
Keep It Simple: Fault Tolerance Evaluation of
Federated Learning with Unreliable Clients
Victoria Huang∗, Shaleeza Sohail†, Michael Mayo‡, Tania Lorido Botran§, Mark Rodrigues‡,

Chris Anderson‡, Melanie Ooi‡
∗National Institute of Water and Atmospheric Research, Wellington, New Zealand

victoria.huang@niwa.co.nz
†University of Newcastle, New South Wales, Australia

shaleeza.sohail@newcastle.edu.au
‡University of Waikato, Hamilton, New Zealand

Michael.mayo, Mark.rodrigues, Chris.anderson, Melanie.ooi@waikato.ac.nz
§Roblox, California, United States

tbotran@roblox.com

Abstract—Federated learning (FL), as an emerging artificial
intelligence (AI) approach, enables decentralized model training
across multiple devices without exposing their local training data.
FL has been increasingly gaining popularity in both academia
and industry. While research works have been proposed to
improve the fault tolerance of FL, the real impact of unreliable
devices (e.g., dropping out, misconfiguration, poor data quality)
in real-world applications is not fully investigated. We carefully
chose two representative, real-world classification problems with
a limited numbers of clients to better analyze FL fault tolerance.
Contrary to the intuition, simple FL algorithms can perform
surprisingly well in the presence of unreliable clients.

Index Terms—Federated learning, fault tolerance, unreliable
clients, robustness, rural environment

I. INTRODUCTION

As an emerging learning paradigm, federated learning (FL)
provides a new training method that allows data owners (also
called clients) to enjoy the performance of a jointly trained
model without violating their data privacy. Whereas traditional
machine learning (ML) follows a data-to-model approach (i.e.
training data from various clients need to be centralized in
one node), FL takes an opposite model-to-data approach. In
FL, models trained by clients using their local data are shared
to a centralized node (called server), as opposed to the data.
The server updates a global model by aggregating the received
local models. The global model will be broadcasted to clients
to replace their local models. This means that data never
leaves the clients, thus preserving data privacy. Meanwhile,
the local sites can take advantage of the improved accuracy
resulting from the aggregated model trained across all of the
data as opposed to local data only. FL therefore addresses data
privacy and data sharing dilemma while potentially offering
superior model performance. Given its promising features, FL
has attracted much research attention [1].

Although FL has great potential in real-world applications,
there have been very few FL applications reported at the

Identify applicable funding agency here. If none, delete this.

production level, with most of the work being at a proof-of-
concept prototype level with synthetic datasets [2]. Meanwhile,
implementing FL in a rural environment introduces multiple
further complications, all of which are currently active tar-
gets for research [3]–[5]. The complications can be broadly
grouped into the following issues:

• reducing communication overhead (e.g., using model
compression [6]).

• improving energy efficiency (e.g., modifying conven-
tional FL algorithms to save 59% energy cost [7]).

• heterogeneity of clients and where to place computation
(e.g., some of the model aggregation can be performed at
the edge servers to reduce the communication overhead
and also the load on the cloud server [8]).

• impact of unreliable clients that drop in and out of the
federation [9], [10] or send low-quality data [11], [12].

This last problem (unreliable clients) is largely unaddressed in
the literature and posed as an open research challenge [3].

We therefore focus our study in this paper via a systematic
evaluation on the robustness of FL to unreliable clients in
rural applications. Note that in this paper, we consider different
scenarios of unreliable clients related to infrastructure-level
errors and ML-specific inconsistencies:

• Infrastructure-level errors:

– Clients randomly and completely drop in and out of
the federation. This can be caused by unstable power
supplies when clients are deployed in isolated areas.
Clients may sometimes drop out during the training
process and join back later.

– Clients randomly and partially drop in and out.
Compared to completely dropping out, clients may
sometimes fail to upload their locally trained models
but they are still able to receive the aggregated global
model or vice versa. This can happen when the
network connection is unreliable.

• ML-specific inconsistencies:

ar
X

iv
:2

30
5.

09
85

6v
1 

 [
cs

.L
G

] 
 1

6 
M

ay
 2

02
3



– Client misconfiguration. For example, the hyper-
parameters (e.g., learning rate) of one client are
misconfigured and different from others.

– Low-quality data. For example, the training data
collected by the client may be low-quality due to
hardware constraints or mislabelled due to human
mistakes.

The ultimate impact of unreliable clients on a particular
system will depend on other factors, such as the number of
clients or the size of local dataset [13]. There are efforts
to establish metrics that quantify the influence of individual
clients on the model outcome, but such metric fails to capture
the overall reliability of FL algorithms [14]. Moreover, ap-
plications reported in the literature [15], [16] usually involve
hundreds of clients. It should be noted that in rural settings,
there may only be a very limited number of clients involved,
making the impact of unreliable clients potentially significant.
Thus, we carefully select our target scenarios that involve a
limited number of clients.

In this paper, we develop a prototype system building on
federated Function-as-a-Service using funcX [17], a federated
serverless framework. Two real-world applications have been
investigated: weeds detection in precision agriculture in Sec-
tion III and wildlife detection in camera traps in Section IV.
In particular, unreliable clients with infrastructure-level errors
will be studied in precision agriculture and ML-specific incon-
sistencies will be investigated in wildlife detection. To provide
representative results, each scenario considers a very low num-
ber of clients (between 3 to 6). Extensive experiments have
been conducted and showed that even a simple FL algorithm
is surprisingly robust to unreliable clients. By analysing FL
robustness against unreliable clients, we aim to understand
its impact in real-world applications. This will enable us to
evaluate the level of sophistication required of FL algorithms
for rural deployment.

II. PROBLEM FORMULATION

The two target scenarios belong to a classification problem
with a set of K data sources (or clients), all scattered over
different locations. The statistical properties of each data
source are not homogeneous, e.g. different class distribu-
tions. Each client is in charge of collecting and storing large
amounts of local data. The traditional approach [18], named
centralized approach in terms of data collection and model
training, involves transferring all the data from each of the
clients to a single server that will perform the training. This
comes with a high network cost and potentially violates data
sovereignty [19].

To circumvent these drawbacks, FL proposes splitting the
training between clients and the server [20]. The algorithm is
fairly simple: it involves an infinite communication loop be-
tween the server and the clients. The server trains a generated
(shared) model. A set of clients download a copy (weights) of
the shared model and perform local updates leveraging private
data, based on some optimization algorithm like stochastic
gradient descent. Periodically, clients send a summary of the

changes made to the local model (weights of the trained neural
network) back to the server. Once it has gathered all the data,
the server utilizes some aggregation techniques to perform an
update to its shared model [21].

Federated Averaging Algorithm

A very popular aggregation technique is called Federated
Averaging algorithm [16]. In this case, the server computes
the average of the updates received from each client. The full
pseudocode is depicted in Algorithm 1. At the server, K clients
are selected, which are indexed by a variable k. In parallel,
all clients update the generic model weights according to the
ClientUpdate function, which returns the trained weights w
back to the server. Finally, the server computes the average
of all weights w received from the K clients. The average
of the weights is regarded as the new set of weights for
the generic model. Despite its clear advantages, Federated
Averaging was not designed with specific fault tolerance
features that might lead to sub-optimal model performance.
Unreliable clients can be classified into two main types: those
with infrastructure-level errors (e.g. faulty network), and the
second involves ML-specific inconsistencies (flipped labels,
misconfigured hyperparameters such as learning rate, other
errors in collected data).

Algorithm 1: FederatedAveraging: The K clients are
indexed by k; B is the local minibatch size, E is the
number of local epochs, and η is the learning rate

Server executes ():
initialize w0

for each round t = 1, 2, . . . do
m← max(C ·K, 1)
St ← (random set of m clients)
for each client k ∈ St in parallel do

wk
t+1 ← ClientUpdate(k,wt)

end
wt+1 ←

∑K
k=1

nk

n w
k
t+1

end

Client update (k,w):
B ← (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − η∇l(w; b)

end
end
return w to server;

Infrastructure-level errors in Federated Learning

These errors are due to uncontrollable events in the un-
derlying system. During a global update cycle, the server
assumes a total of k weight updates, one belonging to each
client. However, one or more clients might fail to send weight
updates intermittently or permanently, due to a faulty network



connection [10], [22]. Moreover, as stated earlier, each data
source might show different statistical properties, such as
class imbalances or even missing representation for certain
class(es) [23]. A faulty network coupled with heterogeneous
data sources missing might lead to bad model performance, a
model unable to generalize well to certain types of cases or
even recognize certain classes at all.

A real-world classification problem has been selected to
assess the robustness of Federated Averaging learning towards
such infrastructure-level issues. The target use case focuses
on the detection of certain weed species from hyperspectral
images. This kind of dataset requires large volumes of storage
space, discouraging from transferring the data to a centralized
location. It is the ideal candidate for Federated Learning-
based training. The proposed set of experiments empirically
analyzes the impact of network failures on the model accuracy,
considering both permanent and intermittent failures from one
or more clients simultaneously.

ML-specific inconsistencies in Federated Learning

Clients with ML-specific inconsistencies disrupt the model
training process, compromise its accuracy or even change
the model behavior altogether. The central model relies on
properly labelled data from each data source. The primary
source of irregularities might come from the data itself: Certain
clients might provide mislabelled training data or intentionally
flipped class labels [24], [25]. As a result, the resulting model
will not be able to detect certain class(es), deeming the system
unusable.

Federated learning relies on a number of configuration
parameters (see Algorithm 1) to tune the ultimate model accu-
racy. In certain situations, some clients may have wrong values
of such parameters with malicious intentions or simply due to
a misconfiguration and will degrade the model performance.
The learning rate η has been shown to be a parameter of
choice [24], [25] and able to affect the performance of both
the aggregated, central model and the local ones [26].

In order to evaluate the effects of ML-specific inconsis-
tencies in federated learning, a second real-world application
has been utilized, named animal detection from trap cameras.
Such trap cameras are placed on different locations and collect
bursts of (at least) three images whenever the motion sensor
is triggered. The experiments are designed to analyze the
separate effects of mislabelled data and incorrect learning rate
values, and also explore whether the combination of both kinds
(flipped labels and learning rate values) amplifies the negative
effect.

As explained above, Federated Averaging Learning was not
designed with fault tolerance behavior. Intuitively, we would
expect the model performance to degrade as infrastructure-
level or ML- specific inconsistencies develop. The experiment
set carried out through two real-world applications will prove
(empirically) that Federated Average Learning has a bigger
than expected tolerance for such behavior.

III. FL IN PRECISION WEEDS DETECTION

We focus on precision weeds detection as our rural agricul-
ture application. This robotic system uses a near-infrared hy-
perspectral imaging system to guide the operations of a mobile
precision pesticide spraying system [27] (see Fig. 1). The use
of near-infrared hyperspectral cameras as a replacement for
standard RGB cameras is motivated by research suggesting
that spectral measurements can more accurately distinguish
weeds from produce [27]. However, the more sophisticated
cameras also increase power and data requirements, leading
to a need to optimize power and energy consumption in order
to achieve maximum area coverage. An effective solution
should process camera data locally for weed detection, but also
communicate a locally processed model to the global database
for aggregation. Therefore, FL is a good fit for this application.

Our intent is to investigate the practical aspects of FL for
weeds detection where we deploy a Pasture Care Robot with
hyperspectral imaging capabilities. Note that in a large pasture
area, full network coverage may not be guaranteed. When the
robot is operating in the pasture, it is unavoidable that the robot
will completely drop out during the FL training due to network
connection issues. Moreover, when the robot’s power level is
low, it is a common engineering practice that the robot will
prioritize navigation over data transmission. In other words,
the robot may still receive data but not transmit data in order
to conserve battery. Motivated by these, in this weeds detection
application, we will investigate the unreliable client scenarios
where clients completely or partially drop in and out of the
federation.

A. Dataset

As summarized in Table I, the dataset we used in our
experiments consists of hyperspectral pasture images taken
from three different rural sites [27]. The dataset was labelled
with four classes including three different species of pastoral
weed: Jacobaea Vulgaris (common name: Ragwort), Ulex
(common name: Gorse), Rubus (common name: Blackberry),
and a background class of grass. These near-infrared hy-
perspectral images were taken using a Pika hyperspectral
camera and normalised against a white reference to convert
from radiance to reflectance while also removing instrument-
specific variations. Sample points were extracted from the
image datacubes, whereby each pixel had 148 dimensions
in the infrared spectrum of 900nm to 1700nm. The dataset
was partitioned into training (80% of the samples) and testing
(20% of the samples) datasets in a randomized class-stratified
manner.

Class normalization of dataset was not performed as our
evaluation considers each hyperspectral image individually. In
a live environment, it is conceivable that a site has insufficient
examples of any given class such that normalization would
remove large portions of valid data. We consider this data
valid as we compare federated and centralized models to
local models: models that would use such data exclusively.
A fundamental part of the evaluation of FL in this case is the
ability to benefit from the knowledge of other sites.



NIR-HSI Weed Detection System

Downward-facing Hyperspectral 
Imaging System

Hypercube acquisition

Locally identify 
target weeds 
species 

Send 
models to
Cloud

Aggregate models and Business 
Intelligence

Hyperspectral Dataset

Federated Learning ModelsAgricultural Robotics System

Send aggregated 
model and 
business decision 
functions

Execute Function: Actuate Precision Spraying

Fig. 1: Hyperspectral Weeds Detection System

TABLE I: Hyperspectral pasture image dataset with imbal-
anced class distributions and disparate volumes of data among
different sites (W: Pastoral weeds, G: Background grass)

Location Site A Site B Site C Total
#Samples 60,072 30,240 6,232 104,544
#Classes 4 (3W + G) 4 (3W + G) 2 (1W + G) 4 (3W + G)

Note that the heterogeneity in our dataset poses challenges
for FL: (1) Data heterogeneity on class labels. As shown in
Table I, data from the first two sites were balanced across all
four of the classes while data from the third consisted of only
one weed species and grass, making the distribution of ex-
amples between sites quite different and therefore potentially
challenging for FL. (2) Data heterogeneity on data volumes.
Site A provided approximately two times as much data as site
B and ten times as much data as site C.

B. Experiment Plan

We evaluate the capabilities of FL in supporting cross-field
hyperspectral weeds detection from two aspects:

1) Classification accuracy: To justify the use of FL, we
compared FL with a fully localized approach and a fully
centralized approach as shown in Fig. 2. The fully localized
approach (Fig. 2, green figure) represents a completely decou-
pled system where each model is trained locally at the three
sites and there is no communication at all between sites. The
fully centralized approach (Fig. 2, blue figure) represents a
completely centralized approach where the model resides on
a cloud server and all data must be uploaded to the server
before the model is trained. These two approaches represent
the current alternative status quo, both of which have disad-
vantages. For example, the centralized approach can introduce
large communication overhead because it requires all data to
be uploaded to the cloud. Moreover, the centralized approach
cannot be used with sensitive data due to the violation of data
sovereignty. Although these issues can be addressed by the

DA DB DC

MA MB MC

DA DB DC

M

DA DB DC

MA MB MC

M*

Fig. 2: Approaches to ML in rural AI. Green illustrates a
typical fully localised system where data is not shared between
sites; each model is locally relevant only with no communica-
tion between sites. Blue illustrates a fully centralised system
where all data is uploaded to the cloud and a single centralised
model is trained; while potentially the most accurate approach,
this cannot be used with sensitive data or where the amount of
data to be transferred is too large for the available bandwidth.
Yellow shows a federated approach where data is kept local
while models are sent to the parameter server and used to
compute an aggregate model which in turn is shared back
to the local sites; this allows learning across sites while not
requiring data to be shared.

localized approach, a model trained using local data only may
not perform well, especially with a heterogeneous dataset.

On the other hand, in FL (Fig. 2, yellow figure), data
resides locally and only the local models are transferred to the
cloud server. The cloud server aggregates the models and then
returns them back to the local sites. In this way, information
and knowledge are shared between the sites indirectly by way
of model sharing, as opposed to directly by way of data



TABLE II: Experiment plan

Objective Research question Algorithm Independent variables Dependent variables
Classification
accuracy

How well does FL perform compared with other ML
approaches?

FL, Centralized,
Localized

Hyperparameters (e.g., iterations,
minibatch size, #epochs/iteration)

What is the impact of clients partially dropping out
on FL?

When the clients drop out (e.g.,
upload, download) Classification accuracy

Robustness
What is the effect of training data volume on FL with
unreliable clients? FL

Which client/site drops out (sites
with different data volume)

What is the effect of client participation rate on FL? Client participation rate

uploading. It can be expected that the centralised approach
will be the most accurate due to complete access to the data
and that the FL approach will be superior to the local-only
approach.

2) Robustness against unreliable clients: In rural agricul-
tural farmlands, edge devices (i.e., clients) may sometimes
experience unreliable power supply or network connection,
which leads to devices dropping in and out during the training
process. As a result, a trained model from a local site may
not be uploaded to the cloud server for model aggregation.
Alternatively, when the failure happens during the model
downloading process, the local model is not updated with
the aggregated model. To demonstrate the performance of FL
for withstanding node failure, we simulate different scenarios
under different client participation rates ranging from 100%
to 25%. First of all, we investigate the impact of training data
volume under the unreliable client setting on the performance
of FL. Second, we evaluate how the failures during the model
uploading or downloading process affect the performance of
FL.

C. Results and Discussion

1) Comparison of different ML approaches:
The first six columns of Table III give a summary of our
hyperparameter optimisation results for the short 200 iteration
runs. It can be immediately observed that the local models
have significantly lower accuracies, with the model at site A
achieving a best-case accuracy of marginally above 70%, and
the model at site C achieving, at best, 39.5% accuracy. On the
other hand, the centralized model achieves nearly 99% test
accuracy.

The table also shows the accuracy of the best federated
model. This approach, after 200 iterations, reaches the best
performance of just over 88% when the number of epochs per
iteration is low (E = 1) and the batch size is higher (B = 50).
Unlike the centralized model, however, the federated approach
is relatively sensitive to the choice of hyperparameters: specif-
ically, E = 1 and B = 50 appear to be good choices and we
proceeded with further experiments using these hyperparame-
ters.

The results of the further experiments are also given in
Table III (rightmost two columns) and also Fig. 3. This column
and the figure show that the federated model significantly im-
proves its accuracy with additional iterations. The best model
found with FL achieves nearly 94% test accuracy after 2,000
iterations and exceeds 96% accuracy after 10,000 iterations,
both good improvements compared to the 200-iteration case.

0 500 1000 1500 2000
Iteration

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Ac
cu

ra
cy

Algorithms
Centralized
Federated
Local A
Local B
Local C

Fig. 3: A comparison between FL, the centralized approach,
and the local approach (see Fig. 2) to prove why we should
use FL when the centralized approach is not applicable (e.g.,
high communication cost).

Despite its lack of centralised data, FL can still achieve 96%
accuracy as the centralized approach, demonstrating that FL
will be a good fit for applications where centralized training
is inapplicable. Note that in both cases, the models labelled as
“local” are not part of the federation and simulate a situation
where models train locally and there is no information sharing
between sites at all.

2) FL robustness against client dropout:
Clients completely drop out. Fig. 4 shows the training
performance of FL when different clients randomly and com-
pletely drop out. For example, in Fig. 4(a), Client A will
randomly drop out during the training based on a pre-defined
participation rate. From Fig. 4(a), we can see that the training
performance is barely affected when Client A only participates
75% of the training iteration. However, larger gaps can be
observed when the participation rate drops to 50% or lower.
Nevertheless, even with a 75% decrease in participation rate
compared to 100% participation, only less than 15% reduction
in model accuracy is observed. This result confirms that FL is
robust to random client dropout.

The impact of different clients dropout can also be seen
by comparing Fig. 4(a), Fig. 4(b), and Fig. 4(c). Due to the
heterogeneity in our dataset (as we mentioned in Sec. III-A),
the impact of different sites dropping out on FL model
accuracy varies. For example, Client A has a more significant
impact where almost a 10% accuracy decrease can be spotted
with a participation rate decrease from 50% to 25%. On the



TABLE III: Best testing accuracies by hyperparameter combination (columns) and model approach as shown in Fig. 2 (rows).
Where T = 200, the best accuracies for each approach are bolded. Where T ≥ 2, 000, the accuracy for an approach is bolded
only if it exceeds the best accuracy in the preceding columns.

Model (#Epochs/Iteration E, Minibatch Size B, Iterations T )
Type (1,10,200) (5,10,200) (20,10,200) (1,50,200) (5,50,200) (20,50,200) (1,50,2000) (1,50,10000)
Local (A) 0.693 0.701 0.695 0.692 0.701 0.699 0.695 0.697
Local (B) 0.571 0.576 0.555 0.569 0.590 0.577 0.592 0.601
Local (C) 0.395 0.341 0.321 0.382 0.346 0.339 0.363 0.378
Centralized 0.985 0.988 0.988 0.980 0.987 0.988 0.989 0.989
Federated 0.840 0.809 0.837 0.883 0.863 0.861 0.936 0.963

0 250 500 750 1000 1250 1500 1750
Iteration

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Participation rate
100%
75%
50%
25%

(a) Unreliable Client A

0 250 500 750 1000 1250 1500 1750
Iteration

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Participation rate
100%
75%
50%
25%

(b) Unreliable Client B

0 250 500 750 1000 1250 1500 1750
Iteration

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Participation rate
100%
75%
50%
25%

(c) Unreliable Client C

Fig. 4: The training performance of FL with random and complete dropout clients. Each sub-figure shows the FL training
performance when a site randomly and completely drops out during FL training process with various probabilities.

100% 75% 50% 25%
Participation rate

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

Link failure = UP

Site
A
B
C

(a) Unreliable upload

100% 75% 50% 25%
Participation rate

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

Link failure = DL

Site
A
B
C

(b) Unreliable download

Fig. 5: FL model accuracy with random and partial dropout clients. Note that we select the model after 2,000 training iterations.
Each sub-figure demonstrates that under the same link failure, how data heterogeneity affects the FL accuracy. “UP” and “DL”
indicate unreliable model upload and download respectively. From both (a) and (b), we can see that site A has the highest
impact of the overall accuracy due to its largest data volume and class labels.

other hand, we can only see less than a 5% decrease in
accuracy when Client B or C drops out. As we expected, the
influence of a client on FL depends on the amount of data and
the number of classes it has.

Clients partially drop out. We define partial dropout as
clients may randomly fail to upload their local model or
download the aggregated model during model training. Fig. 5
and Fig. 6 compared the performance of the models trained at
various client participation rates.

Fig. 5(a) shows the impact of clients randomly failing to
upload their locally trained models. We can see that there is
less than a 4% accuracy decrease when a client does not upload
its model. Meanwhile, we also notice that the negative impact
is less noticeable if the dropout happens in the client with
fewer data, which matches our previous observation. Similar
conclusions can also be drawn in Fig. 5(b) when a client fails
to download the aggregated models.

In Fig. 6, we compared the different impacts of failing in



100% 75% 50% 25%
Participation rate

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88
Ac

cu
ra

cy
Site = A

Link failure
UP
DL

(a) Unreliable Client A

100% 75% 50% 25%
Participation rate

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

Site = B

Link failure
UP
DL

(b) Unreliable Client B

100% 75% 50% 25%
Participation rate

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

Site = C

Link failure
UP
DL

(c) Unreliable Client C

Fig. 6: Performance comparison between different clients and dropout types. Each sub-figure demonstrates that within the same
site (i.e., the same training dataset), how different failure types affect the FL accuracy. “UP” and “DL” indicate unreliable model
upload and download respectively. For example, from all 3 figures, upload failure barely affects the FL accuracy compared to
download failure.

upload or download on the FL model accuracy. For example,
we can see from Fig. 6(a) that clients dropping out during
model download has a larger impact on the model accuracy.
This observation holds for different participation rates as well
as different clients.

IV. FL IN CAMERA TRAPS

The current biodiversity crisis requires a global network of
remote cameras to monitor and measure essential biodiversity
variables using non-invasive remote cameras [28]. A camera
trap is a camera with a motion sensor and infrared flash suit-
able for sampling medium and large-sized birds and mammals
with minimal disruption to animal behaviours. There is an
increasing trend of using camera traps for monitoring different
biodiversity trends, for example, monitoring highway crossing
for observing the impact of human activities on wildlife [29],
and studying the impact of climate change, population shape,
and trophic interactions on elk [30]. Recently, ML has been
very successfully used in image-based biodiversity surveys for
decision-making purposes by answering critical conservation
questions [31]–[33]. However, there are limited coordinated
efforts among these camera studies [28]. One limitation is the
hesitation in sharing data among parties. Federated learning
can play a vital role in this area while maintaining data
sovereignty as a large number of participants can create a
collaborative ML system incorporating features of all partici-
pants’ data.

A. Dataset

Wellington camera traps dataset [34] is used to study the
robustness of the FL system. This dataset contains 270,450 im-
ages, and 90,150 bursts from 187 camera locations in Welling-
ton, New Zealand. The motion sensor cameras recorded a
burst of three images when triggered. The images are taken at
night and daytime. The dataset is labelled by citizen scientists
or professional ecologists from the Victoria University of

Wellington, New Zealand. The images are classified into
seventeen categories, with a high degree of imbalance across
these categories. There is a varying degree of image quality
and about 25% of the images are empty, which is considered
a false positive.

Several small and camouflaged animals are present in these
images, which are very difficult to detect; some example
images are shown in Fig. 7. However, the bursts of images
provide an opportunity to detect animals by comparing the
images in a single burst. [35].

B. Experiment Setup

From the Wellington Camera Trap dataset, we did not
consider any image bursts that include less than three images
and also did not consider sites that have less than 75 bursts.
The image bursts are preprocessed by employing the Mixture
of Gaussian (MoG) method and then constructing 3 channel
images, as shown in Fig. 8. We have selected different numbers
of sites for training, validation, and testing (discussed in the
next section). For FL experiments, we have used Flower
[36] while using the federated averaging method for client
model aggregation. Squeezenet CNN [37] is used with Adam
optimiser and starting learning rate of 0.0001. Categorical
cross-entropy loss function weighted to account for class
imbalance and standard augmentations for training batches
[35]. We kept 100 FL iterations with 10 local epochs per
iteration and a local batch size of 128.

C. Results and Discussion

The following sets of experiments are conducted to observe
the robustness of FL system against ML-specific inconsisten-
cies.

1) FL Robustness against Mislabelled data: ML-specific
inconsistency can be due to low-quality data in terms of
mislabelled or flipped label records. Several experiments were
conducted to study when one or more clients have misla-
belled some or all examples in their training data [25]. Such



(a) True Positive (b) Possible False Positive (c) Night Mode (d) Over Exposed Night Mode

Fig. 7: Examples of single images from Wellington camera trap dataset

Fig. 8: Preprocessing of image bursts

Fig. 9: FL performance under different numbers of mislabelled
training data

mislabelled data can affect the global model when the server
aggregates the local parameters trained on them. The inherent
inaccessibility of the federated server to the clients and clients’
data makes it difficult to detect such issues [24].

To evaluate the robustness of FL against such mislabelled
clients, we conducted a series of experiments training FL
models to compare three scenarios. In the baseline (i.e., Case
A), all 15 clients had correctly labelled data. In Case B,
7 clients had mislabelled data while 8 clients had correctly
labelled data. Case C involved training the FL model using

Fig. 10: FL performance when the learning rate of one client
is misconfigured and changed from 0.0001 to 0.01

data only from the 8 clients with correctly labelled data.
Fig. 9 shows the Area Under the Receiver Operating

Characteristics (AUROC) values for all FL iterations for all
three cases. Case A shows the AUROC values of around
0.9 after the 20th iteration. Case B has around 47% clients
with mislabelled data and shows the AUROC value of 0.86
after the 20th iteration. For case C, where the clients with
mislabelled data are removed and the global model considers
only 8 normal clients; the AUROC value is around 0.88 after
the 20th iteration. We can conclude from the results that the



(a) FL performance in the presence of mislabelled data
(b) FL performance in the presence of both mislabelled data and
misconfigured learning rate of one client (10 times higher)

Fig. 11: The impact of learning rate on each client in the presence of mislabelled data

effect of mislabelled data is there on the performance of the
FL model but not very significant, which shows the robustness
of FL against such attacks. Some of these findings do not
concur with literature [38]. One factor that is really important
to consider here is the learning rate; we kept a low learning
rate (0.0001) for all our clients, which keeps the changes to the
weights very small due to local learning. We have conducted
the second set of experiments (discussed next) to study the
effect of learning rate in mislabelled data scenarios.

2) FL Robustness against Misconfiguration: One ML-
specific inconsistency can be due to the misconfiguration of
hyperparameters. One of the hyperparameters that affect the
accuracy of the neural networks model is the learning rate,
which controls how quickly the model is adapted to the
problem [39]. Even for FL systems, the learning rate has
shown a significant impact on the accuracy of the models and
has been used as one of the factors that can be adapted to
improve accuracy [40], fight attacks [41] and flexible client
participation [42] among other purposes. We have conducted
experiments with six normal clients to study the impact of
learning rate on FL systems. We changed the learning rate of
only one client from 0.0001 to 0.01; the results are shown
in Fig. 10. The results show that for learning rate up to
0.004, the final AUROC values are not affected and is always
around 0.88. However, as the learning rate exceeds 0.004, the
maximum AUROC cannot go higher than 0.5. This shows that
FL shows high robustness against certain misconfigurations
(some clients assigned with a higher local learning rate) to a
certain extent but as the values become very high, the system
cannot perform well.

3) FL Robustness against Mislabelled data and Misconfig-
uration: The next set of experiments is conducted to study
the effect of misconfiguration on the performance of the FL
model with different learning rates when some clients have
mislabelled data. For these experiments, we have chosen five
normal clients and one misconfigured client with mislabelled
data. The learning rate for the misconfigured client is changed
from 0.0001 to 0.001 to observe the effect on the FL system,
as shown in Fig. 11.

The results show that the higher learning rate plays a
significant role in the final AUROC as it reduces from 0.88
to 0.85 when the learning rate of the misconfigured client is
changed from 0.0001 to 0.001. Also, in early iterations of
FL, the impact is more significant and it takes longer for the
system to converge in the second case of a higher learning
rate. Hence, an important finding is that low local learning
rates impact the robustness of the FL systems.

V. RELATED WORK

In this section, we look at some research efforts that tackled
unreliable client issues for FL and classify them into two
categories: infrastructure-level errors and ML-specific incon-
sistencies.

Infrastructure-level errors: FL requires sharing of local
model parameters between clients and a server over multiple
learning rounds until the global model converges. In envi-
ronments with limited and unreliable network resources, such
communication may not be possible. As a result, it can affect
the training time and further lead to issues such as unstable
and/or slow convergence of the global model. A compensation
scheme proposed in [9] suggested that any missing model
updates can be replaced by the updates from other clients
based on their similarity. Their experiments with the CIFAR-
10 dataset show high convergence of the global model under
varying successful communication probability for ten clients
with a learning rate of 0.001 for every client. A similar
approach has been proposed in [10] where it considered local
model updates as “friends” when the clients’ data distributions
are sufficiently similar. To identify “friends”, the pairwise
similarity score among the local model updates is calculated
by the FL server. Whenever any client dropout happens, the
FL server replaces the missing model update with its “friends”.
Experiments were conducted using MNIST and CIFAR-10
datasets. The results showed that model replacement using
the friends’ model successfully mitigates the effect of client
dropout. Recently, a secure and efficient FL (SEFL) frame-
work was proposed in [22]. SEFL considers two servers, one
for model aggregation and one for managing cryptography
primitives. The clients use the weight pruning technique to



prune the local model update before sending the encrypted
updates to the aggregating server. At the server, the encrypted
and pruned updates are homomorphically added. In order to
decrypt the aggregated value, the other server is contacted. To
ensure the security and privacy of the aggregated model values
differential privacy approach is used, which is not discussed
any further as it is out of the scope of this work. However, a
very interesting and related property of the algorithm is that
the aggregation server can train an accurate global model even
when only 10% of the clients share their local updates with
the server.

ML-specific inconsistencies: Data from different clients can
be different in terms of quality and label noise. Wrong and/or
noisy labels at the clients can negatively affect the global
model as the server cannot access local data to filter out the
noise. To tackle this problem, different methods have been pro-
posed. For example, a two-level sampling approach from [12]
allows a) the server to select better client models and b) clients
to select clean local data. The confidence score of data samples
is calculated using the global model to calculate the overall
confidence of the client. The experiments conducted with the
CIFAR-10 dataset with 100 clients containing imbalanced data
with varying noise ratios show that the proposed approach
outperforms several baseline algorithms. FL under Label Noise
(FedLN) [11] estimates per client label noise level and limits
the effect of noisy samples on the model’s generalisability. At
the federated server, Noise-aware Federated Averaging (NA-
FedAvg) [11] considers estimated clients’ noise levels to
perform noise-aware aggregation of the client models. Four
different datasets are used to test NA-FedAvg with varying
numbers of noisy clients with different noise levels. With all
noisy clients, the model performance degraded substantially;
however, the presence of only 20% of clean clients enabled
the model to perform at 70% for all noise levels. A different
approach for reducing the impact of irrelevant or bad quality
clients’ data on the performance of FL is a distributed selection
method [43] that enables clients to choose only a relevant
subset from complete data available at the clients. A model
requester is proposed for the FL system that provides a
benchmarked dataset to the clients to identify a relevant subset
of data for a particular FL task.

VI. CONCLUSIONS

In this paper, we systematically evaluate the impact of
unreliable clients on federated learning (FL) performance in
rural environments. We investigated different scenarios of
unreliable clients including client dropout, misconfiguration,
and low-quality training data. Our experiments are conducted
on two applications (weeds detection in precision agricul-
ture and wildlife detection in camera traps) using real-world
datasets and a low number of clients (ranging from 3 to
6). Intuitively, scenarios with a reduced number of clients
should be more susceptible to performance degradation in case
of one or more clients malfunctioning or misconfiguration.
Surprisingly, experiments show empirical proof that the fed-
erated averaging method is resilient to such unreliable clients,

both to infrastructure-level and ML-specific inconsistencies.
First, the weeds detection case study explored the tolerance
to the infrastructure-level category of unreliable clients, such
as those with faulty network connections. Second, the animal
detection case study (via camera traps) showed the robustness
of federated learning towards ML-specific deficiencies such
as mislabelled data or incorrect parameter values. We have
shown that despite its simplicity, federated averaging learning
should be the algorithm of choice for distributed training
environments with unreliable rural infrastructure and non-
technical users.

Our next step involves investigating the applicability of
techniques such as Reinforcement Learning as part of the
client selection to further improve the performance of Fed-
erated Averaging by selecting the best data sources/clients to
train the global model. We will further develop platforms and
approaches to support the real-world deployment of FL. The
platform we used in this paper using Function-as-a-Service
provides the first step towards this goal. By introducing higher
level systems, programming abstractions, and libraries, we will
enable the optimisation workloads and resources of FL in real-
world systems.

REFERENCES

[1] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani,
“Reliable federated learning for mobile networks,” IEEE Wireless Com-
munications, vol. 27, no. 2, pp. 72–80, 2020.

[2] S. K. Lo, Q. Lu, C. Wang, H.-Y. Paik, and L. Zhu, “A systematic litera-
ture review on federated machine learning: From a software engineering
perspective,” ACM Computing Surveys (CSUR), vol. 54, no. 5, pp. 1–39,
2021.

[3] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[4] P. Patros, M. Ooi, V. Huang, M. Mayo, C. Anderson, S. Burroughs,
M. Baughman, O. Almurshed, O. Rana, R. Chard et al., “Rural ai:
Serverless-powered federated learning for remote applications,” IEEE
Internet Computing, 2022.

[5] O. Almurshed, P. Patros, V. Huang, M. Mayo, M. Ooi, R. Chard,
K. Chard, O. Rana, H. Nagra, M. Baughman et al., “Adaptive edge-
cloud environments for rural ai,” in 2022 IEEE International Conference
on Services Computing (SCC). IEEE, 2022, pp. 74–83.

[6] Y. Xu, Y. Liao, H. Xu, Z. Ma, L. Wang, and J. Liu, “Adaptive control of
local updating and model compression for efficient federated learning,”
IEEE Transactions on Mobile Computing, 2022.

[7] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei,
“Energy efficient federated learning over wireless communication
networks,” CoRR, vol. abs/1911.02417, 2019. [Online]. Available:
http://arxiv.org/abs/1911.02417

[8] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in ICC 2020-2020 IEEE International
Conference on Communications (ICC). IEEE, 2020, pp. 1–6.

[9] Y. Mao, Z. Zhao, M. Yang, L. Liang, Y. Liu, W. Ding, T. Lan, and X.-
P. Zhang, “Safari: Sparsity enabled federated learning with limited and
unreliable communications,” arXiv preprint arXiv:2204.02321, 2022.

[10] H. Wang and J. Xu, “Friends to help: Saving federated learning from
client dropout,” arXiv preprint arXiv:2205.13222, 2022.

[11] V. Tsouvalas, A. Saeed, T. Ozcelebi, and N. Meratnia, “Federated
learning with noisy labels,” arXiv preprint arXiv:2208.09378, 2022.

[12] Z. Wang, T. Zhou, G. Long, B. Han, and J. Jiang, “Fednoil: A simple
two-level sampling method for federated learning with noisy labels,”
arXiv preprint arXiv:2205.10110, 2022.

[13] M. Kamp, J. Fischer, and J. Vreeken, “Federated learning from small
datasets,” arXiv preprint arXiv:2110.03469, 2021.

http://arxiv.org/abs/1911.02417


[14] Y. Xue, C. Niu, Z. Zheng, S. Tang, C. Lyu, F. Wu, and G. Chen, “Toward
understanding the influence of individual clients in federated learning,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 12, 2021, pp. 10 560–10 567.

[15] A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A per-
formance evaluation of federated learning algorithms,” in Proceedings
of the second workshop on distributed infrastructures for deep learning,
2018, pp. 1–8.

[16] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-Efficient Learning of Deep Networks
from Decentralized Data,” in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, A. Singh and J. Zhu, Eds., vol. 54.
Fort Lauderdale, FL, USA: PMLR, 20–22 Apr 2017, pp. 1273–1282.
[Online]. Available: http://proceedings.mlr.press/v54/mcmahan17a.html

[17] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “FuncX: A federated function serving fabric
for science,” in 29th International Symposium on High-Performance
Parallel and Distributed Computing, 2020, pp. 65–76.

[18] P. Wang, E. Fan, and P. Wang, “Comparative analysis of image clas-
sification algorithms based on traditional machine learning and deep
learning,” Pattern Recognition Letters, vol. 141, pp. 61–67, 2021.

[19] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in 2019 IEEE symposium on
security and privacy (SP). IEEE, 2019, pp. 739–753.

[20] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated
learning,” Synthesis Lectures on Artificial Intelligence and Machine
Learning, vol. 13, no. 3, pp. 1–207, 2019.

[21] E. Sannara, F. Portet, P. Lalanda, and V. German, “A federated learning
aggregation algorithm for pervasive computing: Evaluation and compar-
ison,” in 2021 IEEE International Conference on Pervasive Computing
and Communications (PerCom). IEEE, 2021, pp. 1–10.

[22] J. Deng, C. Wang, X. Meng, Y. Wang, J. Li, S. Lin, S. Han, F. Miao,
S. Rajasekaran, and C. Ding, “A secure and efficient federated learning
framework for nlp,” arXiv preprint arXiv:2201.11934, 2022.

[23] L. Wang, S. Xu, X. Wang, and Q. Zhu, “Addressing class imbalance in
federated learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 11, 2021, pp. 10 165–10 173.

[24] Z. Lv, H. Cao, F. Zhang, Y. Ren, B. Wang, C. Chen, N. Li, H. Chang,
and W. Wang, “Awfc: Preventing label flipping attacks towards federated
learning for intelligent iot,” The Computer Journal, vol. 65, no. 11, pp.
2849–2859, 2022.

[25] N. M. Jebreel, J. Domingo-Ferrer, D. Sánchez, and A. Blanco-Justicia,
“Defending against the label-flipping attack in federated learning,” arXiv
preprint arXiv:2207.01982, 2022.

[26] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, ser.
Proceedings of Machine Learning Research, S. Chiappa and R. Calandra,
Eds., vol. 108. PMLR, 26–28 Aug 2020, pp. 2938–2948. [Online].
Available: https://proceedings.mlr.press/v108/bagdasaryan20a.html

[27] W. Holmes, M. P.-L. Ooi, M. Look, Y. C. Kuang, R. Simpkin, D. Blan-
chon, and S. Demidenko, “Proximal near-infrared spectral reflectance
characterisation of weeds species in New Zealand pasture,” in IEEE
International Instrumentation and Measurement Technology Conference
(I2MTC). IEEE, 2019, pp. 1–6.

[28] R. Steenweg, M. Hebblewhite, R. Kays, J. Ahumada, J. T. Fisher,
C. Burton, S. E. Townsend, C. Carbone, J. M. Rowcliffe, J. Whittington
et al., “Scaling-up camera traps: Monitoring the planet’s biodiversity
with networks of remote sensors,” Frontiers in Ecology and the Envi-
ronment, vol. 15, no. 1, pp. 26–34, 2017.

[29] M. Barrueto, A. T. Ford, and A. P. Clevenger, “Anthropogenic effects
on activity patterns of wildlife at crossing structures,” Ecosphere, vol. 5,
no. 3, pp. 1–19, 2014.

[30] J. F. Brodie, E. Post, J. Berger, and F. Watson, “Trophic interactions and
dynamic herbivore responses to snowpack,” Climate Change Responses,
vol. 1, no. 1, pp. 1–8, 2014.

[31] I. Zualkernan, S. Dhou, J. Judas, A. R. Sajun, B. R. Gomez, and L. A.
Hussain, “An iot system using deep learning to classify camera trap
images on the edge,” Computers, vol. 11, no. 1, p. 13, 2022.

[32] O. Pantazis, G. J. Brostow, K. E. Jones, and O. Mac Aodha, “Focus on
the positives: Self-supervised learning for biodiversity monitoring,” in

Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 10 583–10 592.

[33] M. S. Norouzzadeh, D. Morris, S. Beery, N. Joshi, N. Jojic, and J. Clune,
“A deep active learning system for species identification and counting in
camera trap images,” Methods in ecology and evolution, vol. 12, no. 1,
pp. 150–161, 2021.

[34] V. Anton, S. Hartley, A. Geldenhuis, and H. U. Wittmer, “Monitoring
the mammalian fauna of urban areas using remote cameras and citizen
science,” Journal of Urban Ecology, vol. 4, no. 1, p. juy002, 2018.

[35] B. M. Shashidhara, D. Mehta, Y. Kale, D. Morris, and M. Hazen,
“Sequence information channel concatenation for improving camera trap
image burst classification,” arXiv preprint arXiv:2005.00116, 2020.

[36] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao,
L. Sani, K. H. Li, T. Parcollet, P. P. B. de Gusmão et al., “Flower: A
friendly federated learning framework,” 2022.

[37] V. Pothos, D. Kastaniotis, I. Theodorakopoulos, and N. Fragoulis, “A
fast, embedded implementation of a convolutional neural network for
image recognition,” 2016.

[38] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A
survey on federated learning,” Knowledge-Based Systems, vol. 216,
p. 106775, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950705121000381

[39] T. Takase, S. Oyama, and M. Kurihara, “Effective neural network
training with adaptive learning rate based on training loss,” Neural
Networks, vol. 101, pp. 68–78, 2018.

[40] C. Xu, S. Liu, Z. Yang, Y. Huang, and K.-K. Wong, “Learning rate
optimization for federated learning exploiting over-the-air computation,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 12, pp.
3742–3756, 2021.

[41] M. S. Ozdayi, M. Kantarcioglu, and Y. R. Gel, “Defending against back-
doors in federated learning with robust learning rate,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 10, 2021,
pp. 9268–9276.

[42] H. Yang, X. Zhang, P. Khanduri, and J. Liu, “Anarchic federated
learning,” in International Conference on Machine Learning. PMLR,
2022, pp. 25 331–25 363.

[43] T. Tuor, S. Wang, B. J. Ko, C. Liu, and K. K. Leung, “Overcoming noisy
and irrelevant data in federated learning,” in 2020 25th International
Conference on Pattern Recognition (ICPR). IEEE, 2021, pp. 5020–
5027.

http://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v108/bagdasaryan20a.html
https://www.sciencedirect.com/science/article/pii/S0950705121000381
https://www.sciencedirect.com/science/article/pii/S0950705121000381

	I Introduction
	II Problem Formulation
	III FL in Precision weeds detection
	III-A Dataset
	III-B Experiment Plan
	III-B1 Classification accuracy
	III-B2 Robustness against unreliable clients

	III-C Results and Discussion
	III-C1 Comparison of different ML approaches
	III-C2 FL robustness against client dropout


	IV FL in Camera traps
	IV-A Dataset
	IV-B Experiment Setup
	IV-C Results and Discussion
	IV-C1 FL Robustness against Mislabelled data
	IV-C2 FL Robustness against Misconfiguration
	IV-C3 FL Robustness against Mislabelled data and Misconfiguration


	V Related work
	VI Conclusions
	References

