
Performance Analysis of Zero-Trust multi-cloud
Simone Rodigari, Donna O’Shea, Pat McCarthy, Martin McCarry∗, Sean McSweeney

Munster Technological University, Cork, Ireland
∗ Pilz Ireland Industrial Automation Limited, Cork, Ireland

{1}simone.rodigari@mycit.ie, {2, 3, 5}firstname.lastname@cit.ie, {4}∗m.mccarry@pilz.ie

Abstract—Zero Trust security model permits to secure cloud
native applications while encrypting all network communication,
authenticating, and authorizing every request. The service mesh
can enable Zero Trust using a side-car proxy without changes to
the application code. To the best of our knowledge, no previous
work has provided a performance analysis of Zero Trust in
a multi-cloud environment. This paper proposes a multi-cloud
framework and a testing workflow to analyse performance of the
data plane under load and the impact on the control plane, when
Zero Trust is enabled. The results of preliminary tests show that
Istio has reduced latency variability in responding to sequential
HTTP requests. Results also reveal that the overall CPU and
memory usage can increase based on service mesh configuration
and the cloud environment.

Index Terms—zero trust networking, multi cloud, service mesh,
sidecar proxy, Kubernetes, Istio

I. INTRODUCTION

Open-source solutions including Kubernetes, Apache Mesos
and Docker Swarm [1], provide microservices run-time en-
vironments and offer the necessary networking infrastructure
for containerized microservices to communicate with each
other and external clients on the public network [2]. Microser-
vices in Kubernetes can run over multi clouds with multi-
tenanted architecture, sharing compute resources with other
untrusted applications. Traditionally, organizations configured
trust environments to implement network security; users and
services with access to the environment were considered
trusted and allowed to execute operations within the system.
This security model can also be defined as “Trustworthy” and
is suitable for monolith applications, it typically involves the
configuration of a firewall which provides the environment
perimeter. “Zero Trust” is a recent security model that does
not have the concept of environment perimeter and it is more
suitable for cloud applications. In a Zero Trust network the
authentication, authorization and encryption are enforced on
every communication between users – device – applications.
The ”Zero Trust” model addresses some of the challenges
involved in a microservices deployments across heterogeneous
networks including consistent and standardized enforcement of
security policies.

In this paper we evaluate the performance, in terms of
latency and physical resources (CPU, memory) of a Zero
Trust implementation using Istio [3] service mesh in a
multi-cloud system composed of two separate Public Cloud
Providers(PCP) to determine if there is a performance penalty

at the data-plane level when enabling Zero Trust with a side-
car proxy implementation in a multi-cloud architecture.

II. BACKGROUND

According to NIST Zero Trust (ZT) is defined as a “set
of cybersecurity paradigms that move defences from static,
network-based perimeters to focus on users, assets and re-
sources”. According to NIST [4] there are three main ap-
proaches to implement ZTA including: enhanced identity gov-
ernance; micro-segmentation; and network infrastructure using
Software Defined Perimeters (SDP) [5]. Over the past number
of years, major industry players however have been converging
on the use of SDP (Cisco, Intel, EMC) and SDP is now
been used by cloud infrastructure providers (Amazon, Google)
given its features of software defined abstractions, centralized
management, automation and programmability features.

The Cloud Security Alliance (CSA) proposed the concept
of SDP as a method of deploying perimeters where needed re-
placing physical hardware appliances with logical components
with the ability to protect networks in a dynamic manner. SDP
architecture uses a controller to enforce that client applica-
tions/devices are first authenticated/authorized before creating
encrypted connections in real time to the requested servers.
SDP have a number of benefits including: hiding applications
from unauthorised users; provide zero-visibility and zero-
connectivity to all except authorized users and devices; en-
ables operators to dynamically provision network perimeters;
and works with user authentication systems [5]. Despite the
benefits, SDP also have a number of open challenges including
issues around controller vulnerability and the overhead i.e.
increased latency, in the control plane providing the features
of authentication, access and encryption.

To date, only a limited number of contributions have anal-
ysed Zero Trust implementations performance. Muji M. et al
[6] analysed the performance of Zero Trust Architecture using
micro-segmentation with results demonstrating that micro-
segmentation added an average Round Trip Time (RTT) and
jitter of 4 ms and 11 ms respectively without packet loss,
demonstrating the viability of zero trust in a data centre
environment. Surantha et al. [7] conducted a study to test the
performance of network system security design using a zero-
trust model. However, the work presented in [7] was focused
more on the network security design features, rather on the
performance overhead supporting cloud native applications
in a hybrid cloud environment, which is the contribution of

ar
X

iv
:2

10
5.

02
33

4v
1 

 [
cs

.C
R

] 
 5

 M
ay

 2
02

1



this proposed work. It is also important to note the work
from Larsson L. et al. [8] which analysed the performance
of Istio framework, which implements zero trust as part of it
architectural solution against a native Kubernetes environment.
However, the work focused on measuring throughput in a
single cloud setup whereas the focus of this research will
instead be on CPU, memory usage and latency of HTTP
requests when Istio is deployed on a multi-cloud environment.

III. TEST-BED ARCHITECTURE

A central element of the test bed architecture was the
selection of an open source Zero Trust solution to perform
the analysis. At present there are a number of SDP/Zero Trust
solutions available such as such as those provided by Project
Calico [9], Waverley Labs [10] and the Istio Service Mesh [3].
In our architecture, the Istio Service Mesh was used, given
its architectural design, separation of data and control planes,
implementation of zero trust security principles, service based
identity model and centralised view of security policies and
adherence to defined policies [11].

The architectural setup for the test bed is shown in Fig. 1.
The architectural setup involved two different cloud providers
i.e. Kubernetes clusters, located in the same geographical
region, London. Table I describes the hardware configuration
for each cluster: Google Kubernetes Engine (GKE) and Elastic
Kubernetes Service (EKS). In the architecture, a DNS load
balancer was used to route traffic between the two Kubernetes
clusters sitting in the two separate network domains i.e.,
Google Cloud and Amazon Web Services. The use of a
load balancer was necessary in order to create a multi-cloud
deployment to provide a benchmark for performance analysis
(scenario 1). This benchmark was then compared to the same
implementation with the added configuration of Istio Service
Mesh to enable Zero Trust (scenario 2).

TABLE I
CLUSTER SPECIFICATION

Cluster Master Version nodes vCPU Mem image
GKE v1.18.16-gke.302 2 8 32Gb E2-standard-4
EKS v1.18.9-eks-d1db3c 2 4 16Gb T2.medium

Leveraging this test bed, performance was benchmarked
against two different configurations, with and without zero
trust enforced. In each configuration, sequential HTTP re-
quests were sent to a simple microservice application devel-
oped by Istio, which simply returned the pod name where
the workload is running. The requests are sent in two modes:
in cluster, from the Pod in the same cluster and name-space;
cross cluster, from a Pod in another cluster.

IV. METHODOLOGY

The methodology undertaken as part of this work involved
a systems engineering approach with a focus on experimental
evaluation. The experiments involved generating workloads
within the clusters by running them in Kubernetes pods and
measuring the resource usage at both a cluster and pod level.
Resource usage Key Performance Indicators (KPIs) considered

Fig. 1. Architecture of scenario 2 – Zero Trust multi-cloud

includ: Pod CPU usage and memory usage (while serving
HTTP requests), and latency (HTTP requests response time
and success rate). Further information on the resource and
workload analysis are outlined below.

This method involves the analysis of CPU and memory
system resources focusing on utilization to identify what
percentage of resource usage is required while the system is
responding to HTTP requests. Prometheus [12] was installed
in each cluster to provide system visibility and access to
resource metrics. Metrics are then extracted via a Grafana
[13] User Interface (UI) which uses Prometheus as a data
source. This method is employed to analyse HTTP requests
latency. Standard Linux utilities and cURL are employed to
evaluate the latency by sending HTTP requests to a target
workload running in a cluster. A bash script was developed to
leverage those utilities and provide a test summary including
percentiles, non-successful requests and the ratio of pods
responding to the requests. The script can be executed on a
local machine or containerized and run in any cluster as a
Kubernetes pod.

V. RESULTS

As described in Section III a series of requests were sent
as a test on various configurations of the testbed. Each test
comprised 1000 sequential HTTP requests and all requests
were successful (returned 200 HTTP response code). Table
II represents a summary of results obtained for the tests
in which GKE was responding to the HTTP request. The
results presented indicate minimal impact on Cluster CPU
and memory usage. However, the presence of the outlier value
for the pod to service result with GKE using Istio regarding
Cluster CPU max usage, suggests that additional factors may
need to be examined such as the control plane resource
consumption while the system is processing HTTP requests.
It is important to note that percentage values presented are
relative to cluster specification mentioned in Table I, where
the GKE cluster has twice the number of cores and memory
of EKS.



TABLE II
GKE RESPONSE PERFORMANCE ANALYSIS SUMMARY

Request From Response From Pod CPU
max vCores

Pod Memory
max MiB

Cluster CPU
max usage %

Cluster
Memory max

usage %
Pod to Service with the same cluster

GKE GKE 0.1 175 5.6 5.3
GKE-ISTIO GKE 0.9 85 17.8 5.6

Pod to Service across cluster via Gateway
EKS GKE 1.2 183 19.1 5.4

EKS-ISTIO GKE 0.9 85 16.7 5.7
Pod to Service across cluster via DNS (Load Balanced)

GKE GKE 1.1 183 19.3 5.5
GKE-ISTIO GKE 0.9 85 17.5 5.6

EKS GKE 0.7 183 12.7 5.5

Table III represents a summary of results obtained for the
tests in which EKS was responding to the HTTP requests. For
the tests presented cluster CPU and memory max usage do not
significantly vary. In both Table II and Table III pod memory
usage with the Istio service mesh is reduced by 50%. This
reduction is most likely a result of offloading local process
from the pod to the control plane.

Fig. 2, represent an interesting finding in the analysis of
the request group latency. For each test run the latency in
milliseconds is displayed on the vertical axis for 50%, 75%,
90%, and 99% of responses returned. The workload analysis
in Fig. 2 shows higher latency for simple multi-cloud deploy-
ment, particularly for 75% and above. This indicates that Istio
Ingress gateway resource handles networking requests in a
more efficient manner than the basic Load Balancer service
from Kubernetes.

The preliminary results presented in this paper show no
evident performance penalty at the data-plane level when
enabling Zero Trust with a side-car proxy implementation
in a multi-cloud architecture using Istio service mesh. The
experiments were appropriately conducted with respect to the
objectives of the study in terms of configurations of multiple
PCP environments, service mesh and policy enforcement to
include encryption, authentication and authorization. However,
the number of tests and test scenarios should improve to
provide statistical significance in terms of resource analysis.

VI. DISCUSSION AND FUTURE WORK

As part of the work presented, a performance analysis of
the data plane under load and the impact on the control
plane was measured by analysing cluster and pod resource
consumption. Test results demonstrate that Istio has reduced
latency variability in responding to sequential HTTP requests.
However, system resources and particularly overall CPU and
memory can increase based on service mesh configuration
and the cloud environment. In order to explore the impact of

TABLE III
EKS RESPONSE PERFORMANCE ANALYSIS SUMMARY

Request From Response From Pod CPU
max vCores

Pod Memory
max MiB

Cluster CPU
max usage %

Cluster
Memory max

usage %
Pod to Service with the same cluster

EKS EKS 1.1 230 33.3 17.2
EKS-ISTIO EKS 0.9 115 30.1 18.7

Pod to Service across cluster via Gateway
GKE EKS 1.0 215 31.3 17.6

GKE-ISTIO EKS 0.9 115 26.9 19.0
Pod to Service across cluster via DNS (Load Balanced)

GKE EKS 1 215 27.3 17.7
GKE-ISTIO EKS 0.8 115 25.7 19.0

EKS EKS 0.6 215 21.4 17.6
EKS-ISTIO EKS 0.9 115 28.9 19.0

Fig. 2. Latency Test results

this further, a more comprehensive set of tests and scenarios
are required. In addition, for future tests we will allocate
images with similar specifications for both managed clusters
for memory and CPU cores, and will also include a more
detailed performance analysis of the control plane under load
further evaluating Zero Trust.

REFERENCES

[1] I. M. Al Jawarneh, P. Bellavista, F. Bosi, L. Foschini, G. Martuscelli,
R. Montanari, and A. Palopoli, “Container orchestration engines: a
thorough functional and performance comparison,” in ICC 2019-2019
IEEE International Conference on Communications (ICC). IEEE, 2019,
pp. 1–6.

[2] A. Khan, “Key characteristics of a container orchestration platform to
enable a modern application,” IEEE cloud Computing, vol. 4, no. 5, pp.
42–48, 2017.

[3] O. Sheikh, S. Dikaleh, D. Mistry, D. Pape, and C. Felix, “Modernize
digital applications with microservices management using the istio ser-
vice mesh,” in Proceedings of the 28th Annual International Conference
on Computer Science and Software Engineering, 2018, pp. 359–360.

[4] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero trust archi-
tecture,” National Institute of Standards and Technology, Tech. Rep.,
2019.

[5] A. Moubayed, A. Refaey, and A. Shami, “Software-defined perimeter
(sdp): State of the art secure solution for modern networks,” IEEE
network, vol. 33, no. 5, pp. 226–233, 2019.

[6] M. Mujib and R. F. Sari, “Performance evaluation of data center network
with network micro-segmentation,” in 2020 12th International Confer-
ence on Information Technology and Electrical Engineering (ICITEE).
IEEE, 2020, pp. 27–32.

[7] N. Surantha and F. Ivan, “Secure kubernetes networking design based
on zero trust model: A case study of financial service enterprise
in indonesia,” in International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing. Springer, 2019, pp. 348–
361.

[8] L. Larsson, W. Tärneberg, C. Klein, E. Elmroth, and M. Kihl, “Impact
of etcd deployment on kubernetes, istio, and application performance,”
Software: Practice and Experience, vol. 50, no. 10, pp. 1986–2007,
2020.

[9] “Calico 3.18.2,” accessed 2021-04-28. [Online]. Available: https:
//github.com/projectcalico/calico

[10] J. Koilpillai and N. A. Murray, “Software Defined Perimeter(SDP)
and Zero Trust,” Cloud Security Alliance, Tech. Rep., 2020. [Online].
Available: https://www.waverleylabs.com/wp-content/uploads/2020/06/
Software-Defined-Perimeter-and-Zero-Trust.pdf

[11] O. Sheikh, S. Dikaleh, D. Mistry, D. Pape, and C. Felix, “Modernize
digital applications with microservices management using the istio ser-
vice mesh,” in Proceedings of the 28th Annual International Conference
on Computer Science and Software Engineering, 2018, pp. 359–360.

[12] J. Turnbull, Monitoring with Prometheus. Turnbull Press, 2018.
[13] Grafana Labs. Grafana documentation. [Online]. Available: https:

//grafana.com/docs/

https://github.com/projectcalico/calico
https://github.com/projectcalico/calico
https://www.waverleylabs.com/wp-content/uploads/2020/06/Software-Defined-Perimeter-and-Zero-Trust.pdf
https://www.waverleylabs.com/wp-content/uploads/2020/06/Software-Defined-Perimeter-and-Zero-Trust.pdf
https://grafana.com/docs/
https://grafana.com/docs/

	I Introduction
	II Background
	III Test-bed Architecture
	IV Methodology
	V Results
	VI Discussion and Future work
	References

