2206.06938v1 [cs.CR] 14 Jun 2022

arxXiv

Cloud Property Graph: Connecting Cloud Security
Assessments with Static Code Analysis

Christian Banse, Immanuel Kunz, Angelika Schneider and Konrad Weiss
Fraunhofer AISEC, Garching b. Miinchen, Germany
Email: {firstname.lastname} @aisec.fraunhofer.de

Abstract—In this paper, we present the Cloud Property Graph
(CloudPG), which bridges the gap between static code analysis
and runtime security assessment of cloud services. The CloudPG
is able to resolve data flows between cloud applications deployed
on different resources, and contextualizes the graph with runtime
information, such as encryption settings. To provide a vendor-
and technology-independent representation of a cloud service’s
security posture, the graph is based on an ontology of cloud
resources, their functionalities and security features. We show,
using an example, that our CloudPG framework can be used
by security experts to identify weaknesses in their cloud deploy-
ments, spanning multiple vendors or technologies, such as AWS,
Azure and Kubernetes. This includes misconfigurations, such as
publicly accessible storages or undesired data flows within a cloud
service, as restricted by regulations such as GDPR.

Index Terms—cloud security, cloud security assessment, static
code analysis, code property graph, configuration monitoring

I. INTRODUCTION

Analyzing the security of a cloud service, from the virtual
infrastructure it is deployed on, up to the application code
that implements the actual service, is a complex task involving
multiple challenges. First, there is an ever-growing variety of
virtual infrastructure services and cloud vendors in the cloud
ecosystem. Each cloud resource has a unique set of properties,
that needs to be checked, e.g. to find weaknesses or to prepare
for a cloud service certification. Especially when dealing with
multi-cloud or hybrid-cloud scenarios, selecting the correct
security properties is a tedious task. All major public cloud
vendors offer extensive APIs to retrieve such configurations
and logging information. However, the semantics and naming
of relevant properties, such as encryption or access control
configuration, are inconsistent across different cloud vendors.

Second, next to the configured cloud resources, the cloud
service consists of the actual application code. While static ap-
plication security testing (SAST) tools can be used to assess it,
significant challenges remain in analyzing applications that are
deployed as part of a cloud service. For example, developers of
a function within the service might make certain assumptions
at design time about the runtime environment with regards to
encryption or authentication. If the surrounding infrastructure

©2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other
works. DOI: 10.1109/CLOUDS53861.2021.00014, Funded by the Horizon
2020 project MEDINA, grant agreement ID 952633.

changes—as it frequently does in a cloud environment—these
assumptions might not hold at runtime and lead to weaknesses
in the overall system. A shortcoming of static code analysis
is therefore, that no—or insufficient—information about its
runtime environment is available during analysis.

This challenge also extends to the analysis of data flows
across different components or services. An undesired data
flow might occur to an application that is deployed in a specific
region which, however, can only be determined by including
deployment properties in the analysis. Additionally, the overall
program logic may be fragmented across components. In the
case of serverless functions only a small subset of the actual
executed code (the function itself) is visible to an analysis tool.
The majority of the behavior, such as triggers or data sinks
that the function interacts with, remains hidden to such tools.
Therefore, they may not be able to identify data flows that can
lead to the compromise of a service, for example through an
improper invocation of a serverless function.

To address these issues, we present the Cloud Property
Graph (CloudPG). It is an extension of a Code Property Graph
(CPG) [1]], which itself is a labeled directed graph, represent-
ing source code. A CPG generates a language-independent
representation of an application’s structural components, i.e.
classes or methods, as well as information about data flows
or program dependence. To build the CloudPG, we enrich this
graph with additional nodes and edges that represent the actual
deployment of the code as service(s) in the cloud at runtime.

In doing so we aim to adhere to the following design
goals: Our comprehensive graph should allow for an in-depth
analysis of the deployed service and enable building a service-
independent representation of a cloud deployment (DG1). It
should bridge the gap between static code analysis and runtime
assessment (DG2), while allowing for tracking data flows
across different micro-services including interactions between
cloud resources (DG3). Lastly, by providing an efficiently
searchable representation of the results can be used to verify
requirements, properties and relationships of components, for
instance a proper encryption configuration (DG4).

In summary, in the course of the paper we present the
following contributions:

« an ontology that represents cloud services, cloud-related
software frameworks, their resources and security proper-
ties, as well as instantiations for AWS, Microsoft Azure,
Kubernetes and popular Web-based libraries,

« an analysis framework, which combines aspects of cloud
workload security and static code analysis, which allows

https://dx.doi.org/10.1109/CLOUD53861.2021.00014

=
[|

-y
[Conlidenliality] [Authenticity] [Availability J [Integrity]

[1 =

iof Certiicate-based [GeoLocation [AtRestEncr (ion] [Immutability]
erypreT Authentication - P . Y

g offers
offers i Cloud 3
; H Resource ; :
: H P e -~ offers----

Functionality

offers Storage | !
% ;

Object
Storage

HTTP
Endpoint

-~ instantiates - - -

Fig. 1. An excerpt of the ontology and its instantiation: An AWS S3 Bucket is
an instantiation of the abstract resource type ObjectStorage which in turn is a
child node of Storage. As Storage offers the security feature AtRestEncryption,
it can be reasoned that an AWS S3 Bucket must also offer this feature.

to query security-related properties of cloud-based ser-
vices, independently of the underlying provider, and
« a prototype implementation of the proposed framework.

II. SYSTEMIZING CLOUD RESOURCE PROPERTIES

In this section, we propose an abstract representation of
cloud resources and their security properties. We provide this
abstraction (design goal DG1) in the form of an ontologyﬂ

A. An Ontology for Cloud Resources

Our ontology consists of three separate taxonomies for
cloud resources, cloud-related software frameworks, as well as
their functionalities and security features. It further establishes
relationships between them, describing which cloud resources
offer which security features.

1) Cloud Resource Taxonomy: For the cloud resources
themselves we first consider traditional cloud offerings, such
as compute, storage, networking, identity management and
logging. An example inheritance can be seen in Figure[T| where
an ObjectStorage has a generic Storage as its parent which in
turn has the CloudResource entity as its parent. We also model
cloud-related CI/CD resources, such as jobs and workflows.

2) Software Frameworks: Next, we identify a taxonomy
that evolves around the usage of different software frame-
works. This includes libraries typically used in a cloud or
distributed context, e.g. web service frameworks, HTTP client
libraries, loggers, authentication handlers or the Cloud SDKs
to access cloud resources themselves.

3) Security Features and Functionalities Taxonomy: Lastly,
with this taxonomy we aim at extracting functionalities and
security features that are common across cloud resources
and software frameworks. Functionalities are more generic in
nature and are used to describe certain characteristics about
a service, e.g. that an object storage typically has an HTTP
endpoint to access it. Application code can have functionalities
as well: for instance an HTTP client library will have the
functionality to issue HTTP requests.

IPublished at https:/github.com/clouditor/cloud-property-graph

We collect security features that are offered by different
cloud vendors and assign them to commonly used security
properties, based on the STRIDE methodology [2] as follows.

Confidentiality, e.g. at-rest encryption and transport encryp-
tion options; integrity, e.g. immutability of storage resources;
availability, e.g. backups or geographic location; authentica-
tion, e.g. password-based authentication; authorization, e.g.
access restrictions of IP addresses and ports; and auditing,
e.g. audit log output.

While it is impossible to say if this taxonomy is complete,
all protection goals have at least one feature assigned. Specific
data properties, e.g. the used encryption algorithm, further de-
tail those security features. We model the relationship between
cloud resources or frameworks and the features they offer
using the object property offers (see Figure [I).

B. Instantiating the Ontology

By separating the abstract ontology from concrete instan-
tiations, we create a modular structure of a long-lived ab-
straction on the one hand and an adaptable and maintainable
instantiation on the other. We have created instantiations of
the proposed cloud resource ontology for AWS and Azure,
as well as for Kubernetes resources. For example an AWS
EC2 Volume is an instantiation of the class BlockStorage.
While the instantiation of most AWS and Azure resources is
straightforward, since both follow similar concepts in their
service offering, the instantiation of Kubernetes resources is
more complex.

We model a Kubernetes Container as the central computing
resource (similar to a function or a virtual machine) and map
some special Kubernetes concepts, like an Ingress resource
onto the cloud resources that are functionally equal. For
instance, an Ingress is an instantiation of a LoadBalancer since
it provides the capability of receiving traffic and distributing it
to the respective containers. While this instantiation may not
be perfect in its functional details, we do achieve our goal of
enabling the graph-based representation of these resources and
their security features.

Furthermore, we instantiate the software framework’s tax-
onomy using popular libraries from the Java, Python and
JavaScript ecosystem. For example, we classify the software
library Jersey as a HttpClientLibrary, used to execute GET
and POST requests (HttpRequest functionality in the ontol-
ogy) to web services. We connect the HTTP request to a
CallExpression in the CPG, representing a function call in
code. On the server-side we classify that Spring/SpringBoot
can be used as an HrtpServer framework, which offers several
HTTP-related functionalities. Using Spring, Java classes can
be annotated with the RestController annotation and
are thus used as a HttpRequestHandler, with each method in
the class (further annotated with RequestMapping) usually
serving as an HttpEndpoint, representing a certain URL, for
example /hello.

Lastly, we include examples in our ontology instantiation
with regards to Cloud SDKSs, specifically to the Azure Storage
SDK. We model accesses to an Azure storage account by in-
stantiating the ObjectStorageRequest class, holding references

https://github.com/clouditor/cloud-property-graph

Cloud Property Graph Framework i vl
~ Java Class
S Generation
Ontology :
Instantiation

Code Property Graph
Application

Graph Generation and
Data Flow Resolution

Source Code
Analysis

Discovery

Deployment Cloud Resource
Analysis

1 Application Source CI/CD workflow
: Code : definitions

Source Code Repository

Analyst

Fig. 2. Architecture of the proposed CloudPG Analysis Framework

to an ObjectStorage and other data properties, such as the
access type (read, write, create).

III. FRAMEWORK ARCHITECTURE

The primary goal of our framework is to assess security
properties of software applications deployed on cloud systems,
based on our ontology (DG1). It bridges the gap between static
code analysis and runtime assessment (DG2) and therefore
merges different data sources, as described below:

« Static code analysis of the actual application code,
« an analysis of CI/CD workflow definitions that deploy
said application to a target cloud system, and
« information about cloud workload security, i.e. the secu-
rity of the provisioned cloud resources in the deployment.
Furthermore, the framework contains specific analysis mod-
ules dedicated to the resolution of data flows (DG3) across the
cloud service. Lastly, it persists the generated CloudPG into a
searchable graph database (DG4).

A. Bootstrapping the Cloud Property Graph

Figure [2| shows the architecture of the framework, including
its modules. First, a list of possible source code repositories
which are deployed as part of the cloud service needs to be
identified. The source code is then translated into the language-
independent representation of a CPG following the regular
process of graph-based static code analysis.

We extend an existing CPG by importing OWL-based
ontologies to build up new node and edge classes in the graph.
This forms the basis for our CloudPG. Additionally, in the
first step, relevant cloud frameworks and their functionalities
are identified in the source code. This includes frameworks,
such as REST controllers or libraries for web-based requests.
The existence of such frameworks is modelled as objects
represented in the ontology and thus in the graph, e.g. using
a HttpRequest node. Furthermore, specific properties, such as
individual endpoints of a REST controller in the application
are modelled as well, e.g. using an HttpEndpoint node. This
is later used as a link to other network services, such as load
balancers and cluster ingress endpoints, to connect the data

flow from a deployed URL to the particular method in an
application code that handles it.

B. Deployment Analysis and Discovery of Cloud Resources

In addition, information about the deployment of the target
application(s) is gathered using specific APIs offered by the
various DevOps platforms well as deployment files. They are
analyzed with regards to references to cloud deployments, such
as container images, container orchestration systems, such
as Kubernetes, or cloud resource deployments, like virtual
machines. All these serve as indications that the analyzed
application is deployed into the identified cloud system. Note
that they are modelled as terms in the ontology as well.

In the next step, all relevant cloud resources and their
properties in the deployment target system(s) are discovered
and modelled as terms on the instantiated. First, for a particular
cloud resource, the cloud provider-specific type is determined.
In this example, we assume a cloud resource named myvolume
of type AWS EC2 Volume. Then we look up the type in the
instantiated ontology for AWS (see Section [II-B). Following
the example, we discover that this resource is classified as a
BlockStorage and thus create an appropriate node in the graph
representing this class. In the next step, basic data properties
of the node, such as its name, are populated. Second, specific
security features are modelled for the particular resource. By
looking into the instantiated ontology, we learn that block
storages offer AtRestEncryption and possess a GeoLocation
attribute. We use that to create an appropriate node in the
graph as well and connect it to our BlockStorage node. Finally,
further properties of the security features are populated, like
the correct geographic region or a configured encryption
algorithm. See Figure [3| for an example graph.

C. Resolution of Data Flows

To resolve data flows (see DG3) of the cloud service, we
differentiate between several typical scenarios.

a) Direct HTTP requests from an application to a web
service, e.g. within the same cluster or virtual network: In
general, this includes data flows to cloud resources offering
an HTTP backend, i.e. a publicly accessible object storage. To
resolve this data flow, we connect HrtpRequest nodes in the
graph to nodes that offer the ontology functionality HttpEnd-
point, matching their URL, paths and the HTTP method.

b) HTTP requests via a load balancer: Load balancers
use a reverse proxy to connect to the backing web service.
In our ontology, we model this as a ProxiedEndpoint, which
inherits from a regular HttpEndpoint. We traverse the graph,
identifying all HttpEndpoints that belong to an application
which are the target of a load balancer. We then create
ProxiedEndpoint for each identified “local” HTTP endpoint
and prefix the URL of the load balancer. Afterwards, the
normal resolution method described above can be used.

¢) Requests to Cloud resources within an application:
We identify relevant expressions in the CPG that represent
operations of a CloudSDK and resolve identifiers of cloud
resources in the source code to nodes in the graph. For
example, writing to an object storage, such as AWS S3,

Infrastructure / Platform Layer

BACKEND: example.io example.io/login algontggg AES- OFFERS
ProxiedEndpoint .
Group of LoadBalancer P AtRestEncryption Block Storage
Containers
[HAS
DEPLOYED_ON OFFERS
enabled: false
. REVERSE_PROXY_TARGET
app1_image TransportEncryption
Virtual
Container Mashine
Image }
| | DEPLOYED,_ ON-
SOURCE ; s
1 MyController } Nlogin HANDLER——>} login() € POS,T X
\ / \ / example.io/login
g HittoEndpoint)
RecordDeclaration OFFERS pENAp FunctionDeclaration DFG HttpRequest Application
(CPG node) (CPG node) \ JUE
> e ’L J FFERS ‘ “.)’: ”
. HttpRequestHandler HttpEndpoint T
Application CallExpression
(CPG node)
Application Layer (Application 1) Application Layer (Application 2)

Fig. 3. An excerpt from the CloudPG showing two applications app! and app2: appl include a web service offering two endpoints, /login and /. The endpoints
are exposed through a load balancer, serving the URL example.io. Therefore, an additional ProxiedEndpoint node is contained in the graph, representing
the deployed web service, e.g., on example.io/login. app2 is deployed on a VM and contains an http request to that particular web resource. Thus, the data
flow can be connected between the CallExpression of the HTTP POST call to the FunctionDeclaration. The graph also shows an additional security feature

TransportEncryption connected to the HTTP endpoints.

would result in an ObjectStorageRequest node connected to
an ObjectStorage node.

IV. PROTOTYPE IMPLEMENTATION

In this section, we present a Kotlin-based implementation
of the proposed architecture, built as an open-source projecﬂ
It consists of a complete analysis framework including the
functionality to persist and query the CloudPG using the Neo4J
graph database. It leverages the cng] project to bootstrap a
code property graph, which is then enriched by further edge
and node types to build the CloudPG. An analyst can then later
use the query language Cypher to query the persisted graph.
Section [V-A] lists several example queries.

A. CloudPG Modules and Supported Languages

We use the information identified in the ontology in multiple
steps of the analysis platform. Since the cpg library is Java-
based, additional node (and edge) types in the graph are repre-
sented in Java classes, which all inherit from the same Node
base class. We therefore automatically generate appropriate
class files based on the ontology modeled in Section [l This
allows us to focus on modelling the properties and structural
relationships in the ontology rather than implicitly modelling
a semantic model in a programming language. It also helps
the ontology to be implementation-agnostic.

Zhttps://github.com/clouditor/cloud-property- graph
3https://github.com/Fraunhofer- AISEC/cpg

In addition to the languages already supported by the
original CPG implementation (Java, C/C++, Python and Go),
we added basic support for Ruby and JavaScript/NodeJS. The
modules in the architecture are implemented as passes, which
are automatically called during the graph construction.

B. Discovering CI/CD Workflows

One such pass analyzes CI/CD workflows for images that
are created and pushed to container registries. This information
is then used to connect an application to a compute resource. In
the concrete implementation we scan workflow definition files
from GitHub Actions. They are YAML-based and follow a
specific syntax enabling the execution of jobs and steps within
a jolﬂ In particular, we are interested if a workflow step is
building a Docker image using the docker CLI command.
If so, we create an Containerlmage node in the graph and
populate it with the appropriate properties.

C. Cloud-specific Discovery Passes

We implemented the Cloud discovery and ontology map-
ping for a limited set of cloud resources within Mi-
crosoft Azure and AWS. In particular, we focus on the
enumeration of containers, container clusters, virtual ma-
chines, storage accounts and volumes, including their as-
sociated security property. Specifically, we use the cloud
providers’ SDKs to retrieve the individual Cloud resources as

4https://docs.github.com/en/actions

https://github.com/clouditor/cloud-property-graph
https://github.com/Fraunhofer-AISEC/cpg
https://docs.github.com/en/actions

Java/Kotlin objects represented in SDK-specific classes (such
as com.azure. (...).models.Disk). We then create
matching nodes in the CloudPG based on the type defined
in the instantiated Ontology for the particular provider (see
Section . Furthermore, a similar pass exists that uses
the Kubernetes SDK to retrieve pods, services and ingress
definitions from a Kubernetes cluster to create nodes that
represent compute resources, for example a Container or a
LoadBalancer. The Container nodes are also connected to
Image nodes, which may already exist from previous passes,
serving as a link to connect the container to an application
through its image.

D. Data Flow Resolution

We implemented modules for CloudPG data flow resolution
of several popular Web frameworks, namely Spring and JAX-
RS for Java, Flask for Python, WEBrick and HttpDispatcher
for JavaScript/NodelS. In the following, we use Spring to
demonstrate the approach, which is fairly similar for the
aforementioned frameworks.

a) Preparing Data Flow Resolution: We start preparing
the (HTTP) data flow resolution by building up HttpEndpoints
and their associated HttpRequestHandlers. According to the
instantiated ontology for Spring (see Section [[I-B), the library
can be used to launch an HttpServer, which handles individual
HTTP requests through a controller class. This Java class,
annotated with @RestController, is represented as a
RecordDeclaration in the original CPG and as an HttpRe-
questHandler node in the CloudPG. Futhermore, individual
methods in this class, annotated by @RequestMapping,
are modelled as an HttpEndpoint and handle HTTP requests
belonging to a certain URL, e.g. /login. This can be seen
in Figure [3] on the bottom left side.

If the application is connected to a load balancer, we create
further ProxiedEndpoint nodes that represent the endpoints
in the load balancer, as described in Section This
connection can be seen in the middle of Figure [3]in the nodes
/login (HttpEndpoint) and example.io/login (ProxiedEndpoint),
connected to the load balancer of example.io.

b) Resolving HTTP-related Data Flows: After the prepa-
ration phase, data flows originating from a data source (usually
an HTTP request) to a known data sink, such as a REST API,
can be connected. Use cases include invoking remote function
calls from one micro-service to another, e.g. for authentication.
In particular, the reference implementation can analyze such
calls for the Jersey HTTP library for Java as well as the Re-
quests library for Python. In a next step, independently of the
underlying technical implementation, all HrtpRequest nodes
are connected to suitable HttpRequests or ProxiedEndpoints,
i.e. those that match the URL and HTTP method. Furthermore,
DFG edges are added between the function declarations that
handle the endpoint and the call expression representing the
HTTP request.

c) Resolving Cloud Storage-related Data Flows: Lastly,
we use the Azure Storage SDK as an example demonstrating
the resolution of data operations made by a cloud SDK
within an application to its specific cloud resources. Similarly,

TABLE I
WEAKNESSES TO BE EVALUATED IN THE TESTBED
ID Description
DataExposurey The am-containerlog is misconfigured to have pub-

lic access enabled.

Confidentialityy The am-containerlog resource is using TLS 1.1.

DataFlow The VM ratings micro-service is located in an AWS
US region; whereas the rest of the services are in

Europe and data should stay in Europe.

DataFlowsa The GitHub Actions pushes Docker images to the
GitHub Container Registry, which is assumed to be

in the US. AKS, located in Europe, retrieves them.

DangerousLogi The productpage service was adjusted to log the

contents of the login request (username, password).

DataFExposures The AKS cluster is configured to forward con-
tainer logs to an Azure Log Analytics Workspace.
These log files are persisted onto a Azure Storage
Account Container (am-containerlog). Because of

DataExposurey, all container logs are public.

DataExposures Through the combination of DangerousLogy and
DataExposures, passwords are logged onto a

publicly accessible storage container.

to the previous step we identify Java objects representing
a client, configured with a URL of the storage account in
a builder-pattern style. This client is then in turn used to
issue operations, such as create () or append() files
in the storage account container. The individual operations
are modelled as ObjectStorageRequest and connected to the
appropriate ObjectStorage, identified in the creation of the
client using its URL endpoint and name, as well as to the
call expression in the CPG.

V. EVALUATION AND DISCUSSION

In this section, we present several generalizable example
weaknesses that can be identified in a deployed testbed with
our framework and discuss them in comparison to alternative
solutions. We also present basic performance measurements.

For our testbed, we employed the bookinf{] example from
the Istio framework, which is a Cloud-based service, divided
into four micro-services. We distributed its productpage, de-
tails and reviews micro-services to an Azure Kubernetes clus-
ter and the ratings micro-service to an AWS EC2 instance. We
also added an automated deployment using GitHub Actions.
The source code has a total of 3864 LoC spread across
four languages (Python, Ruby, Java and JavaScript/NodelS).
This translates into about 1800 nodes in the CloudPG. The
cloud resources are provisioned with a variety of different
configurations, deliberately leading to several weaknesses,
described in Table [Il

We executed the analysis of the bookinfo service 10 times
and recorded the times using benchmarking tools built into the
cpg library. The analysis was performed on an Azure virtual
machine (b2s flavor) using 2 vCPUs and 4 GB RAM. The
overall CloudPG construction took 79,2s, with the majority
of time spent in resource discovery of Azure and AWS
resources (10,5s) as well as the translation of source code
(5,3s). Persisting into the graph database took /,4s on average.

Shttps://github.com/istio/istio/tree/master/samples/bookinfo

https://github.com/istio/istio/tree/master/samples/bookinfo

A. Identifying Weaknesses using the Testbed

1) Data exposure: Developers may assume that a storage
they write sensitive data to is only accessible to authorized
users. Cloud architects may assume that a certain public stor-
age will only contain uncritical data without knowing about
all applications that actually write to that storage. Listing
shows a query to identify such cloud resources.

Listing 1. Cypher query to identify all storage requests rg from any cloud
resources rl to r2 which have NoAuthentication and are publicly accessible.
MATCH p=(rl:CloudResource) <—[:SOURCE] -
(rq:ObjectStorageRequest) —[:TO]->(r2: Storage)——
(: HttpEndpoint) —[: AUTHENTICITY] —(: NoAuthentication)
WHERE rq.type = "append" RETURN p

When executed in the testbed, this returns a path from
kubernetes-logs to am-containerlog which we intentionally left
unprotected (DataFExposure;, DataFEzrposures). A more
granular flow can be detected using the query in Listing
which identifies the individual expressions, such as variables
that were written to the storage. In the case of the deployed
application, this includes accessing the field requests.values
in our modified login() function, representing the contents
of the HTTP POST request. Thus, we can discover that
the credentials passed in the login function are accidentally
written to an unprotected location, accessible from the Internet
(DangerousLogy, DataExposures).

Listing 2. Cypher query to identify dataflows from any source code expression

to any storage resource s, which are publicly accessible.
MATCH p=(e: Expression) —[:DFG=]->(s: ObjectStorage)——
() —[:AUTHENTICITY] —(: NoAuthentication) RETURN p

2) Encryption Configuration: As a major requirement in
most security and privacy regulations, such as the General
Data Protection Regulation (GDPR), the detection of proper
encryption of cloud resources is paramount in any major cloud
service deployment. It can, however, be a tedious task to keep
track of the at-rest-encryption configuration of various cloud
resources. As seen in Listing [3] the CloudPG can easily be
used to find all nodes in our testbed that have an HTTP
endpoint and are missing a suitable TLS configuration, such
as Confidentiality,. Similar queries can be used to check
for the at-rest encryption configuration of storage objects.

Listing 3. Cypher query to identify all Cloud resources which could offer
transport encryption but have it disabled or improperly configured
MATCH p=(n:Node)-—(h: HttpEndpoint)——
(te:TransportEncryption) WHERE te.enabled =
false OR te.tlsVersion <> "TLS1_2" RETURN p

3) Data Flow Restrictions: Certain scenarios and regu-
lations might impose restrictions on data flows in a Cloud
ecosystem. For example, it may be the case that due to GDPR
regulations data must not leave the European Union. The
CloudPG can be used to easily find problematic data flows
between Cloud resources, as Listing [Z_f] shows.

Listing 4. Cypher query to identify data flows (DFG edges) between any
cloud resources in different geographic regions (/1, 12)
MATCH p=(11:GeoLocation)—-—(: CloudResource)—
[:DFG] —(: CloudResource)——([2:GeoLocation)
WHERE 11 <> 12 RETURN p

This query returns a path between our container images,
which are stored in a GitHub Container Registry hosted in the

TABLE II
COMPARISON OF THE WEAKNESSES IDENTIFIED BY THE CLOUDPG AND
OTHER CLASSES OF TOOLS

Weakness 1D CloudPG | SAST | Infrastructure Monitoring

DataFExposure; X - X

Con fidentiality;

DataFlow,

DataFlows

DangerousLogy

DataFExposures

ARl Bal Kl Rl Rl
'
IR

DataFExposures

US, and the deployed application based on the image, which
is hosted in Europe (Data flows).

A more complex example can be found in Listing [5} in this
case, we are looking for data flows that originate out of an
application that is deployed in location //. An application itself
is not a cloud resource and does not have a location, unless it
is deployed on a Compute resource (denoted by RUNS_ON).
Therefore, traditional static analysis tools cannot determine
such data flows. Each application has a list of functionalities,
e.g. HTTP requests to other resources, which we further want
to filter to only those that are connected to applications that
offer a matching HTTP endpoint and are located in /2. Finally,
we want to only select those nodes that differ in location (//
<> [2). In the testbed, this yields the problematic flow from
the US-based AWS EC2 VM to our micro-services deployed
in Europe (Data flowy).

Listing 5. Cypher query to track data flows between an application and a
Cloud resource in different geographic regions
MATCH p=(11:GeoLocation) —[] —(: Compute) —[:RUNS_ON] -
(: Application) —[]-(r: HttpRequest) —[:TO]-
(e:HttpEndpoint) —[#2]—(: Application) —[:RUNS_ON] -
(: Compute) —[]-(12: GeoLocation)
WHERE 11 <> 12 RETURN p

B. Fulfillment of the Design Goals

1) Analyze cloud-hosted code independently of the resource
type or cloud provider (DGI): Using the CloudPG, weak-
nesses and data-flows can be identified regardless of the
underlying resource type or cloud provider. We achieve this by
using an ontology-based approach focused on the resources’
functionalities and security features. With regards to the instan-
tiation of the ontology, we only focus on a subset of services,
mainly related to popular ones such as VM computing, storage
and some network devices. Within this scope, the abstraction
works well across similar cloud providers, such as AWS and
Azure and is easily extendible in the future.

2) Bridge the gap between static code analysis and run-
time assessment (DG2): The evaluation testbed shows that
the CloudPG is effective in identifying security threats that
result from a misalignment of code and runtime properties
which would not be possible by applying code analysis or
infrastructure monitoring alone. For example, a regular SAST
tool would have only detected that a potentially dangerous
log operation is executed in weakness DangerousLog;, but
only the additional environment context of the CloudPG
can detect that this leads to an exposure of login creden-
tials (DataFEzxposures). Table [lIl shows a comparison of the

CloudPG and other classes of tools with regards to the possible
detection of the weaknesses in the testbed.

3) Track end-to-end data flows across cloud resources
(DG3): Section demonstrates the CloudPG’s effec-
tiveness in identifying problematic end-to-end data flows in
a heterogeneous cloud service even across different cloud
vendors. To the best of the authors’ knowledge, no other
approach and implementation has been proposed before.

4) Provide an efficiently searchable representation of the
results (DG4): The prototype implementation used the Cypher
language to interact with the persisted CloudPG. It is a feature
rich query language for graph databases and all weaknesses
introduced in the testbed were found using complex queries.
All queries returned their results in less than 5 ms, making it
suitable for a CI/CD environment or even for use during the
development process in an IDE.

VI. RELATED WORK

Various works have proposed systematizations for cloud
resources and cloud security threats. Joshi et al. [3] propose a
knowledge graph that models various compliance requirements
and also maps them to security controls and threats. Others
have proposed systematizations of cloud infrastructure offer-
ings, e.g. Sikeridis et al. [4]. Hendre and Joshi [5]] have pro-
posed an ontology of security controls, threats, and security-
related standards, like ISO standards. Igbal et al. [6] propose
a taxonomy for attacks on cloud systems and differentiate
between attacks on the different service models. Contrary
to the approaches mentioned above, we aim to specifically
model those security features that can be configured on the
management plane and which we want to represent in the
graph representation afterwards.

There are various approaches and tools to monitor public
cloud resources, e.g., GmonE [7]], Clouditor [8], specific
approaches for OpenStack [9], and many others [10]. Yet,
while they automatically discover existing resources and their
configurations, the expected secure configurations usually need
to be specified manually since they do not build upon an ab-
stract taxonomy of cloud resources and their security features.
In the proposed approach, we enable a query-based evaluation
of a system’s security posture using the graph structure the
cloud property graph creates.

Automated threat analysis of cloud systems has been tackled
by An et al. [[11]] who propose the CloudSafe tool. It combines
an automatically generated reachability graph of VMs with
known vulnerabilities to identify security threats. Other ap-
proaches similarly assess risks using known vulnerabilities, for
instance Kamongi et al. [12]. In summary, existing approaches
have not addressed the problem of connecting configura-
tion monitoring with static code analysis to identify security
problems resulting from misconfigurations and inconsistencies
between application-level and configuration-level assumptions.

VII. CONCLUSIONS

In this paper, we have presented the Cloud Property Graph,
an extension of a code property graph, based on a compre-
hensive ontology of cloud resources and their generalized

functionalities and security features (DG1). It bridges the gap
between static code analysis and runtime assessment of cloud
services (DG2) by providing additional context from runtime
configuration information. Thus, our CloudPG-based analysis
framework can be used by security experts to quickly identify
weaknesses in their cloud deployments based on generalized
feature configurations, rather then specifics of an individual
cloud vendor. This includes tracking of data flows across
applications and cloud resources (DG3). We have shown in
an evaluation testbed how these design goals are applicable
to a target cloud service and have proposed example queries
(DG4) for several common weaknesses.

For future work, we are planning various extensions of the
CloudPG and the ontology. We want to extend the instantiated
ontology in a community approach, possibly with more frame-
works from other languages. Lastly, we aim at building queries
for more classes of weaknesses and explore the option to
exploit the CloudPG for assessing privacy risks in the Cloud.

REFERENCES

[1] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Model-
ing and discovering vulnerabilities with code property graphs. In 2014
IEEE Symposium on Security and Privacy, pages 590-604. IEEE, 2014.

[2] Michael Howard and Steve Lipner. The security development lifecycle,
volume 8. Microsoft Press Redmond, 2006.

[3] Karuna Pande Joshi, Lavanya Elluri, and Ankur Nagar. An integrated
knowledge graph to automate cloud data compliance. IEEE Access,
8:148541-148555, 2020.

[4] Dimitrios Sikeridis, Ioannis Papapanagiotou, Bhaskar Prasad Rimal, and
Michael Devetsikiotis. A comparative taxonomy and survey of public
cloud infrastructure vendors. CoRR, abs/1710.01476, 2017.

[5] Amit Hendre and Karuna Pande Joshi. A semantic approach to cloud
security and compliance. In 2015 IEEE 8th International Conference
on Cloud Computing, pages 1081-1084. IEEE, 2015.

[6] Salman Igbal, Miss Laiha Mat Kiah, Babak Dhaghighi, Muzammil Hus-
sain, Suleman Khan, Muhammad Khurram Khan, and Kim-Kwang Ray-
mond Choo. On cloud security attacks: A taxonomy and intrusion
detection and prevention as a service. Journal of Network and Computer
Applications, 74:98-120, 2016.

[7] Jesis Montes, Alberto Sanchez, Bunjamin Memishi, Maria S Pérez, and
Gabriel Antoniu. Gmone: A complete approach to cloud monitoring.
Future Generation Computer Systems, 29(8):2026-2040, 2013.

[8] Philipp Stephanow and Christian Banse. Clouditor - continuous cloud
assurance. Technical report, Fraunhofer AISEC, February 2017.

[9] Marco Anisetti, Claudio Agostino Ardagna, Ernesto Damiani, Filippo
Gaudenzi, and Roberto Veca. Toward security and performance certifi-
cation of open stack. In Calton Pu and Ajay Mohindra, editors, 8th IEEE
International Conference on Cloud Computing, CLOUD 2015, New York
City, NY, USA, June 27 - July 2, 2015, pages 564-571, 2015.

[10] Jonathan Stuart Ward and Adam Barker. Observing the clouds: a survey
and taxonomy of cloud monitoring. Journal of Cloud Computing,
3(1):1-30, 2014.

[11] Seongmo An, Tachoon Eom, Jong Sou Park, Jin Bum Hong, Armstrong
Nhlabatsi, Noora Fetais, Khaled M Khan, and Dong Seong Kim. Cloud-
safe: A tool for an automated security analysis for cloud computing.
In 2019 18th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications (TrustCom/BigDataSE),
pages 602-609. IEEE, 2019.

[12] Patrick Kamongi, Mahadevan Gomathisankaran, and Krishna Kavi.
Nemesis: automated architecture for threat modeling and risk assessment
for cloud computing. In Proc. 6th ASE International Conference on
Privacy, Security, Risk and Trust (PASSAT), 2014.

	I Introduction
	II Systemizing Cloud Resource Properties
	II-A An Ontology for Cloud Resources
	II-A1 Cloud Resource Taxonomy
	II-A2 Software Frameworks
	II-A3 Security Features and Functionalities Taxonomy

	II-B Instantiating the Ontology

	III Framework Architecture
	III-A Bootstrapping the Cloud Property Graph
	III-B Deployment Analysis and Discovery of Cloud Resources
	III-C Resolution of Data Flows

	IV Prototype Implementation
	IV-A CloudPG Modules and Supported Languages
	IV-B Discovering CI/CD Workflows
	IV-C Cloud-specific Discovery Passes
	IV-D Data Flow Resolution

	V Evaluation and Discussion
	V-A Identifying Weaknesses using the Testbed
	V-A1 Data exposure
	V-A2 Encryption Configuration
	V-A3 Data Flow Restrictions

	V-B Fulfillment of the Design Goals
	V-B1 Analyze cloud-hosted code independently of the resource type or cloud provider (DG1)
	V-B2 Bridge the gap between static code analysis and runtime assessment (DG2)
	V-B3 Track end-to-end data flows across cloud resources (DG3)
	V-B4 Provide an efficiently searchable representation of the results (DG4)

	VI Related Work
	VII Conclusions
	References

