
DLB: Deep Learning Based Load Balancing
Xiaoke Zhu§∗, Qi Zhang†∗, Taining Cheng§, Ling Liu‡, WeiZhou§∗∗ and Jing He§∗∗

Yunnan University§, IBM Thomas J. Watson Research†, Georgia Institute of Technology‡

Abstract—In this paper, we introduce DLB, a Deep Learning
based load Balancing mechanism, to effectively address the data
skew problem. The key idea of DLB is to replace hash functions
in the load balancing mechanisms with deep learning models,
which are trained to be able to map different distributions
of workloads and data to the servers in a uniformed manner.
We implemented DLB and deployed it on a practical Cloud
environment using CloudSim. Experimental results using both
synthetic and real-world data sets show that compared with
traditional hash function based load balancing methods, DLB
is able to achieve more balanced mappings, especially when the
workload is highly skewed.

Index Terms—load balancing, consistent hashing, neural
networks, cloudsim

I. INTRODUCTION

With the development of Cloud computing, companies are
becoming increasingly interested in migrating their services
and data to Cloud platforms, such as AWS [1], IBM
Cloud [2], Google Cloud [3], and Microsoft Azure [4],
on which the effectiveness of load balancing is of great
importance. Maintaining a balanced workloads benefits the
cloud service provider by not only increasing the utilization
of their resources, but also improving the quality of services.
Currently, hash function based load balancing mechanisms are
the dominant design, in which hash function based approaches
are used to determine which server a workload needs to be
assigned to.

A hash function is able to generate balanced results when
the input data is uniformly distributed. However, the real-world
data sets often exhibit remarkable skew. For instance, analysis
of air traffics and online human behavior data sets [5], [6]
revealed that such data usually follows different power law
distributions. When the input data is skewed, the output of
the hash function will also be skewed. Therefore, using a
hash function in a load balancing mechanism can result in
unbalanced workloads assignment when data skew exists in
the input. Even worse, such unbalanced workloads could
seriously harm the performance of applications and services
running on distributed platforms. Elaheh Gavagsaz and et al.
[7] demonstrated that traditional join algorithms based on
MapReduce are not efficient when working with skew data,
Joanna Berlinska and et al. [8] also revealed that the uneven
distribution of the keys might cause imbalance computation

This work was supported in part by the National Natural Science Foundation
of China under Grant 61762089, Grant 61663047, Grant 61863036, Grant
61762092 and Open Foundation of Key Laboratory in Software Engineering
of Yunnan Province under Grand 2020SE310
∗ made equal contribution to this work.
∗∗ to whom correspondence should address {zwei,hejing}@ynu.edu.cn

0 5 10 15 20 25 30 35

280

300

320

340

360

Pr
oc

es
se

d 
D

at
a 

(b
al

ls
.)

Bin ID

 BKDR HASH
 MURMUR HASH
 PYTHON HASH

Fig. 1: Data skew for different hash functions

completion time among different MapReduce tasks, which
eventually prolonged execution of the whole MapReduce job.

There are several reasons why hash functions do not
perform well on skewed data sets. First, the hash function
was originally designed to perform fast index [9] (i.e.,
indexing with O(1) time complexity), compression [10]
(i.e., compressing a large input in a deterministic way),
cryptography [11] (i.e., irreversible mapping from inputs
to outputs) and etc., thus dealing with skewed data was
not considered as one of its primary design goals. Second,
although there have been efforts, such as BKDR hash [12],
MURMUR hash [13], and Python hash [14], to enhance
the hash functions to better handle the skewed data, their
effectiveness are not satisfying. As shown in Figure 1, we
manually generate a skew data set under normal distribution
as the inputs and use the above mentioned three hash functions
to map these inputs to 32 bins. After that, the bins are sorted
by the number of inputs assigned to it. Ideally, the lines in this
figure should be flat, which means different bins are taking a
similar amount of inputs if the hash functions are able to map
the input to a uniformed distribution. However, the lines in the
figure are all in an increasing trend. The numbers of inputs
being assigned to different bins vary from 280 to 360, which
are significantly unbalanced.

The availability of big data and the rapid advance of
AI techniques provide unique opportunities to rethink the
design of load balancing mechanisms by making them perform
better on skew data. The key idea is as follows: instead
of using a hash function, learned models can be applied to
determine where the inputs should be mapped to the hash
circle. Although model training is required beforehand, this
approach is practical and has several advantages compared
to traditional hash based methods. First, the capability and
affordability of collecting large amount of data nowadays

ar
X

iv
:1

91
0.

08
49

4v
4 

 [
cs

.D
C

] 
 1

2 
Se

p 
20

21



provides the potential to train data distribution aware models
for load balancing mechanisms. Second, the distribution of
data collected by a specific company or organization for a
given task is usually consistent, which is demonstrated by
analysis results from [5], [6], [15]. This shows the feasibility
of using historical information to deal with future workloads.
Third, when appropriately trained, the output of a learned
model can be uniformly distributed even when the input data
set is highly skewed.

In this paper, we propose DLB, which uses deep learning
models to effectively address the data skew problem in
existing load balancing mechanisms. Researchers [16]–[19]
have explored the possibility of partially replacing existing
data structures and algorithms with deep learning models.
For example, Tim Kraska and et al. [16] introduced the
hash model index, which reduces the total number of hash
conflicts over map data set by learning a CDF(Cumulative
distribution function) at a reasonable cost. However, there are
still remaining challenges to leverage deep learning models
to improve the effectiveness of load balancing mechanisms.
On the one hand, how to design a neural network that
can converge quickly during the training while also being
able to effectively mapping large volumes of inputs to a
uniformly distributed space. On the other hand, how to balance
between the complexity and the expressiveness of the model.
Concretely speaking, a simple neural network can be easily
trained, but it will not be able to map large amount of inputs
into a uniformly distributed space without incurring significant
conflicts. While a complex model can reduce the mapping
conflicts, but it cannot be trained easily due to gradient
dissipation and explosion problems.

In order to solve these challenges, DLB is designed in a way
that, instead of using a single end-to-end model, it organizes
a set of models into a hierarchical architecture. In such an
architecture, the models are organized in different connected
layers. For a specific input, it will go through one model in
each layer, while the model in the previous layer specifies
which model in the next layer needs to be invoked. The final
output will be the position on the hash circle for this input.
Since the distribution of input data is not guaranteed to stay
the same, DLB also continuously monitors the actual load
distribution of all the servers to make sure no server becomes
a hotspot. Compared with traditional hash function based load
balancing mechanisms, such as Consistent Hashing [20] and
Consistent Hash with Bound Load [21], DLB is able to map
the input data sets to a uniformly distributed space even when
they are highly skewed. In addition, compared with a single
but complex end-to-end model, a hierarchical design makes
each model converge more quickly during the training.

The main contributions of this paper are as follows:

• We designed DLB, a deep learning based load balancing
mechanism which solves the data skew problem by
replacing the hash function with deep learning models.

• We implemented DLB and deployed it in a practical
environment using CloudSim [22], which enables

modeling and simulation of real Cloud computing
systems and application provisioning environments.

• The effectiveness of DLB is measured by using both
synthetic and real-world data sets under different
distributions.

II. RELATED WORK

Load balancing mechanisms are widely used in distributed
computing environment to balance the workloads among
different servers, and the effectiveness of such mechanisms is
critical to the overall performance and service quality of the
distributed platforms. Therefore, how to design an effective
load balancing mechanism has attracted the interest of many
researchers. In this section, we introduce related researches in
this area, while at the same time, we also discuss the existing
efforts on trying to use neural network based learned data
structures to improve the performance of traditional systems.

Hashing based load balancing. As one of the mainstream
load balancing mechanisms, Consistent Hashing(CH) [23]
proposed by Karger and et al. has been widely adopted. Ideally,
by using a randomized hash function, both balls and bins can
be assigned to the hash circle in a uniformed way, so that
different bins will be able to hold the similar number of balls.
However, it is usually not the case in the real-world due to the
existence of data skew in the inputs. There have been many
efforts to address this issue [24]–[27]. For example, David
R. Karger and el al. [20] tried to enable CH to generate more
balanced results by using virtual bins which are replicas of real
bins in hash space, and one real host can be correspondent
to several virtual bins. The authors showed that the overall
load balancing performance could be improved accordingly.
To further address the data skew problem in load balancing,
Johan Lamping and Eric Veach proposed jump Consistent
Hashing [25], which works by computing when its output
changes as the number of bins varies. In this approach, the
hash value of a ball is not randomly generated, but acquired
according to the probability determined by the number of
existing bins. Also, whenever a new ball is added, the hash
value of the existing balls needs to be recomputed according to
the a predefined probability. Roberto Grossi and et al. designed
Round-Hashing [26]. Thaler and Ravishankar proposed [24]
Rendezvous hashing algorithm, for a given ball q and n bins,
it applies a hash function to the all the pairs {q, pi}, in which
i ∈ {1...n}, and assigns the ball to the bin that can lead to
largest hashing result.

Neural network based learned data structures. This
thread of research explores the potential of utilizing the
neural network based learned data structures to improve the
performance of traditional systems [16], [17], [19], [28].
Among them, Tim Kraska and et al. proposed learned B-tree,
learned hash, and learned bloom filter structure [16] to improve
the indexing performance of traditional structure by learning
the distribution from the historical data. Xiang and et al. [17]
proposed a LSTM-based inverted index structure.

Different from the above-mentioned researches, instead
of improving the effectiveness of traditional hash functions,



our DLB approach takes the advantages of both Consistent
Hashing and deep neural network. In DLB, a deep learning
model based on the historical data is trained, and then used to
map the newly coming data to a uniformly distributed space
even when such data is skewed.

III. DLB: DEEP LEARNING BASED LOAD BALANCING

In this section, we discuss the details of DLB design. The
goal of load balancing is to uniformly distribute different
workloads on multiple servers so that no server will become
the hotspot. A hash function, being the core building block
in most of the existing load balancing mechanisms, can be
considered as a black box that takes an input and maps it
to a position on the hash circle. Therefore, we propose a
Deep Learning based load Balancing mechanism named DLB,
which replaces the hash functions with deep learning models
to fulfill the same mapping task. We observe that this approach
is able to work well on skew data and provide more balanced
workload distribution compared with traditional hash function
based load balancing mechanisms.

A. Design

1) Hierarchical models: As discussed earlier, a hash
function in a load balancing mechanism can be replaced by a
deep learning model, and a well trained model can generate
uniformly distributed outputs even when the inputs are highly
skewed. A natural question to ask is which model should be
used. In load balancing mechanisms such as CH, the inputs
are usually mapped into a large space (e.g., 232) to avoid
conflicts. If we consider each slot in this output space as a
class, what the model needs to achieve is actually classifying
each input into one of these different classes. This actually
turns the mapping task into a classification task. Since the
space of this classification so large, training a single model
for such a task will be really difficult.

Therefore, we propose an architecture of hierarchical
models in DLB to address this problem. As shown in Figure
2, instead of using one single model, multiple models are
involved to solve this classification problem. The models are
organized into a hierarchical structure with different connected
layers. To find out the position that an input should be mapped
to on the hash circle, each input will need to go through a
model in each layer. The whole mapping procedure can be
divided into 4 stages, and details of each stage are described
as follows:

Input stage. Various formatted features can be observed as
the inputs of load balancing mechanisms when a hash function
is used, being it an ID string of a user or a MD5 value of a
file. However, these features need to be converted so that they
can be consumed by a neural network model. Therefore, the
goal of this stage is to pre-process the input data, such as
converting strings or numerical data into vectors, so that they
can be directly used as inputs of a neural network model.

Disperse stage. The main strategy used in this stage
is divide and conquer. Concretely speaking, the disperse
stage consists of multiple models which are organized in a

hierarchical architecture(i.e., a tree structure). All the models
in this architecture work collaboratively to figure out which
position on the hash circle a given input should be placed.
Since the space of the final hash circle is usually very large, the
motivation of this design is to divide a complex classification
task, which is supposed to deal with a large output space,
into multiple smaller tasks. In this way, the original complex
classification problem can be conquered more effectively by
solving these smaller problems. In other words, with such a
hierarchical architecture, each model only needs to tackle a
much simpler classification problem with only a subset of the
whole output space. As shown in Figure 2, the models in this
stage are split into multiple layers. The root model(i.e. the
one on the left most in Figure 2) takes the input data set and
determines which model in the next layer needs to be invoked,
while the models in the other layers of the disperse stage go
through the same procedure using their corresponding assigned
input.

Mapping stage. Models involved in this stage are located in
the last layer of the hierarchical architecture. Different from
the models in the disperse stage that select which model in
the next layer needs to be used, each model in the mapping
stage is responsible for generating the position of a given input
in its sub-circle. Different models in the mapping stage are
correspondent to different sub-circles, which are actually areas
on the hash circle, while they collectively cover the whole hash
circle.

Join stage. Since the output of each model in the mapping
stage is a position on each model’s own sub-circle, another
layer is needed to translate such a local position on a sub-circle
into a global position on the hash circle. In order to create
the continue hash circle, sub-circle of different mapping
stage models are connected sequentially, thus the final global
position Posqi of input qi on the hash circle is established by
Eq 1.

Posqi = µi + (model id− 1)t (1)

model id is the ID of the model in the mapping stage
starting from 1.

2) Server Management: In traditional load balancing
mechanisms such as CH, both workloads and servers are
mapped to the hash circle by hash functions, and a workload
is assigned to its clockwise closest server. In DLB, a deep
learning model is used to map a workload to a position on
the hash circle, while a deterministic approach is used to map
the servers. Although server mapping can also be done by
using learned models, it is not necessary since the number
of servers is usually much smaller than that of the workloads
and a deterministic approach is good enough to evenly map
the servers to the hash circle.

Similar to traditional load balancing mechanisms, DLB
assigns a workload to a server in a clockwise manner. Since
DLB is able to uniformly map the workloads to the hash circle,
using a deterministic server mapping approach can achieve
well balanced workload distribution. Concretely speaking,
when a new server is added, DLB will add the server to



Input Stage Join StageDisperse Stage

Model 1.1

Mapping Stage

Pos

Keys
IP Addresses

File ID
Objects

…

local-pos

232-1

…… ……

……

…

Split layer 1

…

Split layer 2 …

Model 2.1

Model 2.2

Model 2.3

Model (ɸ+1).1

… Model (ɸ+1).2

Model (ɸ+1).3

…

…

Fig. 2: The hierarchical model architecture in DLB

a place such that this server can evenly divided the largest
sub-circle on the hash circle. When an existing server becomes
unavailable, the workloads on this server will be reassigned to
its clockwise next server. Similar to Consistent Hashing with
bounded load(CHBL), each server in DLB has a load threshold
ε. A new workload can be assigned to a server only if the load
of this server will not exceed ε. Otherwise, other servers need
to be considered.

B. Training

In this sub-section, we discuss the considerations of how
to train the hierarchical models mentioned above from two
aspects.

First, how to label the training data. Given historical cluster
access data, to make sure that the models will not generate
skew output when the training data is skewed. Meanwhile,
Since the hierarchical architecture includes multiple models
in different layers, for each input, it needs to be labeled for
each model. We discuss the labeling process for DLB from two
aspects: creating labels used in the mapping stage models as
well as in the disperse stage models. The difference between
these two types of labels is that the former one represents
positions on a hash circle, while the latter one is correspondent
to the ID of the model in the next layer.

The method to create labels for DLB is depicted in
Algorithm 1. tagφ(ki) generates the label of ki in layer φ.
A formal description of tagφ(ki) is shown in Eq 2, in which
Cφ represents the the number of models in the φth layer.

tagφ(ki) = j j ∈ [1 : Cφ+1] (2)

subject to:
T

Cφ+1
∗ (j) ≤ labelmi ≤

T

Cφ+1
∗ (j + 1)

Second, we also describe what loss function is used in the
training process. The loss value used in the training is defined
as Loss =

∑
φ∈(1,Φ+1)

∑
n∈(1,mφ)(O

n
φ − labelnφ)2, which is

the sum of the loss value of each model in the hierarchical
architecture. We refer the output of n-th model in the φ-layer
to as Onφ , labelnφ to represent the corresponding labels, while
mφ as the number of models in the φth layer.

Algorithm 1 Labeling DLB training data

Input: K - key list of balls
Input: T - number of positions on the hash circle
Input: Φ - number of layers in disperse stage
Input: labelsi - labels for the models in the ith layer
Input: indexof(ki,K) - index of the element ki in list K
Input: tagφ(ki) - label of ki for the model in φth layer.
Initialize: Labelsi ← {}(i ∈ (1,Φ + 1))
1: Ks ← Sort(K)
2: for ki in K do //Create labels for models in mapping stage
3: label ← indexof(ki,K) ∗ (T/sizeof(K))
4: labelsΦ+1 ← LabelsΦ+1 ∪ label
5: end for
6: for φ in Φ do //Create labels for models in disperse stage
7: for ki in K do
8: label ← tagφ(ki)
9: labelsφ ← Labelsφ ∪ label

10: end for
11: end for
12: return {labels1, ..., labelsΦ+1}

IV. EVALUATION

In this section, we compare the effectiveness of load
balancing between DLB and the following widely used and
classical load balancing approaches:

• Consistent Hashing(CH). CH hashes the balls and bins
into a unit circle, and uses the hash values to create a
circular order of balls and bins. The palcement decision
are all based on the relatevie location among balls and
bins.

• Consistent Hashing with Bounded Load(CHBL). CHBL
is similar to CH, except that it uses a parameter to try
to keep the balls uniformly distributed among different
bins.

In our design each sub model of DLB has 3 fully connected
layer, and each layer has 8, 32, 64 neuros respectively. We
use Adam [29] with learning rate of 0.01 to train all the
sub models. For CH and CHBL, we also combine them with
different hash implementations, such as BKDR Hash [12],
Python Hash [14], and Murmur Hash [13].



(a) Log-normal distribution

(b) Normal distribution

(c) Uniform distribution

Fig. 3: Compare the effectiveness of different load balancing mechanisms in a practical Cloud environment created by CloudSim.

A. Setup

In this subsection, we describe the experimental setup,
including the hardware and software environment, as well as
the data sets and metrics used throughout the measurements.

1) Environment: The experiments are carried on a machine
with 64GB main memory and one 2.6GHZ Intel(R) i7
processors. Each test is run 10 times and the median of the
results are shown in this section.

2) Data sets: In order to measure how different
distributions of the input data set can affect the effectiveness
of DLB, the synthetic data sets used in Section IV-B are
generated under three most commonly observed distributions:
uniform distribution, normal distribution, and log-normal
distribution. Each distribution has two data sets, one for
testing and the other for training. Each data set consists of
20, 000, 000 balls while each ball is a double-precision digit
which represents a key of client workload in load balancing
scenario. A 4TB data set collected from a radio monitoring
center is also used in our experiments. This data set consists
of 100, 000 records, and each record has 13 features.

3) Measurement metrics: The effectiveness of a load
balancing mechanism is measured by the standard deviation
among the load of different bins on the hash circle(std).
Therefore, the smaller the std value is, the more effective
the load balancing mechanism is. Formally, the std can be

calculated as std =

√∑n
j=1(loadj−mn )2

n , in which, loadj refers
to the number of balls assigned to bin j, while m and n are
the total number of balls and bins respectively.

B. Analysis

1) CloudSim based evaluation: In this set of experiments,
we deploy DLB, CH, and CHBL on a practical Cloud
environment created by CloudSim [22], and compare their
effectiveness to balance the workloads among a number of
servers. In the simulated Cloud environment, 64 machines
are hosted within a single data center. Each machine has 4
threads, 1 GB memory, 10 GB of storage, and 1Gbps network
bandwidth. On the client side, 8192 workloads(cloudlets)
with different distributions are created. The distribution is
based on the ID of each workload, which is also the key
used for mapping. Each server can run at most 4 workloads
simultaneously. When wait list of a server is full and an
additional workload is assigned, this workload needs to be
loaded by the next spare server in the hash circle. All the
workloads are submitted to the data center in one batch, and
each workload takes 20 seconds CPU time to finish.

Fig 3 shows the actual finishing time of each workload when
different load balancing mechanisms are used. The x-axis
represents the ID of each workload while the y-axis shows the
actual finishing time. It can be observed that, no matter what
the workload distribution is, the heights of lines in figures
corresponding to DLB is much lower and smoother. This
means that, when DLB is used, workloads can finish in a
shorter and more balanced time. While in CH and CHBL
cases, some workloads takes much longer time to finish than
the other ones. This is due to the imbalanced assignment of
workloads, which causes some servers to become the hotspots.
Therefore, it takes much longer for workloads on these servers



CH (P
YTHON::H

ASH)

CH (B
KDR H

ASH)

CH (M
URMUR H

ASH)

CHBL (
PYTHON::H

ASH)

CHBL (
BKDR H

ASH)

CHBL (
MURMUR H

ASH)
DLB

0

1

2

3

4

5

6

7

8

St
an

da
rd

 d
ev

ia
tio

n 
of

 b
in

 lo
ad

(x
10

5 )

(a) Log-normal

CH (B
KDR H

ASH)

CH (M
URMUR H

ASH)

CHBL (
PYTHON::H

ASH)

CHBL (
BKDR H

ASH)

CHBL (
MURMUR H

ASH)
DLB

0

1

2

3

4

5

6

7

8

St
an

da
rd

 d
ev

ia
tio

n 
of

 b
in

 lo
ad

(x
10

5 )
(b) Normal

CH (P
YTHON::H

ASH)

CH (B
KDR H

ASH)

CH (M
URMUR H

ASH)

CHBL (
PYTHON H

ASH)

CHBL (
BKDR H

ASH)

CHBL (
MURMUR H

ASH)
DLB

0

2

4

6

8

10

St
an

da
rd

 d
ev

ia
tio

n 
of

 b
in

 lo
ad

(x
10

5 )

(c) Uniform

CH (P
YTHON::H

ASH)

CH (B
KDR H

ASH)

CH (M
URMUR H

ASH)

CHBL (
PYTHON::H

ASH)

CHBL (
BKDR H

ASH)

CHBL (
MURMUR H

ASH)
DLB

0

1

2

3

4

5

St
an

da
rd

 d
ev

ia
tio

n 
of

 b
in

 lo
ad

(x
10

2 )

(d) Radio monitoring data

Fig. 4: Standard deviation of bin load using different load
balancing mechanisms and distributions of input data sets

to finish. Considering the exact running time of the longest
job (i.e., max job duration) in each scenario, DLB is able to
reduce such time by 61.3% over CH and 52% over CHBL
under log-normal distribution, 33% over both CH and CHBL
under normal distribution, 60.7% and 53.68% when compared
with CH and CHBL respectively under uniformed distribution.

2) Load Balancing: Figure 4 compares the std of DLB
with CH and CHBL based methods. The std is used to
reflect how much an actual distribution of the balls on the
hash circle deviates from an idea uniform distribution. For
each experiment, we collect the average result as well as the
distribution of 10 runs and plot them in Figure 4. It can be
observed that compared with other methods, DLB has the
lowest value of std regardless of the data distributions. For
example, when the real-world data set is used, average std
value of DLB for the 10 runs is 78, while that of other
methods, such as CH(wiht Python Hash) and CH(with BKDR
Hash) are 337 and 299 respectively, which are 3.32x and 2.83x
larger than that of DLB.

V. CONCLUSIONS

Existing hash function based load balancing mechanisms
cannot perform well when the input data is skewed. In
this paper, we proposed DLB, a Deep Learning based load
Balancing mechanism, to address this problem. DLB replaces
the hash functions in traditional load balancing mechanisms
with deep learning models. Given the constant time of
model inferencing, using a learned model does not introduce
additional runtime overhead compared with using a hash

function. We implemented DLB and deployed it on a practical
Cloud environment using CloudSim. Experimental results
show that, compared to traditional hash function based load
balancing mechanisms, DLB is able to achieve more balanced
and stable results even when the input data is skewed.

REFERENCES

[1] EC Amazon. Amazon web services. Available in: http://aws. amazon.
com/es/ec2/(November 2012), page 39, 2015.

[2] Ibm cloud. https://www.ibm.com/cloud,
[3] Google cloud. https://cloud.google.com/.
[4] Microsoft azure. https://azure.microsoft.com/en-us/.
[5] Bin Jiang and Tao Jia. Exploring human mobility patterns based on

location information of us flights. arXiv preprint arXiv:1104.4578, 2011.
[6] Filippo Radicchi. Human activity in the web. Physical Review E,

80(2):026118, 2009.
[7] Elaheh Gavagsaz, Ali Rezaee, and Hamid Haj Seyyed Javadi. Load

balancing in join algorithms for skewed data in mapreduce systems.
The Journal of Supercomputing, 75(1):228–254, 2019.

[8] Joanna Berlinska and Maciej Drozdowski. Comparing load-balancing
algorithms for mapreduce under zipfian data skews. Parallel Computing,
72:14–28, 2018.

[9] ThomasH.Cormen. . . [etal. Introduction to algorithms. 2002.
[10] Shoichi Hirose and et al.
[11] Michael Coles and Rodney Landrum. Asymmetric Encryption. 2009.
[12] Arash Partow. Bkdr hash in ”the general hash functions library”, 2020.
[13] Austin Appleby. Murmurhash3 on github”, 2020.
[14] Google Inc. The python standard library, 2020.
[15] Dirk Brockmann, Lars Hufnagel, and Theo Geisel. The scaling laws of

human travel. Nature, 439(7075):462, 2006.
[16] Tim Kraska et al. The case for learned index structures. In Proceedings

of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, 2018.

[17] Wenkun Xiang and et al. Pavo: A rnn-based learned inverted index,
supervised or unsupervised? IEEE Access, 7:293–303, 2019.

[18] Tim Kraska and et al. Sagedb: A learned database system. In CIDR
2019, 9th Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 13-16, 2019, Online Proceedings, 2019.

[19] Alex Galakatos and et al. Fiting-tree: A data-aware index structure. In
Proceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June
30 - July 5, 2019., pages 1189–1206, 2019.

[20] David R. Karger and et al. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world wide
web. In Proceedings of the Twenty-Ninth Annual ACM Symposium on
the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages
654–663, 1997.

[21] Vahab S. Mirrokni and et al. Consistent hashing with bounded loads.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10,
2018, pages 587–604, 2018.

[22] Rodrigo N Calheiros and et al. Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software: Practice and experience, 41(1), 2011.

[23] David R. Karger and Matthias Ruhl. Simple efficient load-balancing
algorithms for peer-to-peer systems. Theory Comput. Syst., 39(6).

[24] David Thaler and Chinya V. Ravishankar. Using name-based mappings
to increase hit rates. IEEE/ACM Trans. Netw., 6(1):1–14, 1998.

[25] John Lamping and Eric Veach. A fast, minimal memory, consistent hash
algorithm. CoRR, abs/1406.2294, 2014.

[26] Roberto Grossi and Luca Versari. Round-hashing for data storage:
Distributed servers and external-memory tables. In 26th Annual
European Symposium on Algorithms, ESA 2018, August 20-22, 2018,
Helsinki, Finland, pages 43:1–43:14, 2018.

[27] Wei Wang and Chinya V. Ravishankar. Hash-based virtual hierarchies
for scalable location service in mobile ad-hoc networks. MONET,
14(5):625–637, 2009.

[28] Xiaoke Zhu, Taining Cheng, Qi Zhang, Ling Liu, Jing He, Shaowen Yao,
and Wei Zhou. Nn-sort: Neural network based data distribution-aware
sorting. arXiv preprint arXiv:1907.08817, 2019.

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

https://www.ibm.com/cloud
https://cloud.google.com/
https://azure.microsoft.com/en-us/

	I Introduction
	II Related Work
	III DLB: Deep learning based load balancing
	III-A Design
	III-A1 Hierarchical models
	III-A2 Server Management

	III-B Training

	IV Evaluation
	IV-A Setup
	IV-A1 Environment
	IV-A2 Data sets
	IV-A3 Measurement metrics

	IV-B Analysis
	IV-B1 CloudSim based evaluation
	IV-B2 Load Balancing


	V Conclusions
	References

