
LEMO-MR: Low overhead and Elastic MapReduce

Implementation Optimized for Memory and

CPU-Intensive Applications

Zacharia Fadika 1, Madhusudhan Govindaraju 2

Computer Science Department, Binghamton University

P.O. Box 6000, Binghamton, NY 13902-6000, USA
1
zfadika@cs.binghamton.edu

2
mgovinda@cs.binghamton.edu

Abstract—Since its inception, MapReduce has frequently been
associated with Hadoop and large-scale datasets. Its deployment
at Amazon in the cloud, and its applications at Yahoo! and
Facebook for large-scale distributed document indexing and
database building, among other tasks, have thrust MapReduce
to the forefront of the data processing application domain. The
applicability of the paradigm however extends far beyond its use
with data intensive applications and diskbased systems, and can
also be brought to bear in processing small but CPU intensive dis-
tributed applications. In this work, we focus both on the perfor-
mance of processing large-scale hierarchical data in distributed
scientific applications, as well as the processing of smaller but
demanding input sizes primarily used in diskless, and memory
resident I/O systems. In this paper, we present LEMO-MR
(Low overhead, elastic, configurable for in-memory applications,
and on-demand fault tolerance), an optimized implementation
of MapReduce, for both on-disk and in-memory applications,
describe its architecture and identify not only the necessary
components of this model, but also trade offs and factors to
be considered. We show the efficacy of our implementation in
terms of potential speedup that can be achieved for representative
data sets used by cloud applications. Finally, we quantify the
performance gains exhibited by our MapReduce implementation
over Apache Hadoop in a compute intensive environment.

I. INTRODUCTION

Since its debut on the computing stage in 2004, and

following its applications in various domains ranging from

search engine technology [1] to astronomical data parsing [2],

the MapReduce framework [3] has gained significance in the

scientific computing community. The paradigm was originally

inspired by a functional programming primitive called map [3].

In Haskell for instance, a programmer has the ability, given

a list of input elements structured as a homogeneous dataset,

to apply a given function on it. map takes a function and a list

of elements, applies the function on each element of the list,

then subsequently produces a second list resulting from the

application of the function to the first list. The appeal of the

method however lies in the fact that each element of the said

input list can be assigned a different processing entity part of a

cluster of computers, along with a copy of the map function to

be applied on that element. This enables multiple processing

entities to simultaneously apply the same map function on dif-

ferent bits of the same list, all representing a part of the overall

input file, and as such reduce an application’s turnaround

time. MapReduce however carries its own burdens. Through

previous experiments using Hadoop in the context of diverse

applications, we uncovered latencies and delay conditions

potentially inhibiting the expected performance of a parallel

execution in CPU-intensive applications [4]. Furthermore, as

it currently stands, MapReduce is favored for data-centric ap-

plications, and as such tends to be solely applied to disk-based

applications. The paradigm, falls short in bringing its novelty

to diskless systems dedicated to in-memory applications, and

compute intensive programs processing much smaller data, but

requiring intensive computations.

The contributions of this paper are the following:

• We describe an efficient and elastic MapReduce frame-

work, which provides an abstraction of the input medium.

It allows disk-based applications, as traditionally applied,

diskless software systems, and compute intensive appli-

cations.

• We present a passive fault-tracking scheme, which avoids

the burden of network packet abundance and possible

network activity slow-down.

• We contrast latencies produced by the current MapReduce

model with a direct approach to input data management,

on-demand fault-tolerance and evaluate the performance,

reliability, and scalability differences observed.

• We present an elastic approach to MapReduce, allowing

for cluster configuration to be automatically scaled up

and down in between tasks without the need for the

framework to be torn down, rebuilt, and restarted.

II. THE ARCHITECTURE OF A MAPREDUCE PLATFORM

Hadoop is an open-source framework developed by the

Apache Software Foundation [5]. It is based on its own file

system: The Hadoop Distributed File System (HDFS) [6].

Hadoop implements the Google MapReduce programming

paradigm by relying on the HDFS as its foundation. The

HDFS sits as a layer of abstraction between Hadoop and

the Operating System. The file system administers input and

output file considerations, and is also partially in charge of



various framework activities such as load-balancing and fault-

tolerance. Hadoop features a splitter module whose role is

to partition and allocate file blocks or chunks to awaiting

worker nodes. The blocks are then replicated according to a

replication factor pertaining to Hadoop’s internal settings and

distributed among chosen nodes called DataNodes [7]. As

cluster nodes fail or fall behind, DataNodes are given the

ability to replicate their own file blocks.

DataNodes also periodically send updates and reports

of block conditions to the master, such as block usage and

integrity. Even though it is costly, especially for smaller data

and heavy computation loads, this organization is necessary

for fault-tolerance, because it is less expensive to bring the

computation to the data rather than bringing the data to the

computation [8]. While this provides a sense of locality, the

expense of shipping data around is still incurred. Also, when

this organization is not offset by a data size to computation

ratio weighted heavily towards data size, the model reveals

performance deficiencies that readily grow with compute in-

tensity. As the data size increases in such scenarios, the input

file blocks need to be rearranged to accommodate potential

new DataNodes, further introducing delays and exacerbating

the problem. Hadoop also uses ”Shuffling” for data com-

munication among nodes. ”Shuffling” is a costly process of

distributing the intermediary lists pertaining to each node

among all the other nodes. We contrast these latencies with

a direct approach to input data management and evaluate the

performance, reliability and scalability differences observed.

A. Design Space for MapReduce Implementation

Hadoop tightly couples its input processing module to

its map and reduce constructs. This introduces potential

inhibiting overhead to the entire application, as the data

needs to be mapped, replicated and shuffled [5]. This modus

operandi limits the framework’s applicability to various input

sources and application behavior, such as processing intensive

applications and diskless systems. In our implementation, we

programmatically represent the input as an abstract stream of

data. This gives the user the ability to source the data either

from disk or memory then convert it into a stream, allowing

the platform to be plugged in a myriad of environments.

B. Design Decisions in LEMO-MR

The input data set must be split so worker nodes may

process it. The solution to this problem, however trivial it

may be, constitutes the first hurdle in a successful MapReduce

emulating platform. Hadoop tackles this problem by delegating

it to its inherent file system. The HDFS automatically performs

the splitting and allocation of input to worker nodes upon

reception of such data. The operation is separated from the

MapReduce application itself, but still incurs latency consid-

erations as the framework itself cannot be launched before the

file system can account for all its blocks and their replicas. In

LEMO-MR, we aimed for a configurable and flexible design

in an effort to maintain an important benefit of the direct

MapReduce approach, but also to allow for different input

sources to be usable.

1) Elastic Model for Dispatching Jobs to Workers: In our

approach, we decoupled the input processing module from

the input source by providing a data abstraction compatible

with a stream of data, be it disk-based or memory-based. This

allows for node size to be quickly increased and decreased

because nodes are independent of data placement, and only

needed for processing. The input module here is oblivious to

the memory or file source as it is designed to work with a

stream abstraction. This gives the user the ability to either

fashion memory or disk input into a stream of data to be

fed to the platform, thus allowing the system to process input

coming either from disk or memory. In so doing, we do not

preset the input files as Hadoop does, but rather we evaluate

the data mid-stream as the application is started, also allowing

us to elastically reconfigure our cluster. The input size is first

evaluated, the number of participating worker machines is

then accounted for, and subsequently LEMOR-MR divides the

input into chunks, according to the number of participating

workers.

The user can forgo this step by disabling the ”Dispatch-

Only-Mode” when desiring to run a filesystem-based approach

to the same application. This then allows for input to be pre-

sent to the worker nodes and remain resident for as many

iterations of different MapReduce jobs as desired. Elasticity in

this mode is still maintained at the cost of a slight delay due

to recalculation, still avoiding the framework to be stopped,

torn down, and restarted as Hadoop requires [5]. Figure 1

presents an accounting of such costs for Hadoop, LEMO-MR,

and LEMO-MR in Dispatch-Only-Mode, for 8, 16 and 32 node

clusters respectively handling 1GB of raw data.

2) Master-Worker Communication Messages: Upon launch,

LEMO-MR divides the input and simultaneously dispatches it

to its various recipients in a data stream. The nodes designated

as mappers also subsequently receive the map function, and

the ones designated as reducers receive the reduce function

from the master through the user source code sent to all

the workers. The user provides these facilities as part of the

structure comprising the application source code. The user is

free to implement the map code accordingly.

3) Fault Tolerance: Hadoop also insures that each node is

carrying its share of the burden by monitoring their health

status in the form of a heartbeat signal. LEMO-MR follows

this model in a low overhead fashion. A heart beat sent to

the master can be a steadfast way to detect node failure and

reschedule a task if necessary. Another alternative, one which

avoids the burden of network packet abundance, especially

when dealing with thousands of nodes, is the use of a

self-reporting mechanism on the part of the workers. Upon

operational failures, we elected for an exception handler to

notify the master before terminating, or in the case of sudden

death of one of the workers, the rupture of the communication

pipe linking them. Furthermore, the master in the context

of signaling its workers to begin execution, through a live



8 Nodes 16 Nodes 32 Nodes

Elastic Response Time
S

ta
rt

u
p

 t
im

e
 (

s
)

0
1

0
2

0
3

0
4

0
5

0
6

0 Hadoop

LEMO−MR

LEMO−MR Dispatch Mode

Fig. 1. System readiness response time vis-a-vis cluster size increase for 1GB
of data. This graph shows the time-to-readiness exhibited by both systems
in the face of cluster expansion. This analysis is also applicable to cluster
shrinkage. It is worth noting that these delays grow with cluster size as shown,
but also with input data size. The turn around time exhibited by LEMO-MR
is much lower even in its capacity as input file manager, because the file
manager interacts directly with the underlying file system. Hadoop on the
other hand, in addition to requiring input chunk replication, also relies on the
HDFS as a layer of indirection between it and the file system, thus causing
delays. In dispatch-Only-Mode, LEMO-MR shows faster turn around times,
as input streaming is performed during the application runtime. The system
(dispatcher) decouples the input placement scheme from the nodes, and thus
allows for the cluster size to be dynamically scaled. This provides an elastic
framework, capable of growing or shrinking on-demand.

execution thread, receives the completion status of the map

functions. Should the worker fail, the master receives notifica-

tion of the event through a return code, or a broken pipe signal

upon sudden death of the worker. The master then updates its

node availability and job completion data structures to indicate

that a job was not completed, and that a node has failed. We

later evaluate this low overhead fault-tolerant component along

with Hadoop’s data replication and node heartbeat detection

capability, and assess job completion times in the face of node

failures.

The architecture of this model is featured in Figure 2,

which shows the different parts of the model, along with their

interactions.

III. LEMO-MR VS HADOOP: SIMILARITIES AND

DIFFERENCES

In our prior work, we noticed that for jobs bearing a

moderate data load, Hadoop tended to perform poorly, and

sometimes stood out-staged by a single operating node [4].

Our architecture is based on the traditional framework, fol-

lowing the contours to the original concept of MapReduce,

and designed for low overhead.

The LEMO-MR framework consists of five principal mod-

ules: the initialization module, the splitter module, the MapRe-

Fig. 2. Architecture of LEMO-MR, implemented in Java. The user provides
a list of hosts to the host file, and a settings file. Upon launch, the init

module parses both files, updates its data structure with relevant variables
including input directory location, source code path, and number of hosts
to use from the host file. The relevant information is then passed on to the
splitter which splits the input and dispatches it to the chosen nodes. The
MapReduce Control Manager then provides the worker nodes with running
instructions. Once the MapReduce Control Manager (MRC) accounts for all
the necessary completion signals, the assembly module consults the fault table
through the fault-module and returns the flow to the MRC for re-runs if
necessary. Alternatively, the assembly module assembles and provides the
output to the user through the output directory specified in the settings file.

duce Control Manager (MRC), the assembly module, and

finally the fault-tracker module.

A. The init module

The initialization module is tasked with parsing the settings

file and gathering valuable settings provided by the user. Such

variables range from the location of the host file, to the diverse

input and output directory paths to the number of hosts to

pluck out of the host file. The user provided source code is

compiled on the master side and sent as an executable archive

so it can both run and be instantiated, if need be. Doing so

allows independence of the nodes, as all workers are sent an

executable version of the user code, allowing them to work

on their input split independently without requiring constant

map and reduce instructions from the master node. Hadoop

on the other hand streams its instructions to its workers, and

does not allow the user to pick and choose which nodes should

participate in a given job. Additionally, it does not allow the

user to pick how many nodes in the host file should be selected

for each particular job, but instead selects for scheduling all

the machines present in its host file. Because of this structural

organization, the Hadoop cluster, unlike LEMO-MR, cannot be

elastically scaled, as it would require the system to be stopped,

reconfigured, and then restarted.



B. The splitter

The splitter or input-splitter also operates as a dispatcher.

Upon splitting the data into the necessary number of chunks,

the splitter sends the shards to the different workers through

thread spawning. This ensures that the dispatch operates in a

concurrent way. The splitter also provides to the workers the

user source code in the same manner. Split organization among

the workers is kept track of, giving the splitter the alternate

role of distributed file system manager. The data passed by

our splitter can be sourced from either disk or memory, or

even streamed into the splitter module from a remote machine,

which Hadoop MapReduce does not permit.

C. The MapReduce Control Manager

The MapReduce Control Manager is tasked with starting the

workers with their work. In LEMO-MR, a remote execution

command is sent to all workers through individual and grouped

threads. The workers upon reception of the command com-

mence their execution and upon failure or termination return a

code describing the outcome of the execution, be it successful

or not. Upon sudden death, the workers break the commu-

nication pipe, allowing the master to take note of the fatal

failure of a given worker node. This scheme dwells as a low

overhead method for communication with the workers while

still allowing them to work independently. During the run, the

nodes do not burden themselves, the network, and the master

by advertising their status. In fact they only do so before dying,

or fail to do so when the master inquires after receiving most of

the completion stubs sent by other successful nodes. Hadoop

MapReduce maintains active communication with its nodes

to detect failures and communicates processing instructions

by seemingly streaming map and reduce routines as they do

not physically appear on the workers’ local storage. The large

size of a typical MapReduce cluster and the repetitive nature of

compute intensive code warrants constant function calls across

the network. This coupled with a centralized error and progress

reporting mechanism can band to create delays and inherent

inefficiencies negatively impacting the performance of CPU

intensive applications. In [9], Glimcher et. al. show the nega-

tive impact of network resource constriction in distributed en-

vironments. Network resource clogging has subsequently been

shown by [10] to have worse consequences on performance in

cloud environments. This analysis is corroborated by [11], in

which Hadoop MapReduce’s performance is shown as poor in

virtualized settings, and thus in most cloud environments.

D. The assembly

The output assembly module in LEMO-MR is triggered

by the master which keeps a tally of completed nodes and

decides on user instructions to replicate slow jobs. However,

upon receiving all output bits, it assembles them to produce

the final output. The assembly goes through the reducer, which

may contain user code providing special assembly information

such as sorts, triages, or other operations depending on the goal

of the job. The assembly however consults the fault tracker

module before proceeding further.

E. Fault-Tracker

The Fault-Tracker module traverses a node availability table

produced by the master. The table keeps a record of the tasks

that need to be restarted, and which nodes can be entrusted

with such tasks. Upon encountering failed tasks, the module

dispatches free nodes and instructs them to accomplish the

jobs. The module itself is recursive, meaning should a rescue

fail, the rescuing node is added to the table and the module

runs again, parsing the table for the next available node to

pickup the failed tasks. Dead nodes are pinged in the interim

in an effort to update the table should they have come back to

life. This effort continues until all output pieces are recovered,

or until either all nodes die, or a user specified timeout is

reached. Hadoop uses a heartbeat monitor and task replication

regardless of failure occurrence. It also does not keep track

of nodes that might have resurfaced after suddenly failing.

LEMO-MR, on the other hand, migrates tasks as long as one

or more nodes are alive, and constantly updates its availability

table to register revived nodes.

IV. DISTRIBUTED LARGE-SCALE DATA PROCESSING

Prior benchmarking results on the processing of data inten-

sive Web services applications showed that for Web services

toolkits scalability is adversely affected as the size of the

datasets increase [12], [13]. While traditional approaches of

MapReduce focus entirely on processing time savings on

scaled dataset sizes, it has also been shown that the same is

true for memory sized datasets requiring significant amount of

processing cycles [4]. The use of parallelism as MapReduce

offers is a benefit in both scenarios where processing is in

high demand, even with a small input dataset.

This case applies well to in-memory applications where the

input is small enough to spend its entire life-cycle in memory,

but intensive enough to demand significant processing per each

single element contained in the input. The original approach

of MapReduce is rather well known, and constitutes the

traditional demand for the paradigm whenever the input sits

too large to fit in memory and needs to be parallelized as a

manner to exercise the resources of additional nodes.

The application domain we have chosen for testing our

implementation is processing for large XML datasets. Scalable

processing of datasets is a critical concern as the size of data

used by applications has steadily increased over the years

in both scientific and business applications. For example,

the MetaData Catalog Service (MCS) [14] provides access

via a Web service interface to store and retrieve descriptive

XML information (metadata) on millions of data items. While

the Web service approach of MCS provides interoperability,

widely used toolkits such as Axis [15], Libxml [16], and

Piccolo [17], are typically designed to process small-sized

datasets. Additionally, scalable processing of information is

now of critical importance in scientific applications where

the data size is large, and processing on a single node is

not an acceptable option. Our framework for implementation

and experimentation with the MapReduce model can be used



for large-scale data-intensive processing, but also in CPU-

intensive scenarios where the input is smaller, either disk-

based or solely resides in memory, as is sometimes the case.

Even though we use XML as the data format for performance

comparisons, our framework can be used for different scientific

data formats such as HDF5 [18] and NetCDF [19], when the

MapReduce model is applicable for the distributed application.

In the context of performing data processing, we use AxisJava,

a widely used web services-based application toolkit. It is a

processing intensive SOAP engine capable of creating SOAP

processors, which in turn can be used in parsing data content.

The resulting tokens can then be streamed into application

friendly content and returned to the user. For input, we had

the choice of different XML-represented documents. It has

however been shown that AxisJava tends to require multiple

CPU cycles in intensive computations when it comes to

parsing and processing arrays of type double [12], [20]. The

computation is CPU intensive regardless of overall data size.

This fact led us to choose this particular data set for our input,

as good performance behaviors if any in our comparison, will

be clearly contrasted with low performance behaviors. We also

chose this experimentation path because XML is widely being

used as an encoding of choice for many scientific, healthcare,

and financial applications. For our experiments, we extracted

AxisJava’s parsing module and integrated it into our applica-

tions. Both Hadoop and LEMO-MR run off similar source

code powered by the AxisJava parsing engine. We tested

both frameworks in a myriad of cluster computing scenarios

regarding not only performance but also fault tolerance. While

a high overhead prone system can be a detriment to its own

performance, overhead generating design decisions such as

data replication, shuffling and constant network chatter as in

Hadoop’s case contribute to the reliability of its framework. A

key goal of our experiments is to assess the impact of reduced

overhead approaches on reliability in the face of job run time.

We achieved this by purposely causing gradual node failures

as both systems performed. In all the experiments, we ran tests

for LEMO-MR along side Hadoop using identical node counts

and input data.

V. PERFORMANCE RESULTS

We run our tests on a selection of two machine classes:

• 1× dual core – One desktop-class machine, which has a

single 2.4Ghz Intel Core2 6600 with 2GB of ECC RAM,

running Linux 2.6.24. The filesystem in use here is ext3fs.

• 2× uniprocessor – 1U nodes in a cluster, each of which

has two 3.2Ghz Intel Xeon CPUs, 4 gigabytes of RAM

and run a 64 bit version of Linux 2.6.15. Results on this

class of machines are taken by averaging the timings

produced on these nodes. The filesystem in use in the

test directory here is reiserfs.

Figure 3 shows how data analysis time can be saved by our

framework wherein primary operational concern is harnessing

the power of additional processing units while leaving as little

overhead footprint as feasible. This is possible through our

0.2 0.4 0.6 0.8 1.0

0
2

0
4

0
6

0
8

0

Input size (MB)

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
)

●

●

●

●

●

●

SingleNode

Hadoop 3 Nodes

LEMO−MR cluster 3 Nodes

Fig. 3. Shows the performance of a 3 node Hadoop cluster compared with
our designed framework running the same code with 3 nodes as well, up
against a single node computer. The experiment shows relatively small input
sizes as to illustrate the performance of a single computer system in the same
processing scenario as the Hadoop cluster and LEMO-MR cluster. This affords
the reader a baseline as to the performance of a single desktop computer in this
environment. The graph also shows on a smaller scale, the behavior of all the
systems involved. Even as it is rightly so to assume that MapReduce systems
like Hadoop and our design are better suited with large input data sizes, this
experiment allows us to illustrate the amount of overhead still taking place
with small inputs as a means to later showcase and explain this prevailing
trend as input files grow larger. Up to 400KB of data, the single node performs
better than the Hadoop cluster. This is in part because in the case of Hadoop,
every node in the cluster is not only vying for one single collection file in
HDFS, but due to cost incurred from shuffling, data replication, and intensive
node to node streaming communication, while the input size is not large
enough to offset those performance dampening factors.

design by establishing node communication only when nec-

essary, and by making use of the underlying system as much

as possible, thus limiting layers of abstractions contributing

to performance slowdown in Hadoop. The Hadoop cluster,

running three nodes, is out staged by a single system for

data files containing less than 400KB of input. Admittedly,

MapReduce is commonly used with large input sizes in the

scale of PetaBytes of data, and as such while a 400KB to 1MB

data range seems like a small feed for Hadoop. This however

allows us to point out that even for small input sizes, a pattern

of processing latencies that will undoubtedly grow as data

and CPU intensity grow in compute intensive scenarios. Due

to the computation vs communication trade-off in distributed

systems, a large input data size does not always warrant cluster

use. A single desktop system can still sequentially process as

much data as its memory would allow and run faster than a

cluster if the work load per input unit is low [4].

Figure 4 displays the performance output produced in the

processing of a 2.5GB input file as the number of nodes in

charge of the processing is gradually increased. The argument

indicting operational overhead is magnified in this graph.



0 10 20 30 40 50 60

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

Number of nodes

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
)

Hadoop

LEMO−MR

Fig. 4. Performance displayed by the different platforms as the number
of participating worker nodes is gradually increased from 2 to 64 on a 2.5
Gigabyte dataset. LEMO-MR outperforms Hadoop by 173% for 64 nodes,
while running up to 7 times faster for smaller configurations

For a low number of nodes, the difference in performance

between the two frameworks is significant, but as more nodes

participate in the work, Hadoop regains some stability. The

same can be said of our framework. However, in our case,

the stabilization point of the curve occurs sooner and for

a lower number of nodes involved. This points out that as

more operational cost is produced, either more nodes are

necessary for significant performance speedup, or more data

processing needs to occurs to the same end. It is thus natural

in this scenario that our low overhead framework would yield

better performance. However, it is interesting to notice the

consistency of the pattern as increases in data and nodes

are induced. With less than 32 nodes present in the cluster,

both curves can be observed to be quite steep. Over 32

nodes, however, they flatten due to the fact that shipping data

around the cluster and managing the nodes begins to dominate

the overall work-load as the optimum number of machines

necessary for the job at hand has been reached and exceeded.

In fact, at this point, adding more machines will not help

improve performance and can instead hinder it. The file size

is 2.5GB, which roughly corresponds to over 240 million data

items.

Figure 5 presents data similar to that in figure 4, using

speedup (computed as T1

Tp

) and a 2.5GB input file. The LEMO-

MR cluster not only performs better, but also scales better due

to low overhead considerations. In this case, T1 is computed

by running the test against a Hadoop cluster, and LEMO-MR.

Figure 6 presents the performance of both clusters as nodes

are led to fail. 1, 2 , 4, 8, and then 16 nodes fail in independent

runs within the 60 node cluster. Both platforms triggered their

recovery mechanisms in order to complete the work left by

0 10 20 30 40 50 60

0
5

1
0

1
5

2
0

2
5

3
0

Number of nodes

S
p

e
e

d
u

p

LEMO−MR

Hadoop

Fig. 5. Speedup achieved by both frameworks over a single node on a 2.5GB
dataset, roughly 240 million items. LEMO-MR scales much better because it
carries a lower overhead cost per additional node.

5 10 15

0
5

0
0

1
0

0
0

1
5

0
0

Number of defaulted nodes

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
)

Hadoop

LEMO−MR

Fig. 6. Processing time produced over gradual failure of nodes. Running
times are recorded for a 60 node cluster in both cases processing a 2.5GB
file while 1, 2, 4, 8, and 16 nodes are brought to fail, thus triggering both
systems’ fault tolerance mechanisms.



the failed nodes. The first observation made is that despite the

on-demand approach of our framework, performance is not

hampered by the potential delay in rescue response. This is

primarily because, as we hypothesized earlier, a homogeneous

cluster does not benefit much in terms of real-time failure

reports. The reason of this being, in this type of design,

remaining nodes are likely to still be performing their tasks,

and as such will not be able to readily assist fallen nodes. In

fact, such nodes should only be free of their own prerogatives

slightly after the fault is reported, and not when it occurs.

Even if the failure is reported as it occurs, no node may yet

be available for the re-runs. The latency in our case exists,

but is minimal compared to Hadoop. Furthermore, the gain

of not having to constantly query nodes, ship and duplicate

tasks across the network, proves valuable in this scenario.

This is shown in the graph as the processing differences are

maintained even under failing node conditions. The LEMO-

MR framework however shows a steadier graph, and a smaller

increase of processing delays overall from 1 node defaulting

to a 16 node fall out. This exemplifies the fact that restarting

a process on another node, will suffer the same performance

degradation as on the original node. Hadoop might also suffer

from a worse case scenario because failures in its case do not

have the same impact as LEMO-MR. The failure of the wrong

combination of nodes, meaning nodes all holding a particular

data block, might cause its replication factor to drop below the

acceptable threshold thus triggering new rounds of replication,

thus taking more time. The failure of inconsequential nodes

might, on the other hand, simply not trigger the same level of

activities leading to costly operations taking place. It is also

difficult to track those chunks in targeting only inconsequential

nodes for the benefits of only inducing best case scenario

failures. In fact, in real application scenarios, just as in our

tests, failures themselves may not always take place in the

best of combinations.

Figure 7 presents data representing the performance of both

clusters as the required processing time on each one of their

individual input items is increased. Using speedup (computed

as T1

Tp

), and a 10 million item input file, demanding processing

times are applied per each input element parsed from the

input file. As can be observed, Hadoop falls further below the

LEMO-MR cluster as work load increases on each input item.

This goes to corroborate the fact that workload aggravates

already existent performance hampering overhead. In general,

processing load for a job must trump the different overhead

considerations of that job, for the use of the cluster to be

fully efficient. Speedup is computed against a single worker

system, and speedup is also shown between increasingly sized

configurations ranging from 16 nodes to 64.

VI. RELATED WORK

Microsoft Dryad [21] is a parallel execution framework that

allows for the execution of computations expressed as direct

acyclic graphs. Disco [22] is a MapReduce implementation

●
●

●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
2

0
4

0
6

0
8

0

Processing in Milliseconds

S
p

e
e

d
u

p

●

●

●

●

●

16 Nodes LEMO−MR

32 Nodes LEMO−MR

64 Nodes LEMO−MR

16 Nodes Hadoop

32 Nodes Hadoop

64 Nodes Hadoop

Single node

Fig. 7. Speedup reached by the Hadoop cluster and the LEMO-MR frame-
work over a single node run while faced with increasing load intensification.
The amount of processing shown is the amount in milliseconds each input
item requires to be processed for. By increasing this variable, we assess the
performance of the system in CPU intensive scenarios, and we show the
wide disparity between both systems as CPU-intensity pervades throughout
the task. The 100MB input file contains a little over 10 million data elements
going through the cluster. The green line shows the performance threshold of
a single machine system facing the same tests.

inspired from a functional language, Erlang [23]. Disco es-

pouses the concept of a lightweight framework as well as

lightweight programs. The framework carries Python appli-

cations, facilitating application development, but has limited

capabilities compared to Hadoop, or compared to the LEMO-

MR framework. Ekayana et al. present CGL-MAPREDUCE

[7], and like LEMO-MR leverages the power of input data

streaming, but fails to provide direct distributed file system

support and fault-tolerance. None of the works highlighted

above as of yet provide the full set of capabilities provided by

LEMO-MR.

VII. CONCLUSIONS

Concurrent exploitation of compute nodes focused on sin-

gle tasks can provide faster processing times for data and

computation-intensive applications. While MapReduce has

long been associated with data size, the paradigm can be sim-

ilarly efficacious when redesigned and applied to processing-

intensive applications and diskless systems. MapReduce how-

ever as it currently stands does not provide for structures

allowing CPU-intensive applications to thrive. The assessment

of this situation is however an implementation issue. The

model itself, as we showed is well suited for such envi-

ronments. Most MapReduce implementations are suited for

data-intensive scenarios, offering little processing on such

data, and as such suffer when processing per items on the

data processed increases. LEMO-MR shows that available



computing resources can be effectively used while requiring

minimal commitments and changes to underlying systems

and hosts. While fault-tolerance appears as a high overhead

construct, it can still be achieved in a low cost manner on

an on-demand basis while still producing fault quenching

capabilities and minimally generating performance impacting

overhead. Our experiments showed not only the merits of a

minimalistic implementation, but also the lack of impediment

on a MapReduce application’s fault-tolerance capability even

as it operates in a low overhead context. MapReduce when

implemented through indirect layers of abstractions can suffer

from a high overhead to work ratio, not suitable for processing-

intensive applications, and diskless systems. The repetitive

nature of operations in a cluster implementing this model can

furthermore aggravate this condition. In LEMO-MR we opted

for:

• The abstraction of the input interface to allow disk-based,

stream-based, or memory-based input.

• Compute node independence and decoupling, allowing

cluster elasticity at very low cost.

• Compute node elasticity by allowing nodes to be seam-

lessly added and removed from the cluster.

• Reducing Master to node communication in allowing

nodes to directly instantiate the user code.

• On demand fault-tolerance response, allowing the system

to increase efficiency in dramatically reducing network

traffic and communication.

VIII. FUTURE WORK

For applications that require processing of Terabyte size

datasets, mass storage is more likely to be arranged in higher

performance configurations such as RAID, NAS, and SAN.

These configurations are likely to efficiently feed multiple data

streams to concurrent threads. We plan to study the benefits

and limitations of LEMO-MR when applied to such cases.

We also plan to study the threshold points for our custom

implementation for a wider range of application datasets used

in cloud environments.

REFERENCES

[1] Y. Gu and R. L. Grossman, “Sector and sphere: the design and
implementation of a high-performance data cloud.” Philosophical

transactions. Series A, Mathematical, physical, and engineering

sciences, vol. 367, no. 1897, pp. 2429–2445, June 2009. [Online].
Available: http://dx.doi.org/10.1098/rsta.2009.0053

[2] A. S. Szalay, P. Z. Kunszt, A. Thakar, J. Gray, D. Slutz, and R. J.
Brunner, “Designing and mining multi-terabyte astronomy archives: the
sloan digital sky survey,” SIGMOD, 2000.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[4] Z. Fadika, M. R. Head, and M. Govindaraju, “Parallel and Dis-
tributed Approach for Processing Large-Scale XML Datasets,” in 10th

IEEE/ACM International Conference on Grid Computing, October 2009,
pp. 5–7.

[5] Apache Hadoop. [Online]. Available: http://hadoop.apache.org
[6] D. Borthakur, “The hadoop distributed file system: Architecture and

design,” Hadoop Project, 2007.
[7] J. Ekanayake, S. Pallickara, and G. Fox, “MapReduce for Data Inten-

sive Scientific Analyses,” in IEEE Fourth International Conference on

eScience, December 2008, pp. 277–284.
[8] G. Mackey, S. Sehrish, J. Lopez, J. Bent, S. Habib, and J. Wang,

“Introducing mapreduce to high end computing in Petascale Data,” in
Storage Workshop Held in conjunction with SC08.

[9] L. G. V. T. Ravi and G. Agrawal, “Supporting Load Balancing for Dis-
tributed Data-Intensive Applications,” in IEEE International Conference

on High Performance Computing (HiPC’09), Kochi, India, December
2009.

[10] H. Qiming, K. Shujia, and T. Duffy, “Case study for running hpc
applications in public clouds,” in ScienceCloud ’10: the 1st Workshop

on Scientific Cloud Computing. Chicago, IL, USA: ACM, 2010.
[11] S. Ibrahim, H. Jin, B. Cheng, H. Cao, S. Wu, and L. Qi, “Cloudlet:

towards mapreduce implementation on virtual machines,” in HPDC

’09: Proceedings of the 18th ACM international symposium on High

performance distributed computing. New York, NY, USA: ACM, 2009,
pp. 65–66.

[12] M. R. Head, M. Govindaraju, A. Slominski, P. Liu, N. Abu-Ghazaleh,
R. van Engelen, K. Chiu, and M. J. Lewis, “A Benchmark Suite
for SOAP-based Communication in Grid Web Services,” in SC ’05:

Proceedings of the 2005 ACM/IEEE conference on Supercomputing.
Washington, DC, USA: IEEE Computer Society, 2005, p. 19.

[13] M. R. Head, M. Govindaraju, R. van Engelen, and W. Zhang, “Bench-
marking XML Processors for Applications in Grid Web Services,” in SC

’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing.
New York, NY, USA: ACM Press, 2006, p. 121.

[14] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman,
M. Manohar, S. Patil, and L. Pearlman, “A Metadata Catalog Service
for Data Intensive Applications,” in SC ’03: Proceedings of the 2003

ACM/IEEE conference on Supercomputing. Washington, DC, USA:
IEEE Computer Society, 2003, p. 33.

[15] AxisJava, “The Apache Project,” 2002, http://ws.apache.org/axis/.
[16] D. Veillard, “The XML C parser and toolkit of Gnome,” 2006, http:

//xmlsoft.org/.
[17] Y. Oren, “Piccolo is a small, extremely fast XML parser for Java,” 2006,

http://piccolo.sourceforge.net/.
[18] Hierarchical Data Format (HDF), http://hdf.ncsa.uiuc.edu/.
[19] Network Common Data Form (netCDF),

http://www.unidata.ucar.edu/packages/netcdf/.
[20] W. Zhang and R. A. van Engelen, “A Table-Driven Streaming XML

Parsing Methodology for High-Performance Web Services,” in ICWS

’06: Proceedings of the IEEE International Conference on Web Services.
Los Alamitos, CA, USA: IEEE Computer Society, 2006, pp. 197–204.

[21] Microsoft Research. [Online]. Available: http://research.microsoft.com/
en-us/projects/Dryad/

[22] Disco project. [Online]. Available: http://discoproject.org
[23] Erlang programming language. [Online]. Available: http://www.erlang.

org


