque-Operator

The Torque job script is encapsulated into a Kubernetes
yaml job script. The yaml script is submitted from a Ku-
bernetes login node (in our case, the login node is also the
master node). The PBS script part is processed by Toque-
Operator. A dummy pod is generated to transfer the Torque
job specification to a scheduling queue (e.g. waiting queue,
test queue, which is a concept in the job scheduler). Torque-
Operator invokes the Torque binary qsub which submits PBS
job to the Torque cluster. When the Torque job completes,
Torque-operator creates a Kubernetes pod which redirects the
results to the directory that the user specifies in the yaml file.

As in WLM-Operator (Section II), Torque-Operator in-
cludes a service program red-box. Red-box generates a Unix
socket which allows data exchange among the Kubernetes and
Torque processes. Torque-Operator introduces a new object
kind i.e. Torquejob (Slurmjob in WLM-Operator) and sets

1 apiVersion: wlm.sylabs.io/v1alpha1
2 kind: TorqueJob
3 metadata
4 name: cow
5 spec:
6 batch: |
7 #!/bin/sh
8 #PBS -l walltime=00:30:00
9 #PBS -l nodes=1

10 #PBS -e $HOME/low.err
11 #PBS -o $HOME/low.out
12 export PATH=$PATH:/usr/local/bin
13 singularity run lolcow_latest.sif
14 results:
15 from: $HOME/low.out
16 mount:
17 name: data
18 hostPath:
19 path: $HOME/
20 type: DirectoryOrCreate

$kubectl apply -f $HOME/cow_job.yaml

Fig. 3. An example of the yaml script and its submission command. The
scirpt encloses a PBS script.

$kubectl get torquejob
NAME AGE STATUS
cow 2s running

Fig. 4. The command to view the status of the yaml job

it as Kubernetes deployment. Torque-Operator builds four
Singularity containers which are deployed by Kubernetes on its
worker nodes to perform the corresponding services, e.g. create
dummy pod to transfer the results from Torque to Kubernetes.

IV. TEST CASE

Simple experiments have been conducted to validate
Torque-Operator. Fig. 3 presents a Kubernetes yaml job script
(cow job.yaml). More specifically, inside the yaml script, the
Torque script requests 30-minute walltime and one compute
node. The error file and output file are stored in low.err
and low.out which locate in $HOME/ directory. The script
appends the path /usr/local/bin where Singularity binary
resides. The Singularity container image lolcow latest.sif is
executed. The results are given in Fig. 5. The user can view the
status of the job easily from Kubernetes login node as shown
in Fig. 4. Additionally, the status of the PBS job can be output
using the Torque commands on the Torque login node.

V. CONCLUSION AND FUTURE WORK

We described the testbed architecture for the EU research
project CYBELE and introduced the structure of Torque-
Operator that extends WLM-Operator with Torque support.
This testbed architecture creates a connection between HPC
and cloud clusters. Moreover, it provides users with flexibility
to run containerised and non-containerised jobs and may
enhance the capability of container scheduling on HPC.

If one cannot enjoy reading a book over \
| and over again, there is no use in |
| reading it at all. |
| |
\ -- Oscar Wilde /

\ ˆ__ˆ
\ (oo)_______

(__)\)\/\
||----w |
|| ||

Fig. 5. A result of the Singularity job

The future work will focus on optimization of Torque-
Operator that can offer more stable deployments. Performance
evaluation will be carried out to compare efficiency of schedul-
ing the container jobs by Kubernetes and Torque. The pilots
of CYBELE project will be adopted as the benchmarks.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement NO.825355.

REFERENCES

[1] M. Khan, T. Becker, P. Kuppuudaiyar, and A. C. Elster, “Container-
Based Virtualization for Heterogeneous HPC Clouds: Insights from
the EU H2020 CloudLightning Project,” in 2018 IEEE International
Conference on Cloud Engineering (IC2E), pp. 392–397, April 2018.

[2] M. A. Rodriguez and R. Buyya, “Container-based cluster orchestration
systems: A taxonomy and future directions,” Softw., Pract. Exper.,
vol. 49, no. 5, pp. 698–719, 2019.

[3] M. Hovestadt, O. Kao, A. Keller, and A. Streit, “Scheduling in hpc
resource management systems: Queuing vs. planning,” in Job Schedul-
ing Strategies for Parallel Processing (D. Feitelson, L. Rudolph, and
U. Schwiegelshohn, eds.), (Berlin, Heidelberg), pp. 1–20, Springer
Berlin Heidelberg, 2003.

[4] D. Klusáček, V. Chlumský, and H. Rudová, “Planning and optimization
in torque resource manager,” in Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing,
(New York, NY, USA), Association for Computing Machinery, 2015.

[5] G. Staples, “Torque resource manager,” in Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, (New York, NY, USA), p. 8,
Association for Computing Machinery, 2006.

[6] M. A. Jette, A. B. Yoo, and M. Grondona, “SLURM: Simple Linux
Utility for Resource Management,” in In Lecture Notes in Computer
Science: Proceedings of Job Scheduling Strategies for Parallel Process-
ing (JSSPP) 2003, pp. 44–60, Springer-Verlag, 2002.

[7] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “De-
ploying Microservice Based Applications with Kubernetes: Experiments
and Lessons Learned,” in 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD), pp. 970–973, July 2018.

[8] V. Pisaruk and S. Yakovtseva, “WLM-operator.” Gitlab:
https://github.com/sylabs/wlm-operator (accessed on 13/02/2020).

[9] G. M. Kurtzer, V. V. Sochat, and M. Bauer, “Singularity: Scientific
containers for mobility of compute,” in PloS one, 2017.

[10] G. Hu, Y. Zhang, and W. Chen, “Exploring the Performance of Sin-
gularity for High Performance Computing Scenarios,” in 2019 IEEE
21st International Conference on High Performance Computing and
Communications; IEEE 17th International Conference on Smart City;
IEEE 5th International Conference on Data Science and Systems (HPC-
C/SmartCity/DSS), pp. 2587–2593, Aug 2019.

[11] C. Negus, Docker Containers (Includes Content Update Program): Build
and Deploy with Kubernetes, Flannel, Cockpit, and Atomic. USA:
Prentice Hall Press, 1st ed., 2015.

[12] Sylabs, “Singularity-CRI.” https://sylabs.io/guides/cri/1.0/user-
guide/k8s.html (Accessed on 03/03/2020).

	I Introduction
	II Related Work
	III Torque-Operator and Platform Description
	III-A Platform Architecture
	III-B Structure of Torque-Operator

	IV Test Case
	V Conclusion and Future Work
	References

