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Abstract—Failed workloads that consumed significant com-
putational resources in time and space affect the efficiency of
data centers significantly and thus limit the amount of scientific
work that can be achieved. While the computational power has
increased significantly over the years, detection and prediction
of workload failures have lagged far behind and will become
increasingly critical as the system scale and complexity further
increase. In this study, we analyze workload traces collected
from a production cluster and train machine learning models
on a large amount of data sets to predict workload failures. Our
prediction models consist of a queue-time model that estimates
the probability of workload failures before execution and a
runtime model that predicts failures at runtime. Evaluation
results show that the queue-time model and runtime model can
predict workload failures with a maximum precision score of
90.61% and 97.75%, respectively. By integrating the runtime
model with the job scheduler, it helps reduce CPU time, memory
usage by up to 16.7% and 14.53%, respectively.

Index Terms—Data Center, Failure Prediction, Predictive An-
alytic, Big Data, Machine Learning

I. INTRODUCTION

The scale and complexity of many data centers have sig-
nificantly increased over the years. Meantime, the demand
from user community for computational and storage capability
has considerably increased too. This combination of increased
scale of data centers and size of workloads with different
requirements and characteristics has resulted in growing node
and workload failures, posing a threat to the reliability, avail-
ability, and scalability (RAS) of data centers. For example, all
else being equal, a system that is 1,000 times more powerful
will have at least 1,000 times more components and will fail
1,000 times more often [1], resulting in a long-running job
utilizing a large amount of nodes being terminated due to
frequent failures. Therefore, over the past decades, various
methods and algorithms were proposed to improve the system
resilience and efficiency [2]–[7].

Reactive strategies, such as Checkpoint/Restart (C/R) [4],
[7], are conventional approaches for fault tolerance. As an
example, a reactive fault tolerance strategy for a node failure
is to reschedule a workload to a new node and restart from a

specific checkpoint. However, checkpointing a job in a large-
scale system could incur large I/O overhead when writing and
reading workloads state [8], and takes an overhead of more
than 15% of the total execution time [9], [10], which signif-
icantly impedes science productivity. As a result, researchers
on failure management have found that prevention is better
than cure and shifted to proactive management strategies [7],
[11]–[15]. In contrast to reactive strategies, proactive strategies
develop models based on the failure data in data centers to
predict node or workload failures in the near future and take
preventive measures to improve the RAS of data centers.

Numerous research efforts have developed node failure
detection and prediction methods by utilizing temporal and/or
spatial correlations of failures [16]–[19]. They usually investi-
gate system behavior via Syslog analysis and have developed
supervised and unsupervised approaches for predicting failures
in data centers. A number of studies have attempted on
workload-centric failure detection and prediction based on the
resource usage or requested resources [20]–[23]. However,
only limited amount of workload data is publicly available
due to confidentiality or other reasons. In addition, analyzing
and extracting insightful knowledge from massive amounts of
data is daunting, given the increasing scale and complexity of
data sets.

This research aims at using machine learning-based ap-
proach to predict workload failures in data centers. In partic-
ular, we investigate two months of workload traces collected
from a production cluster in order to find correlation between
workload attributes with exit status (including error status).
We seek to train supervised learning models to predict: (1)
the failure probability of a workload at queue time, and (2)
the likelihood of failure over the life-span of a workload.
Having the knowledge of whether jobs will likely to fail
or not can be valuable for both users to be alerted of the
potential failures and the resource manager (both the soft-
ware and system administrators) to be proactive in preventing
wasting computational resources. Consequently, the RAS and
productivity of data centers can be improved in return by better
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managing the workloads that are likely to fail.
We make the following contributions in this study:
• We analyze workload traces collected from a production

data center and perform an extensive characterization
study of workload failure rates across nodes, users and
different time scales. We investigate the correlation be-
tween workload characteristics and failures, and identify
the relevant factors that lead to failures.

• We apply several machine learning algorithms on our
data set and train two prediction models: a Queue-time
model and a Runtime model. We find that Random Forest
achieved the best prediction performance in terms of
Precision and F1 scores in both models. Experimental
results show that these two models predict workload fail-
ures with a maximum Precision of 90.61% and 97.75%,
respectively.

• We quantify the resource savings achieved by applying
the runtime prediction model on workloads at different
times. Based on the prediction results, proactive failure
management (e.g., killing workloads that are predicted
to fail) can achieve CPU and memory savings by up to
16.7% and 14.53%, respectively.

• We investigate the effects of training data set size to find
the optimum size that can achieve acceptable prediction
performance with minimum training time.

The rest of this paper is organized as follows. Section II
describes background of this research, including the moni-
toring infrastructure, data points, and source of anomalies.
In Section III, we analyze the workload data. Section IV
describes the machine learning algorithms we have investi-
gated in this research and explains our methodology. The
experimental results are presented in Section V. Section VI
provides an overview of related work, and we conclude this
research in Section VII.

II. BACKGROUND

This research study is conducted on a production data center
called Quanah, where scientists from all major scientific fields,
such as astrophysics, computational chemistry, bioinformatics,
etc., perform simulations and scientific computations. In our
previous work [24] , we have designed and implemented a
monitoring, data collection and management infrastructure to
gather workload and node metrics from the cluster in real time.
The Quanah cluster and monitoring framework are described
in the next section, followed by the analysis of sources of
failures in common data centers.

A. Quanah Cluster

The Quanah cluster at High Performance Computing Center
(HPCC) of Texas Tech University [25] is commissioned in
early 2017 and expanded to its current size in 2019, which is
comprised of 467 nodes with Intel XEON processors providing
36 cores per node. Quanah has a total of 16,812 cores with
a benchmarked total computing power of 485 Teraflops/s
and provides 2.5 petabytes storage capability. The cluster is
based on Dell EMC PowerEdge™ C6320 servers, which are

Fig. 1: Sources of Failures in Data Centers

equipped with the integrated Dell Remote Access Controller
(iDRAC) [26] providing Redfish API [27] for accessing Base-
board Management Controller (BMC). The software environ-
ment is based on CentOS 7 Linux, provisioned and managed
by OpenHPC, and the cluster is operated with Univa Grid
Engine (UGE) [28], setting up with multiple queues, with jobs
sorted by projects to meet the needs of research activities for
many fields and disciplines.

B. Monitoring Infrastructure
The monitoring data in Quanah cluster is obtained through

an “out-of-the-box” monitoring tool [24] that utilizes the
Redfish API to retrieve sensor data from the BMC on each
compute node and the resource manager (such as UGE and
Slurm) for workload information and resource usage data.
Sensor metrics and resource usage data are collected at node
level in 60-second intervals, which include power usage, fan
speed, CPU usage, memory usage and node-job correlations,
etc. The time-series data is stored in a time-series database
(e.g. InfluxDB). Workload information is derived from the
UGE accounting data, which includes job submission time,
start time, end time, total CPU time, integral memory usage,
IO operations, etc. The workload data is stored in a MySQL
database. With several performance optimizations, such as op-
timized database schema, using high-speed storage, concurrent
processing and transmitting compressed data, our infrastruc-
ture provides near real-time analysis and visualization of user-
level and node-level status.

C. Sources of Failures
In a data center cluster where computing resources are

shared by different workloads submitted by users from various
domains, the number of failed jobs (i.e. workloads) can be
large. There are three main reasons. First, domain scientists,
while skilled in their scientific fields, do not always have
sufficient experience and background in computing, especially
in large-scale, parallel computing. Second, diverse workloads
depend on different libraries, and bugs and missing updates
in dependent libraries can lead to unexpected failures. Third,
data center is complex, and any mis-configuration or hardware
errors can cause workload termination.

Figure 1 summarizes the high-level root cause categories in
data centers, where failures are attributed to user, application,
system or hardware problems.

• Users: insufficient resource request or wrong input in the
job submission script can cause workloads to fail [29].



TABLE I: Features of Workloads

Feature Type Description
job id Numeric Job identifier
owner Categorical Owner of the job
group Categorical The group id of the job owner

job name Categorical Job name
granted pe Categorical The parallel environment

hostname Categorical Name of the execution host
submission Numeric Submission time (in epoch time format)

start time Numeric Start time (in epoch time format)
end time Numeric End time (in epoch time format)
wallclock Numeric Difference between end and start time

cpu Numeric The CPU time usage in seconds
mem Numeric The integral memory usage in Gbytes1

io Numeric The amount of data transferred in Gbytes
iow Numeric The io wait time in seconds

maxvmem Numeric The maximum vmem size in bytes
slots Numeric The number of parallel processes

wait time Numeric Difference between start and submit time
exit status Numeric Exit status of the job script

1 The sum of the amount of memory used in each time interval
for the life of the job.

TABLE II: Exit Status Summary for Failed Workloads

Exit Code Meaning Number Percentage
1 Miscellaneous errors 21367 58.16%
2 Missing keyword or command 3032 8.25%
7 Argument list too long 6549 17.83%

127 Command not found 528 1.44%
137 (System signal 9) Kill 190 0.52%
255 Exit status out of range 4598 12.52%

Others 475 1.28%

Note that user interruptions, such as issuing a command
like “scancel”, can interrupt a running workload and
cause a failure too. However, since the effect of cancelling
a running workload is obvious to the user, we do not
categorize it as a source of failures.

• Applications: mis-configured applications increase the
risk of poor performance. In addition, buggy codes,
missing dependent library updates, and/or bugs can cause
applications to terminate unexpectedly too.

• Systems: mis-configurations or failures of system re-
sources and components may considerably affect the
performance of workloads or cause failures.

• Hardware: hardware errors are one of the most devastat-
ing issues for data centers. Severe hardware issues can
lead to the malfunction of the entire system. Events such
as memory hardware errors, CPU overheating, etc., will
result in workload errors and crashes.

III. WORKLOAD ANALYSIS

To predict the workload failures in data centers, it is
crucial to understand the characteristics of failed workloads.
In this section, we first present an overview of the workload
trace, then quantitatively analyze the percentage of failures in
the workloads and the computational resource consumption
characteristics. After that, we further study the failure rate
across the nodes, users, and different time scales.

Fig. 2: Proportion and Resource Consumption Characteristics
of workloads. Red indicates failed workloads and dark blue
indicates successful and cancelled workloads (non-failures).

A. Workload Overview

The workload trace is derived from job accounting data
collected from the Quanah cluster for the period of August 1,
2020 to October 1, 2020, which contains 324,358 instances
submitted by 204 unique users (i.e. owners). Notice that
workloads that cannot be started on the execution host (e.g.,
because the user does not have a valid account on that
node [30]) are recorded in the raw job accounting data, and
we drop these entries because they are killed by the job
scheduler for reasons that are not part of the sources of
failures summarized above. Additionally, they do not consume
compute resources. Table I lists 18 selected features. These
features can be categorized into two groups. The first group
includes categorical features, such as owner, group, and job
name. The other group includes numeric features, such as CPU
time usage and integral memory usage.

When a batch job exits, the scheduler (in our case UGE)
generates an exit_status field in the job accounting data.
According to the UGE documentation, a general exit status
convention is defined as follows. An exit status of 0 indicates
a successful workload. If the command terminates normally,
the exit status is the value of the command in the job script,
which is in line with normal shell conventions. In the case of
the script command exits abnormally, a value of 128 is added
to the value of the command. Thus, the exit status ≥ 128 can
be decomposed into 128+a system signal, where the system
signal value can be a fatal error signal such as 6 (SIGABRT),
9 (SIGKILL).

We summarize the exit status that indicates failure in
Table II. We find that the most common exit status was
1 (58.16%), indicating that there are miscellaneous errors
causing the failures. The next most significant exit status is
7 (17.83%), which occurs anytime a user feeds too many
arguments in the job submission script. We also notice that
there are 190 (0.52%) workloads that are killed by users
through system signal 9. Since we do not consider cancelled
workloads as failures, we drop these 190 workloads with
exit status 137. In addition, we do not intent to predict
exact errors, so we convert all non-zero exit status to 1,
representing workloads that face problems during run time.
We use exit status to distinguish workloads that had completed
successfully (exit status as 0).



(a)

(b)

Fig. 3: Number and percentage of workload failures per node
distributed by node ID (a) and by physical location (b). In
sub-figure (a), red indicates failed workloads and dark blue
indicates successful workloads. In sub-figure (b), the darkness
of the color represents the workload failure rate (in other
words, the darker the color means the higher the workload
failure rate.

B. Proportion of workload failures

Figure 2 presents the proportion and resource consumption
characteristics of workload failures. As shown in the figure,
workload failure rate is 8.5% for all submitted jobs (includ-
ing successful and failed workloads) in quantity. We further
analyze the CPU time consumed by failed workloads and find
that failed workloads cost 21.1% of the total CPU time. The
proportion of CPU time for failed workloads is larger than the
proportion of the number of failed workloads, indicating that
the more processors a workload uses and the longer it runs, the
higher the probability that this workload will fail. Additionally,
we quantify the integral memory usage consumed by failed
workloads. As shown in Figure 2, the wasted memory resource
rate is 20.2%. All these statistics imply that failed workloads
waste significant amount of computational resources and there-
fore degrade the system efficiency.

C. Distribution by nodes

We depict the distribution of failures across the nodes of
the system by node ID and physical locations in Figure 3a

(a)

(b)

Fig. 4: Number and percentage of workload failures distributed
by user ID (a) and by wallclock (b).

and Figure 3b, respectively. Figure 3a shows the total number
and percentage of workload failures for each node. We first
observe that about 20 nodes serve a relatively large number of
workloads than the other nodes, while some nodes have more
than 60% of workload failures. It is worth noting that the nodes
serving a large number of workloads do not necessarily have a
higher percentage of workload failures. A possible explanation
is that nodes with high workload failure rate may have node-
specific (hardware or operating system) vulnerabilities.

These 467 nodes in Quanah cluster are hosted in 10 racks
and each node can be uniquely addressed by rack and chassis
number. Each column shown in Figure 3b represents one rack
of nodes and each row represents one chassis. From Figure 3b,
we observe that nodes in rack 1, 3 and 7 have relatively
high workload failure rate. Since the power, temperature and
connectivity of all nodes located in a rack are controlled
together, problems in these areas can cause failures to occur
in physical location vicinity [19].

D. Distribution by users

To find out the correlation between users and failed work-
loads, we plot the workload distribution by user ID, as shown
in Figure 4a. The total number of jobs submitted by users
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(b)

Fig. 5: Number and percentage of workload failures distributed
by hour of the day (a) and by the day of the week (b).

ranges from a few to over 10,000. We observe that the
failure rate of workloads per user varies significantly and
those users who submit a small number of workloads have a
large portion of failed workloads. These statistics suggest that
users’ experience in properly configuring their applications
and/or requesting computational resources varies widely and
that these inexperienced users contribute a large fraction of
failed workloads.

E. Distribution by time

The wallclock is the actual time taken from the start to the
end of a workload. On Quanah cluster, if the user does not
specify a runtime in the script, the job scheduler has a default
runtime limit of 172,800 seconds (48 hours) for each submitted
job. We illustrate the distribution of workloads by wallclock in
Figure 4b. In general, the number of workloads decreases as
the wallclock increases, and there is no significant correlation
between the failure rate of workloads and the number of
workloads. However, we observe a reverse correlation between
24,000s and 84,000s: high workload intensities are associated
with low failure rates and vice versa. In addition, the failure
rate appears to be high around 144,000s as well.

Fig. 6: Workflow of Predicting Workload Failures in Data
Centers

It is commonly known that the usage pattern of data centers
fluctuates with time [31]. Figure 5 categorizes the workload
failures by the hour of a day and by the day of a week.
We observe that there is a slight correlation between failure
rate and time. During the time when the highest and the
lowest number of jobs occur, the failure rate is below 5%.
However, during the rest of time, the failure rate is between
10% and 22%. A possible explanation for this observation is
that experienced users submit large array jobs that contribute
to the majority of the workloads. Furthermore, their code is
robust and their applications are well configured, resulting in
low failure rates. When the workload intensity is low, the
system is less vulnerable. The failure rate for each day of
a week shows similar results: the highest workload volumes
resulted in the lowest failure rate. However, during the rest
of days of a week, the workload failure rate does not change
much.

IV. METHODOLOGY

In this section, we describe the workflow of predicting
workload failures in data centers. As shown in Figure 6,
the workflow consists of four phases: (1) data collection:
collecting metrics from data centers; (2) data preparation:
preprocessing the data into a structured format and extracting
features for machine learning models; (3) model training:
training Queue-time and Runtime models using machine learn-
ing algorithms; (4) remediation management: applying remedi-
ation management techniques to leverage the prediction results
to optimize the management of data centers. Data collection
has already been discussed in Section II-B. Therefore, we
focus on data preparation and model training in this research.
We leave the failure remediation management and data center
optimizations as near-future research work.

A. Data Preparation

1) Preprocessing: In our current design and implementa-
tion, the job accounting data is stored in a MySQL database;
we perform a select operation with start and end times to
select the data collected from August 1th, 2020 to October
1th, 2020. The data is then saved into a dataframe. In the data
preprocessing phase, we convert raw features into a format
more suitable for machine learning training. Specifically, we
create dummy variables for the categorical variables by using
one-hot encoding [32], and scale the numerical features to
avoid features with high variability from having more influence
in the prediction.



Another important design consideration in data preparation
is to deduct irrelevant attributes and derive appropriate features
from the original attributes. Irrelevant attributes add extra
dimensions to the data set and can distract machine learning
algorithms from achieving accurate prediction rules. On the
other hand, deriving proper combinational features can boost
the prediction accuracy. In our case, we drop the feature job id
because it is assigned by the job scheduler and does not reveal
the characteristics of the workload. We derive hours of the day
and days of the week from time-related features to augment the
data. We also derive several numeric features from the resource
usage data, such as CPU intensity and average memory usage.
CPU intensity is defined as (cpu/slots)/wallclock, i.e., the
ratio of the CPU time of a workload’s single processor to its
overall wallclock (i.e. runtime). The average memory usage
is defined as mem/wallclock, i.e., the ratio of the integral
memory usage of a workload to its run time.

In addition, the collected data does not contain information
about applications and libraries. To overcome this limitation,
we apply Natural Language Processing (NLP) techniques to
job names and identify similar job names submitted by the
same user. We then assign a uniform name to these workloads
as their job names. This process aims to categorize workloads
that use the same libraries. An underline hypothesis of this
process is that workloads with similar job names submitted
by the same user tend to be the same applications and use
the same libraries, differing only in parameters or parts of the
code.

As discussed in Section III-A, we do not intend to predict
the exact workload error, therefore the prediction is a binary
classification problem (i.e., success or failure). We convert
exit status to 1 if the workload fails and 0 otherwise, and
use this as the class label.

2) Features Selection: Predicting workload failures pro-
vides input for failure remediation management, where possi-
ble techniques include: 1) notifying users of potential work-
load failures after job submission but before execution; 2)
making better scheduling decisions based on the prediction,
thereby encouraging users to improve code quality and request
appropriate computational resources; and 3) killing workloads
that will fail before wasting too many computational resources.
To this end, we plan to train two models, one for predicting
pre-run failures (i.e., queue-time model) and the other for
predicting runtime failures (i.e., runtime model).

Queue-time model and runtime model are trained with
features available in different job states. The queue-time model
is trained with categorical features such as owner, group,
job name, department, etc. The runtime model uses not only
categorical features but also resource usage features, such as
CPU time, integral memory usage, data transferred in IO, etc.
Note that in our case, resource request data, such as estimated
job running time and expected maximum memory needed
during runtime, are not recorded in the job accounting data,
slightly limiting the available features that can be used to train
the queue-time model. For other data sets that include resource
request information, the queue-time model can be enhanced

and its prediction results should be more accurate.

B. Model Training

We use five classification algorithms to implement machine
learning models and train them with our 324,358 instances
to predict workload failures. These algorithms and the corre-
sponding hyper-parameters are described below.

Gaussian Naive Bayes: Naive Bayes is a probabilistic
machine learning algorithm based on the Bayes Theorem,
which is a simple mathematical formula for calculating con-
ditional probabilities. In our implementation, we use Gaussian
Naive Bayes (GNB) (i.e., Naive Bayes extended to real-valued
attributes). It is easy to implement because we only need
to estimate the mean and standard deviations of the training
data. Guassian NB does not accept parameters, except for the
priors parameter, which we use the default value of “None”
in our model.

Logistic Regression: Logistic Regression (LR) is a classifi-
cation algorithm for finding the relationship between features
and outcome probabilities and is the most widely used machine
learning algorithm in classification problems. It is relatively
fast compared to other supervised classification techniques.
Since we do not predict the exact value of the exit status, we
use Binomial Logistic Regression. Logistic Regression does
not actually have any critical hyper-parameters to tune. We
set the inverse regularization parameter (i.e. C) to 0.1 and
choose “l2” as the penalty parameter and “liblinear” as the
solver parameter.

Linear Discriminant Analysis: Linear Discriminant Anal-
ysis (LDA), as the name implies, is most commonly used
as a dimensionality reduction technique, but it can also be
used as a classification tool by finding linear combinations
of features that separate two or more classes. LDA works
by calculating summary statistics, such as mean and standard
deviation, of input features by class label. Predictions are
performed by estimating the probability that a new instance
belongs to each class label based on the values of each feature.
We set the solver to “lsqr”, which performs best in our data
set compared to other built-in solvers.

Decision Tree: Decision Tree (DT) is a predictive model
that predicts value by learning decision rules inferred from
data features. One of the advantages of this algorithm is that
the non-linear relationship between features does not affect
the performance of the tree. It can handle both categorical
and numeric data. The criterion parameter in the DT is
set to “gini” and the splitting parameter is set to “best”.
All other parameters are kept as default.

Random Forest: Random Forest (RF) is an ensemble
method that consists of a large number of individual decision
trees. It uses bagging and feature randomness in the construc-
tion of each tree to create a forest of uncorrelated trees. Each
individual tree in the random forest produces a class prediction
and the class with the most votes will be the predicted value of
the model. As with the Decision Tree, we set the criterion
parameter to “gini” instead of “entrophy”. The number of
random features (i.e. max_features) considered in each



split is set to “sqrt”, which is usually good for classification
problems. The rest of the parameters are left unchanged.

Since our data set is very large, we use the holdout method
instead of the cross-validation method to save computational
cost. The data set is partitioned into 65% training data, 15%
validation data and 20% testing data. The training set learns
the relationship between the features and the target variables
(i.e. 0 for success and 1 for failure). The validation set is used
to check how accurately the model defines the relationship be-
tween features and known outcomes. The testing data provides
a final estimate of the model performance after the model has
been trained and validated.

V. EXPERIMENTAL RESULTS

In this section, we describe the evaluation metrics we
used for our experiments and present the experimental results
including the performance of the machine learning algorithms
described above and the potential resource savings that benefit
from the prediction, followed by an evaluation of the impact
of the training sizes. The models in this study are implemented
in the scikit-learn [33] Python library.

A. Evaluation Metrics
1) Prediction Metrics: In order to measure the performance

of ML algorithms, it is important to specify evaluation metrics.
We use recall (i.e., true positive rate), precision and F1 Score
as our measurements. Recall represents the ratio between the
number of correctly predicted failed workloads to the total
number of actual failures. Precision is calculated by dividing
the total number of predicted failures with the number of
correctly predicted failed workloads. F1 score is the weighted
average of recall and precision. A higher score for these three
metrics means that the model’s classification results are more
accurate. These measurements are shown below:

recall =
# of Correctly Predicted Failures

Total # of Actual Failures
(1)

precision =
# of Correctly Predicted Failures

Total # of Predicted Failures
(2)

F1 Score =
2 ∗ (recall ∗ precision)
recall + precision

(3)

2) Resource Savings Metrics: The basic proactive failure
remediation management is to simply kill workloads that are
predicted to fail. This strategy is sensitive to false positive,
where workloads are incorrectly predicted to fail. Killing
workloads inappropriately will result in wasted resources, as
the killed workloads will be restarted and run at a later time.
Therefore, We define the resource saving (Rsaving) as:

Rsaving =
Rs −Rw

Rtotal
, (4)

where Rtotal is the total resources consumed by failed and
successful workloads, Rs is the resource saved by proactively
killing failed workloads, and Rw is the resource wasted by
killing successful workloads.

B. Failure Prediction

Table III presents the performance of the queue-time model.
Specifically, we observe that Gaussian Naive Bayes (GNB)
achieves the highest recall score of 99.44%; Random Forest
(RF) performs the best with a precision score of 90.61%
and an F1 score of 87.71%. The performance of the runtime
model are shown in Table IV. Again, RF achieves the best
performance with a precision of 97.75% and an F1 score
of 95.91%. Although GNB achieves the highest recall score,
its precision score is the lowest, indicating a low number of
successful failure predictions in its total failure predictions
and it predicts most successful workloads as failures. When
evaluating the overall performance, we choose RF as the
classification algorithm for both models.

TABLE III: Performance of Queue-Time Model

Model recall precision F1 Score Training Time(s)
GNB 99.44 15.65 27.04 3.5
LR 57.22 86.16 68.77 5.46

LDA 62.14 77.92 69.14 45.12
DT 84.02 90.33 87.06 123.96
RF 85.00 90.61 87.71 149.81

TABLE IV: Performance of Runtime Model

Model recall precision F1 Score Training Time(s)
GNB 99.44 15.65 27.05 5.13
LR 58.13 86.48 69.52 6.32

LDA 58.92 81.64 68.45 46.7
DT 93.92 94.57 94.24 173.08
RF 94.14 97.75 95.91 145.71

C. Resource Savings

The numeric features such as CPU time and integral mem-
ory usage are only known after the workload has completed
execution. This fact may raise the question of how we can
estimate resource savings at different run times of a workload
and use these features to predict workload failures early. To
apply the run time model on a running workload, we make the
following assumption: resource usage is linearly proportional
to run time, so its resource usage at different times can be
calculated as:

CRU = FRU ∗ Time

Wallclock
, (5)

where CRU stands for Current Resource Usage and FRU
stands for Final Resource Usage. Based on this formula, we
generate a series of test data sets from the original test data
(20% of 2-month workload traces in Quanah cluster, i.e., 12-
day workload traces) containing synthetic resource usage at
different times, and then, apply the runtime model on these
data sets. Figure 7a shows the resource savings. From this
figure, we observe the same pattern of savings in CPU time and
integral memory usage; they both achieve the highest savings
at the beginning of the time, 16.7% and 14.53%, respectively.
Overall, the resource savings decrease over time, except for a
few ups and downs at around 4200s and 14400s. To understand
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Fig. 7: Resource Savings in percentage (a) and CPU Time
Savings in Node Days (b) at different times.

the resource savings, we convert the CPU time savings in
seconds to CPU time savings in node· days, where the node
has 36 CPUs. As shown in Figure 7b, the maximum CPU time
savings is about 250 node· days. In other words, applying the
runtime model on 12-day workloads of a 467-node cluster will
help save the CPU time (and associated power consumption)
of a node running for 250 days.

To better understand the resource savings, we plot the
number of workloads and prediction performance at different
times, as shown in Figure 8a and Figure 8b. Figure 8a shows
that the total number of workloads participating in the failure
remediation management decreases exponentially and some
workloads complete before the runtime model is applied.
Therefore, the resource savings that can be achieved decrease
with time. Figure 8b presents the recall, precision, and F1
scores. Throughout time, the precision scores are at high
values. The recall and F1 scores are decent (both scores are
above 72%) although some fluctuations exist.

D. Effect of Training Size

Even though we achieve a promising prediction accuracy
using Random Forest, the training time is long because of
using a large amount of workload traces. As shown in Table III
and Table IV, the training time in both models are about 150s.

(a)

(b)

Fig. 8: Number of workloads (a) and Prediction Performance
(b) at different times.

In order to find the optimum training size that achieves a
balance between prediction accuracy and training time, we
build the prediction models using different training sizes in
the range of 1 day to 60 days of data. As shown in Figure 9a
and Figure 9b, the precision, recall and F1 scores of the queue-
time model and the runtime model do not improve significantly
after the training size exceeding 30 days of data. With the
training size of 30 days of data, the training time shortens
to 67 seconds, which is acceptable to many data centers to
conduct workload failure predictions periodically.

VI. RELATED WORK

Characterizing and quantifying failures in data centers are
invaluable for system administrators to understand the behav-
ior of the systems and thus develop strategies to improve
the RAS of the systems. Many prior works have investigated
failures on large-scale systems [16], [17], [19], [20], [31],
[34], [35]. For example, Fadishei et al. [20] analyzed workload
traces in grid environment and discovered correlations between
failure characteristics and performance metrics. Schroeder et
al. [31] examined statistics on failure data collected at two
large HPC sites and discovered temporal and spatial correla-
tions of failures. Zheng et al. [34] presented a co-analysis of
RAS and job logs that helps in understanding failure patterns
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Fig. 9: Training Size vs. Prediction Performance of Queue-
time Model (a) and Runtime Model (b).

and system/user behavior. There are also studies that looked
specifically into the reliability of particular component such
as DARMs, disks and GPUs [36]–[38].

Considering the failure characteristics and the correlations
between failures and job types, performance metrics and com-
ponents, several studies investigated machine learning models
to predict failures on large-scale systems [21], [22], [39], [40].
Fu et al. [39] proposed a hybrid failure detection framework
using one-class and two-class support vector machines (SVM).
Chen et al. [21] proposed a prediction method based on
Recurrent Neural Network (RNN) that predicts application
failure in cloud using the Google cluster workload traces.
Tariqul et al. [22] developed a similar approach like Chen’s
by using Long Short-Term Memory Network (LSTM). Many
of the proposed approaches are limited to certain performance
metrics, such as studies based on Google cluster workload
traces [21], [22], or are limited to certain components of the
system, such as studies focused on GPUs [40].

The drawback of these mentioned approaches is that they
ignore the human factors that lead to failures. As shown in
Section III-D and Section III-E, there are correlations between
failures and user behavior. A well-trained and experienced
user can potentially produce less failure jobs. The proposed
approach in this work considers not only performance metrics,
but also user behavior in the prediction models. In addition,
the proposed approach does not rely on complex system

logs collection and analysis; it utilizes job accounting data
that is available in all resource managers. Therefore, the
prediction models and failure remediation mechanisms (e.g.
killing predicted failures) are easier to integrate into resource
managers.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we have analyzed two months of job account-
ing data collected from a production data center and found
that failed workloads accounted for 8.5% of total workloads,
consumed 21.1% of the total CPU time and 20.2% of the
integral memory usage. In addition, we have quantified the
workload failure rates across nodes, users, and different time
scales, and we have analyzed the correlation between them.
Based on the comprehensive understanding of workload traces,
we develop two prediction models (queue-time model and run-
time model) with five machine learning algorithms and have
found that Random Forest performed the best with 90.61%
and 97.75% precision scores, respectively. We further explored
the training size and its impact on prediction performance
and training time, and we concluded that 30 days of job
data is the optimal training size, with 67 seconds of training
time for our data sets. Our experimental results show that the
workload failure prediction model can help save CPU time
and integrated memory usage by up to 16.7% and 14.53%,
respectively.

Nevertheless, our study can be further improved in several
aspects. First, due to the lack of resource usage data for work-
loads at different runtimes, we had to create synthetic data to
quantify the resource savings gained from the runtime model.
This approach may not be representative of all situations and
the accuracy of the predictions may not be as high as expected.
Second, because resource request information is an important
factor in predicting workload failure, the lack of this feature
prevented our model from achieving more accurate predic-
tions. Third, the prediction models only predict the probability
of workload failure. Even though we have achieved promising
performance, we cannot infer the causality of workload failure
based on the available data since correlation does not imply
causality. To further support causality identification, we plan
to develop a provenance based approach for failure predictions
in the future.

In large-scale data centers, where workload failures become
the norm, proactive failure management is critical to improve
system reliability, availability, and scalability. In future work,
we plan to improve the prediction by adding more features
in the training data, such as hardware monitoring metrics and
system logs, and explore other machine learning algorithms,
such as LSTM. In addition, understanding the causality of
workload failures is important for both system administrators
and users. We hope to conduct causal inference studies when
the detailed provenance is available. Moreover, failure-aware
resource scheduling is also a promising research direction and
deserves further studies.



REFERENCES

[1] F. Cappello, G. Al, W. Gropp, S. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience: 2014 update,” Supercomputing Frontiers
and Innovations: an International Journal, vol. 1, no. 1, pp. 5–28, 2014.

[2] G. Candea, A. B. Brown, A. Fox, and D. Patterson, “Recovery-oriented
computing: Building multitier dependability,” Computer, vol. 37, no. 11,
pp. 60–67, 2004.

[3] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot–a technique for cheap recovery,” arXiv preprint
cs/0406005, 2004.

[4] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (blcr)
for linux clusters,” in Journal of Physics: Conference Series, vol. 46,
no. 1. IOP Publishing, 2006, p. 067.

[5] S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya, “Environment-
conscious scheduling of hpc applications on distributed cloud-oriented
data centers,” Journal of Parallel and Distributed Computing, vol. 71,
no. 6, pp. 732–749, 2011.

[6] G. Aupy, M. Shantharam, A. Benoit, Y. Robert, and P. Raghavan, “Co-
scheduling algorithms for high-throughput workload execution,” Journal
of Scheduling, vol. 19, no. 6, pp. 627–640, 2016.

[7] M. Rodrı́guez-Pascual, J. Cao, J. A. Morı́ñigo, G. Cooperman, and
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