
Serverless Computing: Behind the Scenes of Major Platforms

Daniel Kelly
School of Computer Science

National University of
Ireland, Galway (NUIG),

Galway, Ireland.
Email: d.kelly69@nuigalway.ie

Frank G Glavin
School of Computer Science

National University of
Ireland, Galway (NUIG),

Galway, Ireland.
Email: frank.glavin@nuigalway.ie

Enda Barrett
School of Computer Science

National University of
Ireland, Galway (NUIG),

Galway, Ireland.
Email: enda.barrett@nuigalway.ie

Abstract—Serverless computing offers an event driven pay-
as-you-go framework for application development. A key selling
point is the concept of no back-end server management,
allowing developers to focus on application functionality. This
is achieved through severe abstraction of the underlying ar-
chitecture the functions run on. We examine the underlying
architecture and report on the performance of serverless
functions and how they are effected by certain factors such
as memory allocation and interference caused by load induced
by other users on the platform. Specifically, we focus on
the serverless offerings of the four largest platforms; AWS
Lambda, Google Cloud Functions, Microsoft Azure Functions
and IBM Cloud Functions. In this paper, we observe and
contrast between these platforms in their approach to the
common issue of “cold starts”, we devise a means to unveil the
underlying architecture serverless functions execute on and we
investigate the effects of interference from load on the platform
over the time span of one month.

Keywords-Serverless Computing; Cloud Computing;
Function-as-a-Service; Performance Measurement;
Benchmarking;

I. INTRODUCTION

Serverless computing is an application deployment ar-
chitecture that aims to provide pay-as-you go event driven
functionality. Applications are developed as per each desired
process and the event that invokes it. Serverless function
platforms provide the infrastructure to deploy code for
execution across their cloud and define the event processing
logic that prompts the functions to run using the model:
event, trigger, and action. Serverless computing promotes
the idea that application development is abstracted from
the underlying infrastructure and that there is no need for
a dedicated team to manage software in-house, sparking
the term “NoOps” (no operations). Serverless computing
abstracts back-end management from users, allowing only
minimal access to some basic parameters such as function
memory allocation and function runtime timeout. Functions
execute on the platform’s traditional Infrastructure as a
Service (IaaS) virtual machine offerings, however the pro-
vision of such virtual machines (VM) is managed by the
platform in response to function invocation and not by the
developer. Unlike IaaS, you do not pay for the uptime and

resources consumed by this “execution” VM but rather for
the run time of each function, hence the name Function
as a Service (FaaS). Due to this abstraction enacted by
the platform providers, it is not necessarily known what
kind of infrastructure functions may be executed on. This
paper aims to look behind the scenes of serverless functions
and offer an up-to-date insight on the topology of the
four largest platforms; AWS Lambda (AWS), Google Cloud
Functions (Google), Microsoft Azure Functions (Azure) and
IBM Cloud Functions (IBM), as well as outline performance
metrics and potential effects on performance.

We designed a testing system to expose the underlying
infrastructure that serverless functions run on. We gather
the CPU specifications and usage statistics in order to
provide this overview of the resources provisioned. To this
end, a means of identifying VMs was established to create
meaningful profiles of VM configurations. From this, we
gained an insight into their topology and observed the major
differences between the platforms. Users cannot directly
request the specification of these execution VMs, only
the memory allocation each function has access to and,
as such, document how this configuration can effect the
specification of the VM deployed. We further investigate
how this memory allocation affects function performance by
recording various timing statistics and benchmarking metrics
associated with function execution such as: function runtime,
“cold start” time (initialization lag), CPU utilization and disk
I/O throughput. Lastly, given that all the functions for a given
platform are executed from the same cloud space (split into
regions), the effect of potential interference from load on the
platform was investigated by running our test system over
the course of one month in order to detect any anomalies in
runtime performance.

II. RELATED WORK

There are countless blogs posted by serverless application
developers that give a brief overview of the performance of
serverless functions. [1], [2], [3], [4], [5]. The focus of these
is often on the issue of “cold starts” and programming lan-
guage choice for function development. Given how quickly
these articles are produced, the results often seem at odds

ar
X

iv
:2

01
2.

05
60

0v
1 

 [
cs

.D
C

] 
 1

0 
D

ec
 2

02
0



with each other as time goes on. For example, Voijta [5]
concluded that memory allocation of a function does not
affect cold start time, whereas Cui [2] concluded that it did
one year later. In academia, a number of researchers have
attempted to assess the performance of various serverless
platforms. Hendrickson et al. [6] created an open-source
serverless platform using the Lambda Programming Model
(develop functions that respond to events), which achieved
lower latency at low loads and was better at bursts of
traffic compared to AWS Elastic Beanstalk1. The authors
also proposed a benchmarking tool (LambdaBench) for the
Lambda Programming Model. McGrath et al. [7] analysed
the performance of AWS Lambda, Google Cloud Functions,
Microsoft Azure, and Apache OpenWhisk against their own
prototype serverless platform. They made observations on
the scaling and cold start latency of the platforms, finding
AWS and Google to be best-in-class at the time, however
the testing setup may not have been optimal for recording
cold start times i.e. not allowing for enough time to pass
where a cold start would be encountered. Llyod et al. [8]
expand on the cold start issue by defining them as: provider
cold (first request to the cloud provider), VM cold (first
request to a VM within that cloud), and container cold (first
request to a container within that VM), as well as voicing
the need for a standard means of benchmarking serverless
functions inspired by the suggestions of Aderaldo et al.
[9] on microservices. Mohanty et al. [10] investigate the
popular performance metrics used by other researchers with
their study focusing on open source frameworks such as
OpenFaas, Kubeless and Fission. There were no compar-
isons to the commercial offerings in this work. Hellerstein
et al. [11] provide a “devil’s advocate” opinion on serverless
architecture, listing limitations such as: limited function
lifetime, I/O bottlenecks, no specialised hardware, how FaaS
stymies distributed computing because there is no network
addressability of serverless functions, two functions can
work together “serverlessly” only by passing data through
slow and expensive storage and how FaaS discourages
open source service innovation since most popular open
source software cannot not run at the same scale as current
commercial serverless offerings. Wang et al. [12] performed
an analysis of the topology of the serverless platforms as
well as their performance. This work has inspired some of
the methodology of the experiments conducted in this paper.

Despite the related work completed in the field, we have
identified gaps in the knowledge that our work aims to
fill. Namely, we investigate potential interference effects
on performance caused by load on the cloud platform by
other users over the course of one month. This has resulted
in the generation of a data set containing over 500,000
function calls between the four platforms that we have

1https://aws.amazon.com/elasticbeanstalk/

published along with our benchmarking tools2. This work
is performed on the current state of AWS Lambda, Google
Cloud Functions, Microsoft Azure Functions and IBM Cloud
Functions in 2020. Development is rapid and updated insight
into their performance are required as previous findings
become outdated.

III. METHODOLOGY

The typical case for invocation of serverless functions is
through the use of REpresentational State Transfer (REST)
APIs. For our tests, an observer virtual machine was de-
ployed on each platform’s traditional cloud computing offer-
ing. They were deployed on the same availability zone as the
serverless functions in order to best nullify network latency.
This observer’s role was to invoke the functions via their
API, record the request and response times and finally push
the results to an external MongoDB database. The observer
script was written in Python and used the requests package
to trigger each function via its URL. The observer script was
executed in two scenarios:

1) Two sequential function invocations for the definitive
measurement of a cold and warm function start.

2) Fifty concurrent function invocations to prompt scaling
and put increased workload on the function platform.

These scenarios were run every hour for one month. The
serverless functions execute a number of routines that per-
form measurements on the specifications of the function’s
runtime environment. Such measurements include: function
runtime, VM uptime, total available memory on VM, disk
I/O throughput, CPU information and unique identifiers for
both function and VM instances. Much of these results were
read from the Linux proc filesystem (procfs) where available.

The results of these routines were collated into a JSON
response that was sent back to the observer where it could
append extra information such as: memory allocation of the
function, total runtime of the function (request to response)
and the start lag time (cold start time Section V-A), before
storing the results to the database. This process is illustrated
above in Figure 1 for AWS Lambda, a near identical setup
is used for the other platforms except using their equivalent
cloud offerings.

IV. PLATFORM ARCHITECTURE

In order to understand the architecture of the four plat-
forms, we consulted the official documentation for each plat-
form in addition to running our aforementioned tests. Table I
shows the measurements that we recorded using the function
for gathering information on the platform architecture.

A. Overview

AWS, Azure and IBM: The proc file system exposes in-
formation about the execution VM that the functions run on

2https://github.com/psykodan/Serverless-Computing-Data-Set

https://aws.amazon.com/elasticbeanstalk/
https://github.com/psykodan/Serverless-Computing-Data-Set


Table I
RECORDED ATTRIBUTES OF EXECUTION VM

Identification
VM ID A unique identifier for each execution VM. The method of measurement varies for each platform.

Function ID A unique identifier for each function instance.
Previous Function IDs A collection of Function IDs that have executed on a particular VM.

System Information
CPU Speed The speed in MHz of the CPU.
CPU Times The amount of time in milliseconds a host has spent in user, system and idle time.
CPU Model What CPU is used on the host.

Uptime The timestamp the VM booted.
Total Memory Total memory configured to the VM

Memory The function memory allocation.

Figure 1. AWS Experimental Setup

and not just the function container. From our measurements,
we found that the average VMs configured were:

-AWS - Intel Xeon E5-2670 v2 processor @ 2.5 GHz
with memory that varied based on the memory allocation of
the functions executed on it such that is was slightly greater
than the function’s memory allocation

Azure - Intel Xeon E5-2673 v4 @ 2.3 GHz with 2GB of
memory

IBM - Intel Xeon E5-2683 v4 @ 2.1 GHz with 16GB of
memory

Google Cloud Functions: Functions run in isolation on
Googles proprietary hypervisor. This obscures the data we
would have gathered from the proc file system to show
mostly nothing. From our test, however, we could conclude
that the average VM was configured with a Intel Xeon
Skylake processor @ 2 GHz with 2GB of memory.

In contrast to AWS, Google and Azure simply allocate all
their execution VMs with the maximum memory require-
ment for the largest function configuration of 2048MB and
IBM allocate a larger memory allocation perhaps to handle
more function containers per VM.

B. Unique VM Identifier

Uniquely identifying the VM used to execute the function
allows us to gain a picture of the infrastructure each platform
is using and can help to answer questions about scaling,
function isolation, disk access etc. Work carried out by
Wang et al. [12] determined that for AWS Lambda functions,
the VM can be identified via the /proc/self/cgroup
file, where an entry contains a unique identifier “sandbox-
root-” followed by some random characters. For Azure,
they proposed the use of an environment variable called
“WEBSITE INSTANCE ID”. However at the time of our
experiments no such variable could be found. So for both
Azure and IBM, the /proc/machineid file was used
to identify VMs. A means to uniquely identify a Google
Cloud Function’s execution VMs was not established. Due to
the isolation Google’s proprietary hypervisor imposes on the
functions, access to the information normally stored in the
proc file system is abstracted to show nothing, therefore an
entry that identify a machine could not be found. A heuristic
to identify a VM by assuming they all have unique boot
times by Lloyd et al. [8] was also disproved by Wang et al.
[12], deeming it unreliable. In order to gather meaningful
data for comparison to the other platforms, we propose a
method of identifying function containers by writing some
Unique Identifier (UID) to a file into the /tmp folder. It was
found that this file could be read by other functions executing
in the same container. This was used, in conjunction with
the boot time information as a sanity check, to ensure that
the UID is indeed allocated to one container.

C. VM Topology

The topology was examined from our data set of 563,276
function invocations. This exposed 156856 VMs on AWS,
1392 VMs on Azure, 114 VMs on IBM and 21271 unique
function containers on Google. It was stated by Wang et al.
[12], and confirmed ourselves through correspondence with
Google employees, that Google Cloud Functions execute
on their proprietary hypervisor that abstracts as much info
about the execution VM as possible. However, we were
successful in identifying function containers and could infer



Table II
AWS LAMBDA FUNCTION MEMORY TO VM TOTAL MEMORY

Function Memory (MB) VM Total Memory (MB)
128 192.484
256 331.740
512 633.804

1024 1190.860
*1024 1717.196
2048 3230.668

the CPU model information from the measurements we took.
Two fields that were not hidden in the /proc/cpuinfo
file were the CPU model id and the speed. CPU models
were determined using the model number entry in the
/proc/cpuinfo file, which gives a decimal number that
can be converted to hexadecimal and then cross referenced
against the CPUID Signature table found in the Intel Archi-
tectures Software Developer’s Manual, Volume 4 Chapter 2
[13].The CPU models found on each platform are collated
in Table III. All CPUs were a member of the Intel Xeon
product line with IBM boasting the latest versions of such,
comprising of mainly version 3 and 4 models. AWS has
a more homogeneous CPU configuration than the other
platforms, opting for 99.93% of them being Intel Xeon E5-
2670 v2.

-We also measured the total memory configured to the
VM. In AWS, we observed that this value varied depending
on the memory allocation of the function itself. A mostly
consistent mapping was observed, as shown in Table II,
except for two outliers in the 1024MB functions, which ran
on a VM with 1717196kB of memory*. The other platforms
had a constant memory configuration with Azure and Google
allocating 2GB and IBM allocating 16GB.

V. FUNCTION PERFORMANCE

The extent to which a developer can customize the
configuration of a serverless function is quite limited. For
AWS you can alter the memory allocation by increments
of 64kB from 128MB to 3096MB and choose the timeout
from a range of 1 second to 5 minutes. IBM has memory
allocation in increments of 32kB from 128MB to 2048MB
and a timeout of 1 second to 10 minutes. Google allows you
to choose from a predefined set of five memory allocations:
128MB, 256MB, 512MB, 1024MB and 2048MB. Finally,
Azure does not allow the developer to configure their
memory allocation opting instead for auto-scaling memory.
For our investigation of function performance, we used a
series of measurements, as detailed in Table IV, on functions
with memory allocations 128MB, 256MB, 512MB, 1024MB
and 2048MB for AWS, Google and IBM. For Azure, the
same tests were run without the granularity of five memory
allocations i.e. only one function that was allowed to auto-
scale accordingly.

Table III
CPU IDENTIFICATION

Platform Model ID Speed Model Name Prevalence
(decimal) (MHz) (%)

AWS
62 2500 Xeon E5-2670 v2 99.93
62 3000 Xeon E5-2690 v2 0.07

Google
45 2600 Xeon E5-2670 24.12
45 3300 Xeon E5-1660 0.02
62 2500 Xeon E5-2670 v2 0.14
63 2300 Xeon E5-2680 v3 4.79
79 2200 Xeon E5-2650 v4 11.25
85 2000 Xeon (Skylake)* 53.11
85 2200 Xeon (Skylake)* 6.54

IBM
85 2300 Xeon Gold6140 19
79 2100 Xeon E5-2683 v4 42.68
79 2600 Xeon E5-2690 v4 18.83
79 2200 Xeon E5-2650 v4 2.6
63 2600 Xeon E5-2690 v3 9.79
85 2100 Xeon Gold6130 7.05
63 2000 Xeon E5-2683 v3 0.04

Azure
79 2300 Xeon E5-2673 v4 68.68
63 2400 Xeon E5-2673 v3 22.07
85 2600 Xeon Platinum8171M 9.24

* Specific model could not be determined

A. Cold Start Latency

One of the greatest problems facing serverless computing
is the infamous cold start. Cold starts have been the subject
of research papers and blogs [3], [14], [4], [1], [15], [16] and
continue to be a major source of doubt for those considering
a serverless based application. They are the notable delay
incurred when invoking a function for the first time. This is
caused by the need for the platform to spin up a container
that has all the required resources for a function to run. We
measured the time taken from the function request to the
time a function’s main method began executing. We gathered
these times for functions that were the first to execute on
a new function container. This was determined by a file
written to the /tmp directory that contained a log of all
the IDs from functions that had previously executed in that
container. The /tmp directory is ephemeral storage that lasts
the lifespan of its function container. If the log was empty, it
was a new container. We sampled across a time span of one
month, running the tests every hour. This resulted in over
170,000 function invocations on AWS, Google and IBM and
over 36,000 on Azure (a fifth of the number of invocations
since no separate tests for each memory allocation) for our
analysis. Results are shown in Figure 2.

AWS: Of 175,477 function invocations executed on AWS
156,847 were cold starts. This would suggest that AWS may
not prioritise the reuse of old containers. Of the five memory
allocations chosen for the test function, the 128MB had the
slowest average cold start time at 346.73 ms. A point of
interest is the near identical average values for the 256, 512,



Table IV
MEASUREMENTS OF FUNCTION PERFORMANCE

Total Runtime Measured from time API invokes the function to the time a response is received.
Function Runtime The time taken for a function to execute its tasks not including initialization time of the function.

Start Lag Function initialization time. Measured from request time to main method start time.
CPU Utilization The number of primes a function can compute in 1000 ms.

Disk I/O The I/O throughput of a function.
Number of VMs The number of execution VMs created to handle scaling.

1024 and 2048MB functions at 221ms ±3ms. It may be
possible that AWS gives more precedence to these latter
memory allocations.

Google: Of the 175,357 function invocations executed
on Google 21,253 were cold starts. There is high con-
tainer reuse on Google Cloud Functions, some containers
were hosting over a thousand function executions. A more
expected stepping in results for each memory allocation’s
average cold start time was observed. These values were
considerably higher than AWS with averages for 128, 256,
512, 1024 and 2048MB being 14465.52ms, 5722.33ms,
4681.37ms, 3689.48ms and 2865.49ms respectively.

IBM: Of 176,266 function invocations executed on IBM
37,820 were cold starts. Similar container reuse to Google is
observed although with much shorter cold starts: 2990.55ms,
1076.60ms, 1310.43ms, 1319.05ms and 915.49ms for the
respective memory allocations. The results do not show a
consistent trend which is discussed in Section V-D.

Azure: Of 36,176 function invocations executed on
Azure 1392 were cold starts. The average cold start was
1997.63ms. The low number of cold starts is likely to do
with there being only one function being invoked rather than
five thus allowing for greater container reuse.

From these results, we can see the different tactics em-
ployed by the different platforms. AWS opts for less con-
tainer reuse (shorter lifespan) which results in more cold
starts, although the cold start times were considerably shorter
than the others. Google and IBM reused containers much
more thus minimizing cold starts. This is especially useful
for Google whose cold starts were considerably higher.

B. CPU Utilization

Given a 1000ms time limit, check as many numbers as
possible for whether it is prime. The method we use to
check for prime numbers is trial division. For some number
n across a set

1 < a ≤
√
n (1)

n is prime if
gcdn, a ≥ 1 (2)

function isPrime(n)
start← 2
limit←

√
n

while start ≤ limit do
if n < 1 (mod start) then

Figure 2. Cross Platform Cold Start (request time to function start)

return False
else

start← start+ 1
end if

end while
return True

end function
This is a laborious way to calculate primes with the sole

intention of using up CPU resources. The results are based
on the volume of numbers checked for primality one-by-one
(Figure 3).

AWS: The volume of numbers the function could check
for primality increased as the memory allocation increased.
AWS specifies that the CPU power is distributed using time
slicing, with larger memory allocations receiving longer time
slices. The method of time slicing yields consistent access
to the CPU as demonstrated by our results i.e. the number
of numbers checked had a low range of variation.

Google: Average values were similar to that of AWS.
However, each memory allocation had quite a wide range of
values. This is likely due to the larger variety of CPUs used
by the execution VMs resulting in less consistent results.

IBM: Average values were similar across all memory
allocations with less spread of values in the higher alloca-



Figure 3. Cross Platform no. numbers checked for primality

tions. These values are comparable to the 1024MB functions
in AWS and Google. There is considerable spread in the
lower memory allocations. However we believe this is due
to interference on the platform (discussed in Section V-D).

Azure: Again, a similar volume of primes were computed
to the other platforms

The similarity in the results suggest that the differences in
topology (Table III) are not necessarily a factor governing a
function’s CPU utilization. The greater factor is likely that of
the method each platform employs for CPU resource alloca-
tion. Time-slicing is the most suitable method of allocating
resources as one can then use a more homogeneous back-end
for function execution, reducing complexity. The algorithm
for time-slicing will be the deciding factor in a function’s
CPU utilization.

C. Disk I/O Throughput

Serverless functions are more commonly associated with
reading and writing to a proprietary storage solution: AWS
Lamba→ Amazon Simple Storage Service (S3) and Google
Cloud Functions → Google Filestore. However, both offer-
ings also allow for the reading and writing of temporary
files to disk on the execution VM. Our disk throughput tests
utilize the Linux “dd” command to read and write blocks
of size 512KB 1000 times and outputs disk throughput in
MB/s (Figure 4).

AWS: Throughput increased as memory allocation in-
creased sharply after 128MB. However, it tapered towards
the larger memory allocations, never getting above 3MB/s.
Given the more homogeneous topology of the execution
VMs observed, we can infer that that this is the limit that
is approached as the function is allocated more CPU time
slices with a greater memory allocation.

Figure 4. Cross Platform Disk I/O Throughput

Google: A more varied range was recorded with an
increasing throughput for greater memory allocations. This
is likely related to the much greater number of CPU con-
figurations (Table III). Another recording of note is how
much greater the values are to those from AWS. It is
stated in Google Cloud Functions’ documentation that these
temporary files are actually stored in memory rather than on
disk3 which may be resulting in the greater throughput.

IBM: Average values were consistent and approximately
0.6MB/s mark for each memory allocation. This, along with
the previous test further suggests that IBM Functions are not
affected by memory allocation.

Azure: The throughput recorded for Azure was the lowest
of all the platforms, averaging under 0.5MB/s.

The disk throughput is important for more complex func-
tions that depend on temporary memory access. As functions
are billed on execution time, lower throughput may result in
increased run time.

D. Interference Effect on Performance

Serverless platforms employ a similar strategy on how
functions are executed. A function runs within a function
container on an execution VM within a predefined region
of the serverless platorm’s cloud. The execution VMs are
isolated from other individual users [12]. However, different
users’ VMs can exist in the same region potentially leading
to interference effects. Other events such as wide scale up-
dates, system outages etc. may also interfere with function
execution. We ran our tests over the course of one month to
investigate the potential effect of any interference that causes

3https://cloud.google.com/appengine/docs/standard/python3/using-temp-
files

https://cloud.google.com/appengine/docs/standard/python3/using-temp-files
https://cloud.google.com/appengine/docs/standard/python3/using-temp-files


anomalies or predicable fluctuations in performance. We ex-
amined the effect on function run time, CPU utilization and
disk I/O throughput. The results are a smoothed graph of
data points taken from each hourly run of our test functions
using gnuplot’s “acspline”4 for run time (Figure 5), CPU
utilization (Figure 6) and disk I/O throughput (Figure 7).

AWS: Running in region “eu-west-1”, we observed min-
imal variance in values for CPU utilization. However, a si-
nusoidal pattern is visible in the results of the effect on run
time and disk I/O throughput. The pattern becomes clearer
in the higher memory allocations. We believe this is due to
higher memory allocations having greater access to the CPU
(via time slicing) and, as such, will execute in a more con-
sistent manner, therefore amplifying the visual effect of in-
terference when it occurs. The pattern has peaks at 12:00pm
and troughs at 12:00am each day, which correlates to higher
use during the day than the night. This may be evidence to
support the potential effect of regular load on the system.

Google: Running in region “us-central1-a”, more er-
ratic values were observed. However, consistent peaks and
troughs are visible, similar to AWS. Unlike AWS, Google
Cloud did not have a consistent topology for its execution
VMs (Section IV-C), this may be the cause of the varied
array of results. AWS Lambda functions predominantly ran
on the same CPU configurations, meaning their results were
more consistent, allowing us to see clearer interference
patterns.

IBM: Running in region “Dallas”, clear signs of strain on
the platform were observed with large dips in performance
occurring at the beginning and near the end of our month
of testing. There were a number of issues affecting IBM’s
cloud during this time according to their status history page5,
which may be the culprit. Another possibility is that IBM’s
serverless platform is not capable of consistent performance
like its competitors leading to anomalies like the ones cap-
tured by our tests.

Azure: Running in region “Central US”, results similar
to Google were observed being erratic in amplitude but pe-
riodic in time peaks and troughs in its performance.

Our month long analysis demonstrates that there is inter-
ference on each platform and we propose potential sources
for such interference. As serverless functions are billed per
100ms, we can see that the fluctuations observed from our
tests would have an effect on the final cost. As well as cost
there is also considerations to be made for more critical
functions requiring consistent performance.

VI. CONCLUSION AND FUTURE WORK

We performed an in-depth analysis of the four biggest
commercial serverless platforms’ underlying topology and
the effects on performance for differing memory allocations.

4http://gnuplot.sourceforge.net/docs 4.2/node125.html
5https://cloud.ibm.com/status?selected=history

Figure 5. Function run times over one month *Smoothed hourly values

Figure 6. Function CPU Utilization (prime computation) over one month
*Smoothed hourly values

We found that AWS has a different approach to function con-
tainer reuse that we theorise to be a design choice to address
scaling and cold start issues. We determined that memory
allocation largely effects the performance of serverless func-
tions on these platforms and must be a serious considera-
tion when developing applications. Finally, we performed a
month long observation on function performance, creating a

http://gnuplot.sourceforge.net/docs_4.2/node125.html
https://cloud.ibm.com/status?selected=history


Figure 7. Function Disk I/O Throughput over one month *Smoothed
hourly values

large data set of function benchmarks and uncovering poten-
tial interference effects due to increased load on the platform
during the day and strain caused by maintenance on the
platform. We believe that the contributions of this paper can
help unveil the often mysterious inner workings of serverless
platforms, which seem to have based their business model
on keeping the developer, not just as far away from the back-
end as possible, but in the dark about it. We have produced
a produced data set that contains a lot of data on the run-
ning of serverless function on the four largest platforms. It
will benefit to any future work on application benchmarking,
optimization via machine learning or cybersecurity.

It is becoming the norm to evaluate serverless functions
using similar methods as displayed in this paper [12], [2],
[14] as well as real world work loads. Proposals for a
standardised benchmarking system are certainly not differing
from this trend [17]. A vendor agnostic, multi-language,
benchmarking tool is a necessary step to encourage a
greater uptake of serverless as the architecture of choice
for application development. As is stands, a developer must
use intuition for memory allocation rather than an empirical
evaluation. Potentially greater control can be given to the de-
veloper for the configuration of functions. Certain aspects of
the serverless architecture such as total isolation of functions
could potentially be tweaked for fringe case applications
making it a more robust architecture.

REFERENCES

[1] Cui Yan, “How long does AWS Lambda
keep your idle functions around before

a cold start?” 2017. [Online]. Available:
https://read.acloud.guru/how-long-does-aws-lambda-keep-
your-idle-functions-around-before-a-cold-start-bf715d3b810

[2] ——, “How does language, memory and package size
affect cold starts of AWS Lambda?” 2017. [Online].
Available: https://read.acloud.guru/does-coding-language-
memory-or-package-size-affect-cold-starts-of-aws-lambda-
a15e26d12c76

[3] Shilkov Mikhail, “Comparison of Cold Starts in Serverless
Functions across AWS, Azure, and GCP,” 2019. [Online].
Available: https://mikhail.io/serverless/coldstarts/big3/

[4] Byrro Renato, “Can We Solve Serverless Cold Starts?”
2019. [Online]. Available: https://dashbird.io/blog/can-we-
solve-serverless-cold-starts/

[5] Voijta Robert, “AWS journey — API Gateway
& Lambda & VPC performance,” 2016. [Online].
Available: https://www.zrzka.dev/2016/10/30/aws-journey-
api-gateway-lambda-vpc-performance.html

[6] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless
computation with openlambda,” in 8th {USENIX} Workshop
on Hot Topics in Cloud Computing (HotCloud 16), 2016.

[7] G. McGrath and P. R. Brenner, “Serverless computing: De-
sign, implementation, and performance,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems
Workshops (ICDCSW). IEEE, 2017, pp. 405–410.

[8] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pal-
lickara, “Serverless computing: An investigation of factors
influencing microservice performance,” in 2018 IEEE Inter-
national Conference on Cloud Engineering (IC2E). IEEE,
2018, pp. 159–169.

[9] C. M. Aderaldo, N. C. Mendonça, C. Pahl, and P. Jamshidi,
“Benchmark requirements for microservices architecture re-
search,” in Proceedings of the 1st International Work-
shop on Establishing the Community-Wide Infrastructure for
Architecture-Based Software Engineering. IEEE Press, 2017,
pp. 8–13.

[10] S. K. Mohanty, G. Premsankar, and M. Di Francesco, “An
Evaluation of Open Source Serverless Computing Frame-
works.” in CloudCom, 2018, pp. 115–120.

[11] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-
Smith, V. Sreekanti, A. Tumanov, and C. Wu, “Serverless
computing: One step forward, two steps back,” arXiv preprint
arXiv:1812.03651, 2018.

[12] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift,
“Peeking behind the curtains of serverless platforms,” in 2018
{USENIX} Annual Technical Conference ({USENIX}{ATC}
18), 2018, pp. 133–146.

[13] “Intel® 64 and IA-32 ArchitecturesSoftware
Developer’s Manual,” 2019. [Online]. Avail-
able: https://software.intel.com/sites/default/files/managed/39/
c5/325462-sdm-vol-1-2abcd-3abcd.pdf

https://read.acloud.guru/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start-bf715d3b810
https://read.acloud.guru/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start-bf715d3b810
https://read.acloud.guru/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda-a15e26d12c76
https://read.acloud.guru/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda-a15e26d12c76
https://read.acloud.guru/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda-a15e26d12c76
https://mikhail.io/serverless/coldstarts/big3/
https://dashbird.io/blog/can-we-solve-serverless-cold-starts/
https://dashbird.io/blog/can-we-solve-serverless-cold-starts/
https://www.zrzka.dev/2016/10/30/aws-journey-api-gateway-lambda-vpc-performance.html
https://www.zrzka.dev/2016/10/30/aws-journey-api-gateway-lambda-vpc-performance.html
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf


[14] Shilkov Mikhail, “Serverless: Cold Start War,” 2018.
[Online]. Available: https://mikhail.io/2018/08/serverless-
cold-start-war/

[15] P.-M. Lin and A. Glikson, “Mitigating Cold Starts in Server-
less Platforms: A Pool-Based Approach,” arXiv preprint
arXiv:1903.12221, 2019.

[16] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, and A. Slominski,
“Serverless computing: Current trends and open problems,”
in Research Advances in Cloud Computing. Springer, 2017,
pp. 1–20.

[17] J. Kim and K. Lee, “FunctionBench: A Suite of Workloads
for Serverless Cloud Function Service,” in 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD),
2019, pp. 502–504.

https://mikhail.io/2018/08/serverless-cold-start-war/
https://mikhail.io/2018/08/serverless-cold-start-war/

	I Introduction
	II Related Work
	III Methodology
	IV Platform Architecture
	IV-A Overview
	IV-B Unique VM Identifier
	IV-C VM Topology

	V Function Performance
	V-A Cold Start Latency
	V-B CPU Utilization
	V-C Disk I/O Throughput
	V-D Interference Effect on Performance

	VI Conclusion and Future Work
	References

