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Abstract 

 One of the large impediments for adoption of cloud 

computing is perceived vendor lock-in with respect to 

both low-level resource management and application-

level storage services.  Application portability is essential 

to both avoid lock-in as well as leverage the ever-

changing landscape of cloud offerings.  We present a 

storage abstraction layer to enable applications to both 

utilize the highly-available and scalable storage services 

provided by cloud vendors and be portable across 

platforms.  The abstraction layer, called CSAL, provides 

Blob, Table, and Queue abstractions across multiple 

providers and presents applications with an integrated 

namespace thereby relieving applications of having to 

manage storage entity location information and access 

credentials.  Overall, we have observed minimal overhead 

of CSAL on both EC2 and Windows Azure. 

1. Introduction 

 One of the more significant issues facing cloud 

computing is the perception of “vendor lock-in” [1]. That 

is, because of the different abstractions and mechanisms 

of the different clouds, a developer is forced to choose 

one cloud provider in the early stages and then produce a 

solution customized for that platform. But in doing so, the 

developer is tied to that platform and cannot easily 

change, even if, for example, another cloud provider 

comes on-line and is cheaper or provides better service.  It 

is very difficult to re-target a deployed cloud application 

to another provider or platform due to the wide variance 

between syntax and semantics of the APIs (both “Storage 

APIs” and “Compute APIs”) and even the level of 

abstraction provided by the different infrastructures (e.g. 

SaaS, IaaS, PaaS). 

There are a number of approaches to address this 

problem of potential vendor lock-in: 

• A developer can choose only those APIs that have 

multiple independent implementations. For example, 

a developer might be less worried about being locked 

into Amazon EC2 [1] given the emergence and 

popularity of Eucalyptus [18] (or likewise Google 

AppEngine[13] and AppScale[3]), which is API-

equivalent to Amazon’s EC2 service.  One 

disadvantage of such an approach is that counting on 

multiple implementations to maintain equivalence is 

precarious at best, and given that the shared API is 

generally driven by the originating provider there 

may periods of inconsistency between the 

implementations.  Another challenge is finding two 

implementations of the same API that are equivalent 

in terms of scale/scalability, features, maturity, and 

customer support.  For example, while Eucalyptus 

implements the EC2 API it does not include storage 

services equivalent to all of those offered by Amazon, 

and Eucalyptus itself is not a commercial cloud 

infrastructure, only a software stack. 

• A developer can choose a particular API that can run 

on multiple clouds, though not necessarily through 

multiple independent implementations. MapReduce 

[5] and Hadoop [14]  are the best examples of this 

approach.  However, such APIs tend to be focused on 

a particular application model, which may not fit 

every developer’s requirements.  This approach may 

also require significant developer time investment for 

configuring, deploying, and maintaining these 

services as they are provided at varying levels of 

automation to the cloud developer.  Finally, 

implementations are often tailored to the specific 

vendor offering the service, thereby limiting 

portability as the configuration may differ between 

vendors. 

• A developer can manually separate the application 

into an “app-logic layer” and a “cloud layer” (with 

code written for each cloud provider).  While this is 

the most general option, it requires a significant time 

and complexity investment by a developer to initially 

create the layers and further, and often more 

importantly, maintain them over time as the 

underlying APIs change. 

• A developer can wait and hope that a cloud computing 

set of standards is developed and program against 
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those.  While this is the best solution in terms of 

general cloud interoperability, it is far from being 

realized in the commercial space as each vendor has 

developed its own API and set of abstractions, and as 

vendors gain market share it will require more 

external pressure to get the vendors to adopt industry 

standards.  Others also argue that standards will limit 

the ability of vendors to differentiate themselves on 

features rather than just cost.  From the vendors’ 

perspective there is very little incentive to standardize 

because lock-in secures longer-term revenue.  All of 

this means that standardization could take a long time 

to be realized, if at all. 

 

In this paper, instead, we describe our vendor-

independent cloud abstraction layer that presents a set of 

cloud storage abstractions (“Cloud Storage Abstraction 

Layer”, or “CSAL”).  CSAL features Blobs, Tables, and 

Queues, and is implemented with a plug-in architecture 

for extensibility.  We purposefully address only storage 

services for CSAL rather than computing services (i.e. 

interacting with virtual machines) for two reasons: a) 

there are several projects working on standardizing virtual 

machine (VM) formats to enable portability 

[9][15][19][20]; and, b) applications themselves rarely 

interact directly with the compute resource APIs but are 

heavily dependent on vendor-provided storage services 

for available and scalable storage.  Portable virtual 

machines are a necessary but not sufficient component of 

application portability because most applications require a 

scalable storage system that is persistent and VM storage 

is not always persistent in many cloud platforms. 

CSAL allows an application to be portable between 

cloud providers and to access storage across cloud 

boundaries without modifying its code.  This is a 

significant benefit over the user-created layering as 

described as the third option above because it allows a 

developer to focus on application logic rather than 

developing and maintaining storage abstractions.  

There are several excellent projects working to create a 

single interface to multiple storage services using varying 

levels of abstraction, but they do not provide a unified 

namespace across clouds and they require the application 

to know where a specific data object is located and which 

service to use to access it.  Cloudloop[5] provides a 

filesystem-like interface to blob storage, but does not 

support other abstractions such as tables and queues.  The 

jclouds[16] project provides a framework for interacting 

with both blob storage, queue storage, and compute 

resources for a variety of clouds but requires service and 

location information to access a data item.  Dasein Cloud 

API[7] includes blob storage, compute, and network 

abstractions, but does not include table or queue-based 

storage, and because it aims to interface with all aspects 

of cloud infrastructures it is quite complex. 

SimpleCloud[24] is a PHP API for interacting with blob, 

table, and queue storage services of several providers.  It 

is a good PHP implementation, but PHP is typically 

limited to web applications. 

 The critical difference between the existing multi-

cloud API projects and CSAL is the idea of a unified 

namespace across providers and the abstraction to the 

application that a single cloud exists rather than a set of 

clouds which must be managed independently.  CSAL 

maintains state about the namespace it manages and thus 

is more than a simple API pass-through to translate calls 

to web services. 

The SAGA API [22], has similar goals as CSAL, but 

in the Grid Computing space.  SAGA presents a complete 

application API for the entire execution environment and 

thus can be quite complex.  It attempts to abstract the grid 

application away from the details of its execution 

environment in a way that is largely achieved by 

virtualization in typical clouds and thus CSAL focuses 

exclusively on storage resources in order to maintain 

simplicity. 

The contributions of this paper are: 

• We show the design of a set of single set of cloud 

storage abstractions that can be mapped to existing 

(and near-future) cloud offerings. 

• We show its efficient implementation on two of the 

major cloud providers (EC2 and Azure [17]) and 

describe our plans for more cloud implementations. 

• We argue that the technique described in this paper is a 

valuable foundation for a multi-cloud application, 

whereby an application spans multiple clouds at once, 

essentially leveraging the capabilities of multiple 

cloud infrastructures. 

 

 Overall, we believe that the value of CSAL is not the 

particular storage abstractions supported (e.g., Blobs, 

Tables, and Queues) but rather the ability of our CSAL 

implementation to provide good performance, a single 

unified view of cloud storage across platforms, and to 

manage the metadata necessary for utilizing storage 

services across multiple clouds. 

The rest of this paper is organized as follows: Section 

2 describes the overall design of CSAL and introduces the 

main components. Section 3 provides an overview of the 

implementation and issues encountered. Section 4 

presents a performance evaluation of the CSAL and its 

overhead versus programming directly against a given 

cloud API. Sections 5 and 6 present a discussion of the 

future of CSAL and our conclusions respectively. 

2. Design of CSAL 

 CSAL provides the application developer with three 

storage abstractions: blobs, tables, and queues.  These 

three abstractions should be familiar to those who have 

used Amazon’s or Microsoft’s cloud infrastructures.  We 



have intentionally kept our basic storage abstractions 

close to those already provided by multiple vendors 

because users are familiar with the basic concepts and 

could thus easily transition to using CSAL without having 

to learn new abstractions or figure out how to map their 

existing storage objects to a new structure.  We do not 

directly address whether these storage abstractions are the 

best abstractions for scalable storage in cloud computing, 

as others do [1][21]; however, we hope to gain some 

insight on the issue through the course of building and 

using CSAL on multiple platforms. 

 The consistency semantics provided by CSAL are the 

same as those of many cloud storage services: eventual 

consistency.  Eventual consistency [25] guarantees that 

data will be consistent eventually, but there may be a 

window of time in which strong consistency is not 

guaranteed.  CSAL does not implement any techniques 

for strengthening the consistency guarantees of the 

underlying services it utilizes.   

 Increasingly, vendors are providing the option of 

operations with stronger consistency semantics but with a 

performance penalty as well as faster eventually-

consistent versions.  CSAL currently does not utilize these 

stronger consistency operations, but they could be easily 

incorporated as a preferred mode of operation by the plug-

ins, which interact directly with the storage services.  

Providing transparent strong consistency under the 

assumption of eventual consistency is preferable to the 

reverse because the semantics of an application will not 

be changed if it is assuming eventual consistency. 

 CSAL is designed around providing three storage 

abstractions that we describe next.  We next present each 

abstraction and the operations it supports.  We will then 

describe the design for namespaces and metadata 

management. 

2.1. Blob 
 

 The blob abstraction is a common cloud computing 

storage abstraction in which data is organized into an 

unstructured sequence of bits that have simple get/put 

semantics and are intended to store potentially large 

amounts of data in a single object.  In CSAL, blob names 

are only valid within a container—CSAL represents these 

containers only as a name.  A blob’s name is only 

required to be unique within its container, but a single 

container may house many blobs. 

 The interface to perform operations on blob containers 

and to get/put blobs is the BlobStore.   Table 1 is a 

summary of the operations available on the BlobStore 

interface and the semantics of each. 

 The blob semantics of CSAL more closely follow 

those found in Amazon’s S3 service in that blobs are 

immutable objects which may be replaced wholly, but not 

modified in place and which are operated only as an 

atomic unit.  We chose this abstraction because it is 

simpler and easier to understand for application 

developers.   

 

Table 1. BlobStore API 

Operation Description 

createContainer Create an empty blob container 

deleteContainer Deletes a container 

listContainers Lists all blob containers 

listBlobs Lists the BlobObjects stored in the 

named container 

getBlob Get the BlobObject 

putBlob Create or overwrite the blob specified 

in the named BlobContainer. 

 

2.2. Table 

 CSAL’s table storage provides an abstraction for 

storing semi-structured data composed of sets of named 

attributes.  A table is a named set of rows, each of which 

has a unique identifier—a RowKey.  A TableRow is a set 

of RowAttributes, and TableRows within a given table 

need not have the same sets of RowAttributes.  A 

RowAttribute is a name-value pair associated with a type 

(string, binary, date, etc).  Tables are semi-structured 

because no schema is enforced on a table by the storage 

system.  TableRows can be accessed via get/put based on 

RowKey or via a query interface that allows querying on 

any attribute or a set of attribute. 

 The TableStore in CSAL is the primary interface to 

interact with tables.  Table 2 below summarizes the 

operations supported by the TableStore. 

 

Table 2. TableStore API 

Operation Description 

createTable Create new table, location may be 

specified 

deleteTable Delete a table by name 

listTables List tables 

query Query table either by RowKey or by a 

set of attributes with comparison and 

logical operators 

insert Insert a new row into a table 

update Update a row 

delete Delete a row based on RowKey 

consistentRead A strongly consistent read, but slower 

than a normal query 

 

 The query operation allows queries against a table to 

be based on the RowKey or a set of other attributes and 

standard comparison and logical operators are available.  

Of particular note in the TableQuery interface is the lack 

of a join operation or the concept of foreign keys as found 

in nearly every relational database implementation.  The 

join operation is not supported in this abstraction, as is the 



case in all of the major commercial cloud storage 

services. 

2.3. Queue 

 Queues abstract a FIFO storage structure with the 

semantics typically expected of a queue data-structure.  

Queues are relatively simple abstractions that provide get, 

put, and peek operations to retrieve messages, add 

messages, and view the end of the queue without altering 

its state respectively.  Table 3 shows the API calls. 

Additionally, CSAL adopts the message visibility-timeout 

feature found in many queue implementations.  

Associated with each message is a timeout value that 

initializes a timer when the message is retrieved from the 

end of the queue.   

 Between when the message is retrieved and the timer 

has not expired, the message is not visible to any 

subsequent ‘get’ calls by any client.  If the timer expires 

before the message is explicitly deleted by the client that 

retrieved it then the message will automatically become 

visible, or retrievable, again to any following operations 

to view the end of the queue.  This feature slightly 

violates strict FIFO rules, but is very useful in highly-

scalable systems where nodes may fail while processing a 

message and the message contains information that needs 

to be reprocessed by another node.   

 

Table 3. QueueStore API 

Operation Description 

createQueue Create new queue by name 

deleteQueue Delete a queue by name 

listQueues List all queues 

getMessage Returns the message at the tail of the 

queue and sets its visibility to false for 

the duration of a timer 

putMessage Insert a message into the head of the 

queue 

viewMessage Similar to getMessages, but does not 

change the visibility of the message or 

move the tail of the queue. 

deleteMessage Deletes the message with the given 

message receipt 

getMessageCount Returns the number of messages in the 

queue 

clearMessages Deletes all messages in the queue 

without deleting the queue itself 

 

2.4. Namespaces 

 A blob container in CSAL is wholly located within a 

single storage service such as Amazon’s S3 and does not 

span services.  Additionally, CSAL is designed to provide 

a unified namespace for blob containers so a container can 

simply be referenced by its name and container names 

must be unique across a user’s accounts in all the services 

accessible in a given CSAL deployment.  The advantage 

to such a design is that an application does not have to 

keep track of where containers are located unless it 

explicitly wants to in order to optimize performance or 

cost, for example.  CSAL will eventually be able to 

optimize the location of storage for the application based 

on various metrics, which we discuss further in Section 5. 

2.5. Metadata 

Because CSAL presents a single namespace across all 

storage services utilized it must maintain metadata about 

each storage container entity—blob containers, tables, and 

queues.  The metadata management component utilizes a 

table-base storage service to store service, credential, and 

naming information about each storage entity.  We do not 

utilize explicit synchronization of metadata between 

clients but rather rely on the backing store as the 

synchronization point.   

CSAL can accept relaxed consistency models for 

metadata storage because in the event that data is stale the 

client will fail when attempting to access the storage 

entity and the metadata manager simply catches the 

failure, re-fetches the metadata, and retries the operation.  

Because we only maintain metadata for container entities 

rather than the data-objects themselves, we expect that 

metadata updates will be rare and this will not 

significantly impact performance.  We provide more 

details on how metadata is managed in the 

implementation section. 

3. Implementation of CSAL 

 The implementation of the CSAL is architected in a 

plug-in style and thus the principle implementation 

challenge is mapping the storage abstractions’ 

requirements into actual calls to a storage service.  Our 

implementation currently supports Microsoft’s Windows 

Azure Platform and Amazon Web Services storage 

service (S3, SimpleDB, and SQS). 

 CSAL currently leverages readily available Java APIs 

for the cloud services supported in order to build the 

connector objects interact with the vendors’ services 

directly.  Our implementation leverages the Windows4j 

Java API[26] for Windows Azure built by Soyatec as well 

as the Amazon Web Services provided Java API 

implementations for S3, SimpleDB, and SQS. CSAL 

provides a namespace management and metadata layer on 

top of the existing API implementations, although a 

completely custom plug-in which speaks REST to the 

underlying services will be implemented in the future. 

 The Windows4j package handles REST 

communications with Windows Azure’s Blob Service, 

Table Service, and Queue Service.  The AWS 



implementations use the S3 HTTPS SOAP interface and 

the REST interfaces for SimpleDB and SQS.   A long-

term goal is to remove these intermediate layers and 

implement direct calls to the services ourselves in order to 

improve performance and enable code-reuse. 

 In implementing the various connector classes we 

found that while the basic abstractions are often similar 

between vendors the specific API details often require 

significant workarounds to achieve the common CSAL 

semantics and naming conventions. 

 One example is the difference between Windows 

Azure blobs and AWS S3’s blob storage services.  

Windows Azure Blob Service requires that all blobs 

larger than 64MB use a block-type interface in which a 

blob is composed of a set of smaller blocks and a listing 

of the ordering of the blocks.  Thus, for large blobs the 

connector for Azure must break the data into smaller 

pieces and create a manifest and then upload them and the 

ordering to the Azure Blob Service in two distinct 

operations whereas Amazon supports only a single-piece 

blob using a single get/put operation. 

 The naming scope of each service presented barriers as 

well.  Windows Azure defines names within a namespace 

prefixed automatically by the user’s access key 

(username) whereas AWS requires that names be globally 

unique.  In practice this means that AWS names are 

usually prefixed by the user’s access key, a non-protected 

key so a layer of name translation between the AWS 

connectors and CSAL was required in order to shield the 

application developer from having to know the specific 

AWS account access key and naming containers to 

conform to AWS requirements. 

 One difficult hurdle with regard to any cross-platform 

abstraction layer is the performance variation across 

platforms.  Depending on which service is being used and 

how the CSAL connector is implemented, the same 

operation, for instance a putBlob call, could have 

dramatically different performance.  The block-type blob 

interface in Windows Azure mentioned previously can 

lead to either increased performance due to parallel block 

transfers or slower performance if used sequentially due 

to the 2-operation commit process required--upload the 

blocks, then send the ordering information.  

3.1. Managing Metadata   

 As mentioned in Section 2, CSAL manages metadata 

for container-level entities—blob containers, tables, and 

queues—as well as for the cloud storage services 

themselves.  Storage container entities are uniquely 

named across all services used and thus a lookup of a 

name should at most resolve to a single service and entity.  

This allows the application to simply refer to these 

containers, tables, or queues by a simple name rather than 

having to keep track of location information and 

credential information and also allows applications to 

move entities to new locations without having to 

explicitly inform all other components that the entity has 

been moved to a new service. 

 The implementation of CSAL uses a table-based back-

end storage service to keep the entity metadata as well as 

service metadata such as account credentials and service 

endpoints.  In our experiments we utilized SimpleDB and 

the Azure Table service for metadata storage.  The service 

information for the metadata backing-store is included in 

the configuration file used by the application client to 

configure CSAL.  Because accessing metadata requires 

network activity and can quickly degrade performance, 

caching of metadata is used whenever possible.  This 

includes both service metadata as well as entity metadata. 

 All metadata is organized by a single namespace 

identifier.  The metadata manager utilizes a set of tables, 

one for each storage type and namespace pair.  Thus, the 

performance of applications concurrently accessing 

metadata for different namespaces is not impacted. 

4. Evaluation 

 To evaluate the performance overhead of CSAL we 

measured the difference in the time to execute calls to 

storage resources located within the same cloud 

infrastructure using CSAL compared to the native, 

vendor-provided cloud-specific API.  We ran a series of 

micro-benchmarks testing the total latency of each storage 

operation using both the vendor-recommended or 

provided Java API and the CSAL call.  Each operation 

was run 100 times and the latency recorded using the Java 

timer System.nanotime() to record the time immediately 

before and after the API call being tested.  We also 

instrumented the CSAL code to get a breakdown of the 

total operation time into both core operation time, the 

time to perform the actual intended operation, as well as 

the time for metadata operations.     In all graphs we show 

the median value because it is less affected by outliers, 

and the error bars on each graph show one standard 

deviation of the data series. 

The payload data used for the benchmarks is a 155KB 

text file for the blob operations, address information (first 

name, last name, city, state, ID#) in string fields for the 

table tests, and a simple short string, approximately 100 

characters, for the queue tests.  We chose small payloads 

to ensure that the payload data transfer time would be 

minimal allowing us to see the affects of the API 

implementation on the operation performance. 

The configuration of the CSAL for the tests was set so 

that the metadata storage used to maintain the namespace 

was stored in the same cloud infrastructure as the test in 

order to more directly compare the two APIs by not 

introducing unnecessarily large overheads to the metadata 

service requests.  In a real deployment scenario it is 

possible that an application component using CSAL and 

the metadata service back-end could be in entirely 



different clouds potentially very far geographically from 

each other.  We omit performance measurements from 

such as scenario as the network overhead would be so 

significant that the difference between the native API and 

CSAL would merely be the difference between LAN and 

WAN performance.  While such an evaluation would be 

useful for a specific application deployment with specific 

requirements, for general benchmark purposes we think it 

offers much less insight. 

For each of the performance benchmarks, we compare 

CSAL to the Java SDK API provided by each cloud 

vendor—in our case Amazon and Microsoft.  Because the 

actual storage services provide a REST interface the APIs 

provided by the vendors merely create the requests and 

parse responses from the services.  Therefore, we make no 

claims that the APIs provided by the vendors are the best 

performing or that third-party implementations of the 

APIs for the same services would not be able to be more 

efficient.  We compare CSAL to the vendor provided  

APIs because they are the de-facto choices for application 

developers. 

4.1. Amazon Web Services 

We evaluated CSAL’s performance overhead on 

Amazon’s EC2 platform against the S3, SimpleDB, and 

SQS services using the Amazon-provided Java APIs for 

each service as a baseline.  Each test was run from within 

EC2’s ‘us-east’ region on a Fedora Core 8 32-bit instance. 

Figure 1 shows the performance of container-level 

operations-creating blob containers, tables, and queues- 

benchmarks in Amazon’s EC2 using both the API library 

provided by Amazon as well as CSAL.  The slowdown 

seen is expected because CSAL requires additional 

metadata be stored in the backing-store (SimpleDB in this 

case) for all container-level operations.  The metadata 

operations required are a single table-row lookup and a 

single table-row ‘put’ operation, the combined time for 

both the lookup and get is shown as the ‘Metadata Op 

Time’ column in Figure 1.  The ‘CSAL Total Time’ 

shows the total time to perform the intended operation and 

is composed of the ‘Core Op Time’ and the ‘Metadata Op 

Time’ as well as all client-local overheads.  The overhead 

for table creation is low because the native operation itself 

dwarfs the cost of the additional metadata operations 

required by CSAL. 

 Figure 2 shows the performance of CSAL when 

compared to the Java API for AWS for data-object 

operations is very similar and incurs little overhead.  Note 

that the variance between operations was very high in 

several tests.  In this specific case the metadata for 

container used was cached locally as a result of the client 

using CSAL for the container creation operation.  If the 

container had not been previously used or created on that 

node, then we would expect to see an overhead increase 

for the metadata lookup of the container being used, but 

only on the first operation.  All subsequent operations 

would use the cached data rather than having to perform 

more lookups. 

 
Figure 1 Time Breakdown of Container-Level Operations of 

CSAL in AWS.  Error bars indicate one standard deviation.

  

 

Figure 2 Performance of CSAL vs AWS Native API in Data-

Object Operations.  Error bars indicate one standard 

deviation. 

 In some cases the CSAL data-object performance is 

actually slightly better than the native API.  There were a 

relatively small number of operations that experienced 

very long delays in the AWS native API test runs which 

affect the median calculation even though they are not 

indicative of the typical performance, and since we are 

showing the median value the data points reflect a single 

operation execution.  The error bars displaying the 

standard deviation of these tests also show how widely the 
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performance varied between iterations of the same 

operation and exemplify one property of all cloud storage 

services, which is that performance may vary significantly 

from one invocation to the next based on factors beyond a 

developer’s control. 

4.2. Windows Azure Platform 

 We performed the same set of benchmarks on the 

Windows Azure Platform service.  The code used for both 

AWS and Azure is exactly the same.  The only difference 

is a few lines in the configuration files which specify to 

use Azure for metadata storage and to use Azure as the 

default service location for all storage operations. 

 

 
Figure 3 Time Breakdown of Container-Level Operations of 

CSAL in Windows Azure. Error bars indicate one standard 

deviation. 

 In contrast to the performance of CSAL on AWS, we 

see that in the Azure platform, CSAL incurs a higher 

performance penalty for container-level operations, but 

part of the reason is that the Azure container-level 

operations themselves are significantly faster in AWS, so 

any additional processing and network time shows a more 

significant impact.  Figures 3 and 4 are the performance 

of CSAL in Windows Azure.  Note how the vertical axis 

scales differ from those of Figures 1 and 2 in their 

magnitude.  We saw consistently lower latencies in Azure 

for the container-level operations.  This may be a product 

of differing replication strategies between Azure and 

AWS or how storage resources are allocated with respect 

to compute resources.  However, because the primary 

goal of this paper is not to compare the performance of 

AWS to Azure, we will forgo a more lengthy analysis of 

what may cause the difference in performance. 

 

 

Figure 4 Performance of CSAL vs Azure Native API in 

Data-Object Operations. Error bars indicate one standard 

deviation. 

  

 In Azure, CSAL exhibits slowdown within 2X for all 

container-level operations except the queue creation 

operation, which exhibited a slowdown in the core 

operation as seen in Figure 3.  The core operation time 

itself was significantly slower for the queue creation run.  

The core operation time is essentially the time to do the 

exact same operation as the ‘Native API’ operation, so 

either the network or the storage service exhibited some 

performance degradation which impacted the results of 

the core operation and the overall slowdown is attributed 

to that factor rather than the impact of the metadata 

operations themselves. 

5. Discussion 

 Abstraction layers have the inherently difficult position 

of trying to remove detail from the model presented to 

developers while still maintaining performance and 

flexibility.  There is always a tradeoff between exposing 

lots of detail to programmers, who can customize for 

performance as they see fit, and providing simpler 

interfaces that are easier to use but prevent tuning for 

performance.  CSAL does make flexibility tradeoffs for 

ease-of-use, but it does allow a degree of flexibility to 

remain through the use of user-created plug-ins.  If 

required, optimizations can be incorporated into a custom 

plug-in for use against a specific service. 

 Our work on CSAL to date has focused on abstracting 

the storage resources provided by many cloud 

infrastructures; however, the long-term goal of CSAL is 

to provide a cross-cloud platform such that applications 

can be deployed easily across clouds to take advantage of 
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the quickly changing landscape of cloud infrastructure 

offerings.  

 One criticism of any API as a research tool is that it is 

difficult to argue its ‘correctness’. Rather than arguing 

that our API is the correct API for cross-cloud 

applications we merely posit that CSAL represents an 

API and that a common API is one way to address issues 

of cloud vendor lock-in as well as application portability 

and mobility.  We intend CSAL to be a tool with which 

we can study how developers and scientists might 

approach applications that have extremely high 

availability requirements, such that a single provider is a 

single point of failure, as well as those that seek to exploit 

the ever-changing nature and costs of cloud computing as 

the marketplace develops. 

 The CSAL API provides developers with a simple 

storage API which works on multiple platforms to access 

the vendor provided storage services, but what if a user 

wants to leverage CSAL on a cloud that does not provide 

the same abstractions or even any storage services at all?  

Examples of such clouds are Eucalyptus[11], GoGrid[12], 

and Rackspace[23], which provide either no storage 

services or provide only a blob-type service.  There are, 

however many third-party storage systems available that 

can be installed and used within such infrastructures.  

Third party services can be leveraged by CSAL using the 

connector interface just as SimpleDB or Azure Queues 

are.  Ultimately, out goal with CSAL is to leverage 

application portability to explore multi-cloud application 

deployments and management as well as dynamic 

resource allocation optimization for cost and performance 

metrics. 

5. Conclusion 

 Vendor lock-in is a difficult problem that needs to be 

addressed immediately because the cloud landscape is just 

taking shape.  Standards take too long to develop, so we 

have presented CSAL, a vendor-agnostic abstraction layer 

that sits above cloud-specific APIs to provide common 

storage abstractions for multiple cloud platforms and to 

support highly portable applications even if the data itself 

is not as portable due to size and/or cost.  Our 

performance results show that this layer imposes small 

overhead for common data-object operations—and 

reasonable overhead—typically within 2X—for metadata-

intensive container-level operations. 

 CSAL provides a set of generic storage abstractions 

common to many cloud platforms.  By combining a 

unified namespace across all supported platforms as well 

as high-level abstractions, CSAL allows an application to 

be moved with nearly no code changes and provides a 

foundation for multi-cloud applications that, because of 

mobility, can exploit the dynamic nature of the cloud 

landscape optimize costs and/or performance. 
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