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Abstract—Workflow offloading in the edge-to-cloud contin-
uum copes with an extended calculation network among edge
devices and cloud platforms. With the growing significance of
edge and cloud technologies, workflow offloading among these
environments has been investigated in recent years. However,
the dynamics of offloading optimization objectives, i.e., latency,
resource utilization rate, and energy consumption among the
edge and cloud sides, have hardly been researched. Consequently,
the Quality of Service(QoS) and offloading performance also
experience uncertain deviation. In this work, we propose a
multi-objective robust offloading algorithm to address this issue,
dealing with dynamics and multi-objective optimization. The
workflow request model in this work is modeled as Directed
Acyclic Graph(DAG). An LSTM-based sequence-to-sequence
neural network learns the offloading policy. We then conduct
comprehensive implementations to validate the robustness of our
algorithm. As a result, our algorithm achieves better offloading
performance regarding each objective and faster adaptation
to newly changed environments than fine-tuned typical single-
objective RL-based offloading methods.

Index Terms—offloading, Meta-Learning, Reinforcement
Learning, robustness, multi-objective learning, LSTM

I. INTRODUCTION

The highly developing Edge-to-cloud continuum, e.g. Multi-
access edge computing (MEC) [1] offers more intelligent and
diverse application use cases in our life: smart cities, smart
homes, E-Healthcare, smart transportation, smart factories.
The amount of end-users and cloud platforms has grown enor-
mously within the past decade. The corresponding applications
and the calculation are also getting more and more complex.
This growth brings massive network traffic and calculation
workload among end-users and cloud platforms. In many
scenarios, the end devices do not have enough calculation
capability to execute the applications efficiently. To this end,
workflow offloading is a typical approach to solving this issue
by better-utilizing computation resources on the user side,
edge, and cloud. Within the MEC environment empowered
by developments of hardware and software, the offloading
problem matters more than ever in many manners: energy
consumption, resource utilization rate, latency and QoS [2].

With the large scale of the cloud platform, more objectives
are taken into account to optimize offloading: resource uti-
lization rate and energy consumption. Each of them affects
the offloading performance. To this end, offloading turns into
a multi-objective optimization problem. On the edge side, the

execution takes more time with lower execution capability,
while execution on the cloud side has higher calculation
capability but takes more time to deliver tasks and receive
results. Optimizing those factors simultaneously also turns the
offloading problem into an NP-hard problem.

To cope with the offloading problem, lots of attention has
been paid to Machine Learning-based approaches [3] [4].
Among them, Reinforcement-Learning(RL)-based approaches
[5] [6] [4] also has been investigated a lot because it does
not ask for data labeling. Many works have been done to
investigate the offloading problem also in the context of
heterogeneous environment [7] [8]. When the latency-critical
tasks together with dependencies form the workflow, then
the workflow becomes latency-critical as well [9] [10]. Con-
sequently, offloading policies also need to take the latency
required by those workflows into account [11] [12].

However, not many works addressed the robustness of the
offloading policies from a multi-objective perspective. As a
result, the offloading performance deviation leads to uncertain
latency, resource utilization rate, and energy consumption,
consequently influencing the QoS even violation of the Service
Legal Agreement(SLA). In this work, we propose a Meta-
Reinforcement-Learning-based multi-objective robust offload-
ing algorithm(MRL-MO-RO) to address this issue. The main
contributions of this paper include:

1) Multi-objective offloading optimization: we propose a
multi-objective learning framework for the offloading
optimization.

2) LSTM-based Sequence-to-Sequence neural network for
workflow offloading prediction: we propose an op-
timized neural network, LSTM-based Sequence-to-
Sequence neural network, to make the offloading pre-
diction.

3) Robustness improvement of offloading: we integrate
Meta-Learning with our multi-objective Reinforcement
Learning to improve the robustness of offloading perfor-
mance.

In the remainder of this paper, we will first review the existing
RL-based solutions for workflow offloading optimization in
Section II. Then, in Section III, we offer the background
of our methodology. In Section IV, we present the detailed
methodology and algorithm of the proposed MRL-MO-RO



approach. Next, we evaluate the approach in Section V. Sec-
tion VI presents further discussions on the experimental results
and potential future work. Finally, Section VII summarizes the
whole paper.

II. RELATED WORK

During the past decades, offloading has been extensively
studied [13]. Different offloading solutions have been devel-
oped: using hierarchical method [14], or collaborative opti-
mization method [15], energy-efficient method [16]. Those
classical approaches often rely on explicit models of resources
or workflows to design the offloading policies and strategies
for a specific system. Machine Learning-based approaches
have hence been investigated [3] [4]. Among them, RL offers
an interactive approach without data labelling [5] [6] [17] [4].
However, the performance still highly depends on the design
and configuration of the learning pipeline. When applying a
mature model to a new environment, we can observe some
performance deviation among those methods. This issue is
also called the robustness of the offloading performance.
These are some work addressed this issue: adaptive methods
[18], connection stability [19], robust network contention [20].
However, compared with throughput or energy consumption,
the issue of offloading robustness from a multi-objective
perspective has gained much less attention during past years.
In the next section, we will formulate our approach step by
step.

III. BACKGROUND

A. Multi-Objective Learning(MOL)

A typical MOL [21] setup is given a collection of input
points and sets of targets for various tasks per point. A com-
mon way to set up the inductive bias across tasks is to design
a characterized hypothesis class that shares some parameters
across tasks. Typically, these parameters are learned by solving
an optimization problem that minimizes a weighted sum of the
empirical risk for each task. However, the linear-combination
formulation is only sensible when a parameter set is effective
across all tasks. In other words, minimization of a weighted
sum of empirical risk is only valid if tasks are not competing,
which is rarely the case. MOL with conflicting objectives
requires modeling the trade-off between tasks beyond what
a linear combination achieves.

An alternative objective for MOL is finding solutions that
are not dominated by others. Such solutions are said to be
Pareto optimal. In this paper, we cast the objective of MOL
in terms of finding Pareto optimal solutions.

B. Reinforcement Learning

Reinforcement Learning [22] considers learning from in-
teractions with environment to maximize the accumulated
reward. A learning task is formulated as an Markov Decision
Process (MDP), which is defined by a tuple (S,A,P,R, γ).
Here, S is the state space, A denotes the action space, R
is a reward function, P is the state-transition probabilities
matrix, γ ∈ [0, 1] is the discount factor. A policy π(a|s),

where a ∈ A and s ∈ S , is a mapping from state s to the
probability of selecting action a. We define the trajectories
sampled from the environment according to the policy π as
τπ = (s0, a0, r0, s1, a1, r1, ...), where at ∼ π(·|st) and rt is a
reward at time step t.

The state value function of a state s t under a characterized
policy π(a|s : θ), denoted as vπ(st), is the expected return
when starting in st and following π(a|s; θ) thereafter. Here, θ
is the vector of policy parameters and vπ(st) can be calculated
by:

vπ(st) = Eτ∼PT (τ|θ) [
∑
k=t

γk−trk] (1)

where PT (τ |θ) is the probability distribution of sampled trajec-
tories based on π(a|s; θ). The objective in general is to search
for an optimal policy formulated as π(a|s; θ∗) to maximize
the expected total rewards: J =

∑
s∈P vπ(sk).

C. Meta Learning

Meta-Learning [23] aims to learn a more general model
instead of learning a specific one. The robustness of Meta-
Learning comes at the randomization of the training envi-
ronment, which is thus the dynamics. The model trained by
meta-learning can effectively exploit and adapt to changes
brought incurred by dynamics faster than re-training the model
from scratch. In a typical Meta-Learning setting, the task
distribution Λ provides the training set and adaption set (new
tasks). The training process is to learn a policy model, denoted
as πθ, characterized by θ. πθ optimizes the objective function
while minimizing learning loss denoted as LD.

In this paper, we introduce the gradient-based meta-learning
into RL, which updates the learning parameter in two steps:

1) Inner layer update: Doing training on the sample drawn
for training Dtr from task distribution D to calculate the
updated θ′ according to the following update function:

θ′ = Φβ(Dtr, θ) (2)

2) Outer layer update: Using the updated θ′ to apply testing
procedure among tasks Dte, which is from the same
data set with Dtr, to update the parameter of the model
when achieving minimal of loss, we will demonstrate
the definition of the loss function in next section.

min
θ,β

ED[L(Dte, θ
′)] (3)

For the inner layer update, we adopt the gradient descent
method to update θ as follows:

Φβ(Dtr, θ) = θ − α∇L(Dtr, θ) (4)

Repeatedly, according to the convergence, after specific times
mutation of environment [24], a general model is achieved.
When a learned model encounters a new data set or a new
environment, it just needs to adapt itself by few times learning
new features. Moreover, the inner layer learns a specific
offloading model for a specific data set from a cloud log
period. As is known, all kinds of dynamics exist in resource



TABLE I: Notation Summary

Notation Description
E Mean value
tai task i

Dasi , Dari Size of data sending to or receiving from a task tai
UT,DT Transmission rate of uplink and downlink

CapLo, Capl ,Capt Computation capacity of user equipment (UE), VM l and MEC host at time t

Latuli , Latsi , Lat
dl
i , LatUE

i Latency for task i on uplink channel, MEC host, downlink channel, and UE.
Enci Energy consumption of task i
RUt Resource utilization rate at time t
ECt Energy consumption on MEC host at time t

T U
i , T s

i , T D
i , T UE

i Finish time for task t i on uplink channel, MEC host, downlink channel, and UE
AvUi , Avsi , AvDi , AvUE

i Resource available time for task tai on uplink channel, MEC host, downlink channel, and UE
Pol1:n Computational offloading plan for n tasks
Ti, ρ(T ) A learning task and distribution of learning tasks
si, ai, ri State, action, and reward of an MDP at time step i

π(a|s; θ), v(s; θ) Parametrized policy and value function for computation offloading.
τπ Trajectories sampled from the environment based on the policy π.

Fen,Fde Functions of encoder and decoder
ei, di Output of encoder and decoder at time step i
ci Context vector at decoding step i

Ât Advantage function at time step t
Up(θ, Ti) Update function (e.g., Adam) for the learning task
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Fig. 1: Typical Offloading Process

availability and task demands. The data trajectories conse-
quently change dynamically, where the outer layer is working
on learning across different data trajectories to achieve more
features improving robustness. As to the inner layer, the
learning goal is to learn the offloading model, which acts as
a scheduler in the system interacting with the task model and
cloud platform models. Therefore, the inner layer’s learning
approach has decent interactive ability while learning for this
role. Reinforcement Learning is ideal for this mission among
different learning approaches as its structure fits the problem
set up in this work. The following subsection will introduce
the details of the RL approach’s feasibility and its design.

IV. METHODOLOGY

A. Problem Formulation

As is shown in Figure 1, in a typical offloading process,
the application requests together with dependencies form the
workflow. The decision made by the local scheduler is whether
to offload the tasks to the MEC host based on the user side
local calculation capability and the resource availability of the
MEC host. On the MEC host, the orchestrater allocates tasks
to VMs. The DAG models of workflows are D = (TA, E⃗D),
where vector TA represents the tasks and vector E⃗D repre-
sents the directed edge of each task dependencies among the
tasks, respectively. e⃗d = (tai, taj) denotes the dependency
between task tai and task taj : taj is an immediate successor
task of tai. A successor task has to wait for the ending of
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its leading task’s execution until the last one. Given ξ type
of VMs with heterogeneous resources with different type of
resources combination, the computation capacity of each is
Capl, l ∈ [1, 2, 3, ..., ξ]. The task profile of tai includes the
required resource requirement for running the task, Cpi, data
sizes of the task sent, Dasi , and the result data received,
Dari . The state information of the MEC host includes the
transmission rate of the wireless uplink channel, UT , and the
rate of the downlink channel, DT . Therefore, the latency for
sending data, LatUi , executing on the MEC host, Exs

i , and
receiving the result, LatDi , energy consumption Enci of task
tai can be calculated as:

LatUi = Dasi/UT ,Exs
i = Cpi/Capl,

LatDi = Dari /DT ,Enci = m(LatUi + LatDi ) + nExs
i

(5)

where m,n are thresholds between latency and energy con-
sumption. If task tai runs locally on the end-user side, there
is only running latency on the end-user side, which can be
obtained by LatLo

i = Cpi/CapLo, where CapLo denotes
the computation capacity of the end-user. The end-to-end
latency of a task offloading process includes local processing,
uplink transmission, and remote processing latency and results

receiving latency, as shown in Figure 1.The offloading policy
is denoted as Pol1:n = a1, a2, ..., an, where |TA| = n and ai
represents the offloading decision of tai.

The finish time on the uplink channel, T U
i , are defined as:

T U
i = max{AvUi , max

j∈parent(ti)
{T UE

j , T D
j }}+ LatUi ,

AvUi = max{AvUi−1, T U
i−1}

(6)

The finish time of tai on the MEC host, FT s
i , resource

utilization rate RUt, energy consumption ECt, and latency
on the downllink channel, FTD

i are defined as:

T s
i = max{Avsi ,max{T U

i , max
j∈parent(ti)

{T s
j }}}+ LatUi ,

Avsi = max{Avsi−1, T s
i−1},

T D
i = max{AvDi , T s

i }+ LatDi ,

AvDi = max{AvDi−1, T D
i−1}

RUt = Capt/Capl

ECt = p(FT s
i − TU

i ) + qRUt

(7)



where p, q are energy consumption threshold. The finishing
time of tai on the end user side, FTUE

i are defined as:

T UE
i = max{AvUE

i , max
j∈parent(ti)

{T UE
j , T D

j }}+ LatUE
i ,

AvUE
i = max{AvUE

i−1, T UE
i−1 }.

(8)

Overall, given a offloading plan Pol1:n, the total latency of a
DAG: LatcA1:n

, is defined as:

LatcPol1:n = max[max
tk∈K

{T UE
k , T D

k }] (9)

where K is the set of exit tasks which have no successor tasks.
In the next section, we present the details of out proposed
algorithm dealing with this problem.

B. Multi-Objective Offloading

As is shown in Figure 2, the whole offloading process starts
when the new workflows form. First, they will be embedded
and input in Encoder, depicted on top of the green area in
orange color. Then, the output states of Encoder are the input
of Decoder, depicted in the middle of the green area in red
color, to get the offloading policies prediction. Finally, based
on those offloading policies prediction, the RL agent calculates
the rewards of resource utilization, energy consumption, and
latency, which are depicted at the bottom of the green area.
After the learning process by the RL agent, as depicted in
the middle green part, the meta learner adapts to the gradients
updates learned by RL agents to pick the action of offloading
policy for each state. The Meta-Learning process is depicted
in the pink block at the right top of the figure, named "Meta
Learning-Based Adaptation." Finally, the framework updates
the overall offloading policy model and related parts: resource
availability and energy consumption.

More specifically, we formulate the algorithm step by step
in the following part; firstly we start with the MDP formulating
of the RL part:

1) State: When offloading a task tai, we define the state
as a combination of the encoded DAG and the partial
offloading plan:

S := {si|si = (D = (TA, E⃗D), Pol1:i)}, i ∈ [1, |TA|],
(10)

where D = (TA, E⃗D) is comprised of a sequence of
task embedding, and Pol1:i is the offloading policy of
the tasks scheduled before tai.

2) Action: The offloading for each task is a binary choice;
thus, the action space is defined as: A, which includes
actions: execution locally, execution on different VMs
with different resources.

3) Reward: The objective is to minimize loss given by
Equation 15. In order to achieve this goal, we define the
reward function as the estimated negative increment of
the reward function after making an offloading decision

for a task. Formally, when taking action for the task tai,
the increment is defined as:

∆rci = rAc
1:i

− rAc
1:i−1

(11)

Based on the above MDP definition, we denote the policy
when offloading tai as:

Pol(ai|D = (TA, E⃗D), A1:i−1) (12)

and the policies for workflow as

Pol(A1:n|D = (TA, E⃗D))

=
n

Π
i=1

Pol(ai|D = (TA, E⃗D), A1:i−1)
(13)

Figure 2 shows our design of offloading training model. In
the training paradigm, both encoder and decoder are built with
recurrent neural networks(RNN) [25]. The input of the encoder
is the sequence of task embedding, while the output of the
decoder is the offloading decisions of each tasks. We include
the attention mechanism [26] to allow the decoder to attend to
different parts of the source sequence without information loss
issue. We define the functions of the encoder and decoder as
Fen and Fde respectively. At each step of encoding, the output
of the encoder, ei, is obtained by ei = Fen(tai, ei−1). After
encoding all the input task embedding, we have the output
vector as e⃗ = [e1, e2, ..., en]. At each decoding step, we define
the output of the decoder, dj , as dj = Fde(dj−1, aj−1, cj),
where cj is the context vector at decoding step j and is
computed as a weighted sum of the encoder: cj =

∑n
i=0 αjiei

The weight αji of each output of encoder, ei is computed
by

αji =
exp(f(dj−1, ei))∑n
k=1 exp(f(dj−1, ei))

, (14)

where the score function, f(dj−1, ei), is used to measure
how well the input at position i and the output at position
j match. We use the sequence-to-sequence neural network
[27] to approximate both policy Pol(aj |sj) and value function
vPol(sj) by passing the output of decoder to two separate fully
connected layers. During training for the sequence-to-sequence
neural network, the action aj is generated through sampling
from the policy Pol(aj |aj). Once the training is finished, the
action aj is generated by aj = argmaxajPol(aj |sj).

The overall objectives we investigate in this work include
latency, resource utilization rate, and energy consumption,
denoted respectively by OBl, OBur, and OBec, respectively.
Therefore, given N training data samples, the overall objective
of the learning approach can be formulated as:

argmax
rOBl ,rOBur ,rOBec

ri =

N∑
i=1

[
r(LatcPol1:n , Pol1:n)

+war(RUt, Pol1:n)

+wbr(ECt, Pol1:n)
] (15)

where ri represents the reward of i-th data sample: rOBl
i ,

rOBur
i , and rOBec

i , namely rewards of latency, resource uti-
lization rate and energy consumption. wa, wb, are weights that



signifies the importance of different optimization objectives.
The corresponding rewards are calculated as follows:

r(LatcPol1:n , Pol1:n) = max[0, (LatcPol1:n −Υ)]Pa,

r(RUt, Pol1:n) =
[
max[0, (RUt −RUm)]

+ waLat
c
Pol1:n

]
Pa,

r(ECt, Pol1:n) =
[
max[0, (ECt − ECm)]

+ wbLat
c
Pol1:n

]
Pa,

(16)
where, Pa denotes a constant representing penalty, Υ is
latency-critical threshold, RUm, ECm are the upper bounds
of resource utilization rate and energy consumption expense.

C. Robust Offloading

After formulation of multi-objective offloading, we turn to
Meta-Learning formulation [23], which consists of two loops
for training: inner loop and outer loop. We define the objective
function based on Proximal Policy Optimization (PPO) [28]:

JC
tai

(θi) = Eτ∈Ptai
(τ,θo

i )

[
n∑

t=1

min
(
Prt, Ât, slice

1+ϵ
1−ϵ(Prt)Ât

)]
(17)

where, πθo
i

is the sample policy, θoi is the vector of parameters
of the sample policy network, πθi is the target policy, where
θi equals to θoi at the initial epoch. Prt is the probability ratio
between the sample policy and target policy, which is defined
as

Prt =
πθi(at|D(TA, E⃗D), A1:t)

πθo
i
(at|D(TA, E⃗D), A1:t)

(18)

The slice function slice1+ϵ
1−ϵ(Prt) aims to limit the value of

Prt, in order to remove the incentive for moving Prt outside
the interval [1− ϵ, 1+ ϵ]. Ât is the advantage function at time
step t. Specially, we use general advantage estimator (GAE)
[29] as our advantage function, which is defined as:

Ât =

n−t+1∑
k=0

(
γλ)k(rl+k + γνπ(st+k+1)− νπ(st+k)

)
, (19)

whereλ ∈ [0, 1] is used to control the trade-off between bias
and variance. The value function loss is defined as:

JV E
Ti (θi) = Eτ∼Ptai

(τ, θoi )

[
n∑

t=1

(νπ(st)− ν̂π(st))
2

]
(20)

where ν̂π(st) =
∑n−t+1

k=0 γkrt+k.
Overall, we combine Equation 17 and Equation 20, defining

the objective function for each inner layer task learning as:

JPPO
Ti (θi) = JC

tai
(θi)− c1J

V E
Ti (θi), (21)

where c1 is the coefficient of value function loss. The outer
layer objective is expressed as:

JMLD(θ) = ETi∼ρ(T ),τ∼PTi
(τ,θ

′
i)
[JPPO
Ti (θ

′

i)], (22)

where θ
′

i = Upτ∼PTi
(τ,θi)(θi, Ti), θi = θ. To simplify the

calculation complexity, we use the fist-order approximation
to replace the second-order derivatives which is defined as

GradMLD :=
1

n

n∑
i=1

[
(θ

′

i − θ)/α/h
]
, (23)

where n is the number of sampled learning tasks in the outer
loop, α is the learning rate of inner loop training, and h is the
conducted gradient steps for the inner loop training.

D. MRL-MO-RO Algorithm

Algorithm 1 Meta-Reinforcement-Learning-based multi-
objective robust offloading algorithm(MRL-MO-RO)
Require: Distribution over workflows: Λ, Learning rate: α, β ∼ R+

1: Initialize the policy πθ and D ← ∅
Require: Number of environments: N

2: for i = 1, ...N do
3: Use pre-adapted policies πθ′

H
to sample D′ ∼ Λ

4: Add samples: D ← D′

5: for j = 1, ..., H do
6: Set a sliding door with the size hi ∈ (0, H)
7: Use policies πθ to sample trajectories within first hi samples τhi

∼ H
8: Use τH to calculate adapted parameters:
9: θ′

hi
= θ + α

∑hi
j=1∇ log JPPO(θ)

10: Use adapted policy πθ′
hi

sample trajectories τ ′
hi
∼ H

11: end for
12: Use τH to calculate adapted parameters:
13: θ′

H = θ + α
∑

hi
∇ log JPPO(θ

′
hi

)

14: Use adapted policy θ′
H sample trajectories τ ′

H ∼ D
15: end for
16: Calculate update:
17: θ ← θ − β∇θ

1
H

∑H
j=1 JMLD

j (θ′
H) using τ ′

H

18: return θ

This section elaborates on the overall algorithm in detail,
merging all components mentioned in previous sections. As is
shown in algorithm 1, distribution over tasks, and learning
rates of the outer and inner loop are required. The first
step is the initialization of the algorithm: setting the initial
parameters of the policy model and resetting the data set D.
We also set a sliding learning window with a size of h to
improve the algorithm as a continuous learning process. From
line 2 to line 4 is the sampling step: based on the number
of environments, N data trajectories are sampled from the
distribution Λ according to the current policy model and added
to the data set D. In the following inner layer learning loop
from lines 5 to 9, the learning agent samples a smaller sliding
learning window with a size of h to calculate updated θ′h based
on each loss function line 10. Unlike conventional RL or other
learning methods, the overall policy model is not updated by
any parallel inner layer learning agent. After achieving updated
θ′h, RL agent uses θ′hi

model to sample new data samples τ ′hi

from D. In line 12, the learning agent finishes a sliding window
learning and then continues to the next sliding window. The
learned τ ′hi

are used to calculate θ′H and update τ ′H . From lines
16 to 17, the overall parameter update for offloading policy
model is calculated based on the gradient of θ′H learned by the
RL agent from each sliding window within each environment.
After each iteration, the sliding window continues to sample



TABLE II: Fine-tuned baseline approaches: we train DQN, Double-DQN, CEM based approaches as baselines of our proposed MRL-MO-RO.

Fine-tuned RL Approaches

Baseline Approaches
Parameters NN Layers Replay Buffer Size Optimizer ρ Learning Rate Activation Function

DQN 4 − Adam 0.95 1e-3 ReLU, Softmax
Double-DQN 3 500 Adam 0.95 1e-3 ReLU, Softmax

CEM 3 − Adam 0.95 1e-3 ReLU, Softmax

TABLE III: MRL-MO-RO Hyperparameter set up

Hyperparameter Set up Hyperparameter Set up
Encoder LSTM, 2 Layers, norm: on Outer Loop Learning Rate 5× 10−4

Number of Neurons 256 Activation Function tanh
Decoder LSTM, 2 layers, norm: on Loss Coefficient 0.5

Inner Loop Learning Rate 5× 10−4 Slice Constant 0.2
Optimizer Adam Discount Factor 0.99

Gradient steps h 3 Adv Discount Factor 0.95

another data set then the whole algorithm stays a continuous
learning process.

V. EVALUATION

In this section we implement comprehensive evaluation to
validate performance of MRL-MO-RO from following two
perspectives:

1) How is the overall offloading optimization performance
of MRL-MO-RO compared with single-objective offload-
ing optimization approaches?

2) How is the performance robustness of MRL-MO-RO
against dynamics?

A. Evaluation Measurements

To answer these two questions, we define two groups of
measurements. The first group is correspondingly related to
three objectives: latency, resource utilization rate, and energy
consumption:

QoS Latency Critical Rate (QLCR) [5]: total percentage of
executed tasks that meet latency required by QoS.

Resource Utilization Rate (RUR) [30]: average percentage
of utilized resources among executed tasks.

Energy Consumption Expense (millions) (ECE) [30]: total
electricity consumption bill of executed tasks that meet ex-
pected latency. ECE indicates the level of energy consumption
for each method.

Robustness measurements [5] includes: Offloading Perfor-
mance Deviation(OPD) and Adaptation Steps and Data Usage
for Performance Recovery(ASDUPR). They are formulated as
follows:

OPD =
PERafter − PERbefore

PERbefore
(24)

where, PERafter denotes the instant average offloading loss
after the influence of dynamic, PERbefore indicates the
previous converged average offloading loss. Besides the instant
performance deviation, ASDUPR is proposed to describe

adaptation, include time and data iteration needed for adapta-
tion after performance deviation incurred by dynamics:

ASDUPR = OPD ∗ ITER ∗ to (25)

where ITER demonstrates the iteration time, to describes
time spent for each iteration.

B. Set up

Platform settings: We implement the experiments on a
hardware platform consists of 18 nodes, each node has: 4
x GTX 1080 Ti, 2 x Intel(R) Xeon(R) Gold 5118 CPU @
2.30GHz (12 cores per cpu), 128 GB memory, 2 x 10 TB local
HDD, 2 x 4 TB local SSD. The software environment includes:
Anaconda, python-numpy, python-scipy, python-dev, python-
pip, python-nose, g++ libopenblas-dev, git, Thensorflow, and
python-matplotlib.
Simulation Environment: We consider a cellular network,
where the data transmission rate varies with the UE position.
The CPU clock speed of UE, fUE is set to 1GHz. There
are four cores in each VM of the MEC host with a CPU
clock speed of 2.5 GHz per core. The CPU clock speed of a
VM, fVM is 4 × 2.5 = 10 GHz. We implement a synthetic
DAG generator according to [31] based on four parameters:
n, fat, density, and ccr, where n represents the task number,
fat controls the width and height of the DAG, density decides
the number of edges between two levels of the DAG, and ccr
denotes the ratio between the communication and computation
cost of tasks.

C. Results

To validate the offloading optimization performance of the
MRL-MO-RO algorithm, as is shown in Table IV, we compare
the offloading performance of our MRL-MO-RO algorithm
with RL-based approaches on the DAG data. Each of the
RL-based approaches has a single objective separately. We
change the workload in the same manner for each method
under the same resource availability setup to get the aver-
age optimization results of each objective to compare the



TABLE IV: Offloading Performance Comparison: we compare MRL-MO-RO with fine-tuned DQN(optimizes latency), Double-DQN(optimizes
resource utilization rate) and CEM (optimizes energy consumption) to show that MRL-MO-RO achieves better latency-critical offloading
performance

Workflow Topology

Indicators Approaches

MRL-MO-RO DQN Double-DQN CEM

QLCR RUR ECE QLCR RUR ECE QLCR RUR ECE QLCR RUR ECE
Topology 1 95.33%±0.26% 56.13%±2.24% 15.32±2.36 89.56%±2.36% - - - 69.34%±2.15% - - - 17.38± 1.67
Topology 2 93.33%±0.51% 63.35%±1.05% 16.75±0.66 85.33%±2.05% - - - 75.63%±3.12% - - - 19.34± 0.88

n=20 96.16%±0.33% 50.71%±2.65% 12.67±2.34 90.78%±0.43% - - - 67.37%±3.65% - - - 15.38± 1.67
n=30 92.34%±0.23% 57.66%±3.27% 15.02±1.32 88.53%±2.54% - - - 73.54%±1.36% - - - 17.86± 0.65

UT=DT=8.5Mbps 97.53%±0.42% 60.13%±2.58% 18.25±2.41 90.47%±2.34% - - - 68.59%±3.07% - - - 21.57± 1.87
UT=DT=5.5Mbps 95.67%±0.58% 72.63%±0.57% 20.15±1.56 87.21%±1.06% - - - 79.32%±1.68% - - - 23.77± 1.16
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Fig. 3: Comparison of performance deviation between MRL-MO-RO
and other 3 fine-tuned single-objective RL-based approaches: with
the same amount of workload increase, MRL-MO-RO experiences
lower performance deviation

proposed MRL-MO-RO offloading performance. As can be
seen, all numbers in bold are the ones with the best per-
formance. MRL-MO-RO stably offers offloading policies in
each environment, outperforming the other three fine-tuned
RL methods regarding each objective: expected latency-critical
rate, resource utilization rate, and energy consumption. Overall
more than 92.34%±0.23% tasks offloaded meet the expected
latency 720ms [18], less than 72.63% ± 0.57% resources are
utilized, energy consumption is less than 20.15 ± 1.56 (mil-
lion). In contrast, other tasks offloaded by other RL methods
have a 9.12% − 14.67% violation rate of latency require-
ment, using 10.35% more resources and 3.56 million more
electricity. Moreover, for heavier tasks (topology 2, n=30,
UT=DT=5.5Mbps), shown in Table IV, our method MRL-MO-
RO still offers better offloading performance regarding multi-
objective among different environments. Thus MRL-MO-RO
outperforms the other three fine-tuned single-objective RL-
based approaches in offlaoding performance.

To validate the robustness of the MRL-MO-RO algorithm’s
offloading performance, as shown in Figure 3: with the in-
creasing workload, the performance deviation of MRL-MO-
RO remains stable within 65%, for some range even under
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Fig. 4: Comparison of adaptation time spent on retraining after
workload changes between MRL-MO-RO and other fine-tuned single-
objective RL-based approaches: with the same amount of workload
increase, MRL-MO-RO spend less time to recover offloading perfor-
mance

23%. On the other hand, other RL approaches’ performance
decreases from more than 50% even beyond 320% with the
increased workload. From this, the robustness of our MRL-
MO-RO outperforms the conventional RL approach. Figure 4
shows the adaptation speed or performance recovery speed
discounted by the performance deviation portion, which bal-
ances the adaptation speed and robustness performance. As is
shown, we cloud see that the adaptation speed of MRL-MO-
RO is more than four times faster than RL averagely after
every time increase of workload, at some point, even more,
proving its robustness to dynamics of the environment.

VI. DISCUSSION

As shown in results Section V, our proposed approach
MRL-MO-RO outperforms the fine-tuned conventional single-
objective RL-based approaches at both multi-objective of-
floading optimization and the offloading robustness against
dynamics among environments. Our approach’s offloading
deviation and adaptation speed change in a similar trend during
increased workload. Firstly they both increase within the range
of 10%-30% workload increase then decrease within the range
of 30%-65% which increases again. Thus when given a 50%
or minor workload increase, our approach could still keep



robustness without lower than 30% performance deviation.
The robustness decreases when workload increases beyond
50% but still with lower than 50% performance deviation,
much lower than fine-tuned single-objective RL-based meth-
ods (more than 320%). We are currently working on expanding
the robustness range where our framework’s framework could
keep robustness with lower performance deviation to improve
the overall offloading robustness further. However, there is
still room for further improvement, particularly for reducing
the deviation right after the dynamic workload changes. Fur-
thermore, by investigating alternative offloading strategies like
migrations of tasks or policies redundancy, we could improve
offloading performance robustness.

VII. CONCLUSION

In this work, within the Edge-to-cloud continuum envi-
ronment, MRL-MO-RO, a robust multi-objective workflow
offloading algorithm, is presented to offer offloading opti-
mization from objectives: latency, resources utilization rate,
and energy consumption. We propose a Meta-Reinforcement
sequence-to-sequence robust learning framework to quickly
adapt an offloading policy model to a newly changed envi-
ronment while optimizing multi-objective at the same time.
Experimental results show that our approach can provide
better offloading optimization performance regarding three ob-
jectives, outperforming fine-tuned single-objective RL-based
methods. Furthermore, our MRL-MO-RO approach finishes
adaptation in new environments using fewer training iterations,
320%-510% faster than the fine-tuned single-objective RL
approach, achieving better robustness while offering better
offloading performance.
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