
CSAL: A Cloud Storage Abstraction Layer to Enable Portable Cloud

Applications (work-in-progress)

Zach Hill

Department of Computer Science

University of Virginia

zjh5f@cs.virginia.edu

Marty Humphrey

Department of Computer Science

University of Virginia

humphrey@cs.virginia.edu

Abstract

 One of the large impediments for adoption of cloud

computing is perceived vendor lock-in with respect to

both low-level resource management and application-

level storage services. Application portability is essential

to both avoid lock-in as well as leverage the ever-

changing landscape of cloud offerings. We present a

storage abstraction layer to enable applications to both

utilize the highly-available and scalable storage services

provided by cloud vendors and be portable across

platforms. The abstraction layer, called CSAL, provides

Blob, Table, and Queue abstractions across multiple

providers and presents applications with an integrated

namespace thereby relieving applications of having to

manage storage entity location information and access

credentials. Overall, we have observed minimal overhead

of CSAL on both EC2 and Windows Azure.

1. Introduction

 One of the more significant issues facing cloud

computing is the perception of “vendor lock-in” [1]. That

is, because of the different abstractions and mechanisms

of the different clouds, a developer is forced to choose

one cloud provider in the early stages and then produce a

solution customized for that platform. But in doing so, the

developer is tied to that platform and cannot easily

change, even if, for example, another cloud provider

comes on-line and is cheaper or provides better service. It

is very difficult to re-target a deployed cloud application

to another provider or platform due to the wide variance

between syntax and semantics of the APIs (both “Storage

APIs” and “Compute APIs”) and even the level of

abstraction provided by the different infrastructures (e.g.

SaaS, IaaS, PaaS).

There are a number of approaches to address this

problem of potential vendor lock-in:

• A developer can choose only those APIs that have

multiple independent implementations. For example,

a developer might be less worried about being locked

into Amazon EC2 [1] given the emergence and

popularity of Eucalyptus [18] (or likewise Google

AppEngine[13] and AppScale[3]), which is API-

equivalent to Amazon’s EC2 service. One

disadvantage of such an approach is that counting on

multiple implementations to maintain equivalence is

precarious at best, and given that the shared API is

generally driven by the originating provider there

may periods of inconsistency between the

implementations. Another challenge is finding two

implementations of the same API that are equivalent

in terms of scale/scalability, features, maturity, and

customer support. For example, while Eucalyptus

implements the EC2 API it does not include storage

services equivalent to all of those offered by Amazon,

and Eucalyptus itself is not a commercial cloud

infrastructure, only a software stack.

• A developer can choose a particular API that can run

on multiple clouds, though not necessarily through

multiple independent implementations. MapReduce

[5] and Hadoop [14] are the best examples of this

approach. However, such APIs tend to be focused on

a particular application model, which may not fit

every developer’s requirements. This approach may

also require significant developer time investment for

configuring, deploying, and maintaining these

services as they are provided at varying levels of

automation to the cloud developer. Finally,

implementations are often tailored to the specific

vendor offering the service, thereby limiting

portability as the configuration may differ between

vendors.

• A developer can manually separate the application

into an “app-logic layer” and a “cloud layer” (with

code written for each cloud provider). While this is

the most general option, it requires a significant time

and complexity investment by a developer to initially

create the layers and further, and often more

importantly, maintain them over time as the

underlying APIs change.

• A developer can wait and hope that a cloud computing

set of standards is developed and program against

Preliminary version. Final version appears in Proc of 2nd IEEE International Conference on
Cloud Computing Technology and Science. Nov 30-Dec 3, 2010 . Indianapolis, Indiana.

those. While this is the best solution in terms of

general cloud interoperability, it is far from being

realized in the commercial space as each vendor has

developed its own API and set of abstractions, and as

vendors gain market share it will require more

external pressure to get the vendors to adopt industry

standards. Others also argue that standards will limit

the ability of vendors to differentiate themselves on

features rather than just cost. From the vendors’

perspective there is very little incentive to standardize

because lock-in secures longer-term revenue. All of

this means that standardization could take a long time

to be realized, if at all.

In this paper, instead, we describe our vendor-

independent cloud abstraction layer that presents a set of

cloud storage abstractions (“Cloud Storage Abstraction

Layer”, or “CSAL”). CSAL features Blobs, Tables, and

Queues, and is implemented with a plug-in architecture

for extensibility. We purposefully address only storage

services for CSAL rather than computing services (i.e.

interacting with virtual machines) for two reasons: a)

there are several projects working on standardizing virtual

machine (VM) formats to enable portability

[9][15][19][20]; and, b) applications themselves rarely

interact directly with the compute resource APIs but are

heavily dependent on vendor-provided storage services

for available and scalable storage. Portable virtual

machines are a necessary but not sufficient component of

application portability because most applications require a

scalable storage system that is persistent and VM storage

is not always persistent in many cloud platforms.

CSAL allows an application to be portable between

cloud providers and to access storage across cloud

boundaries without modifying its code. This is a

significant benefit over the user-created layering as

described as the third option above because it allows a

developer to focus on application logic rather than

developing and maintaining storage abstractions.

There are several excellent projects working to create a

single interface to multiple storage services using varying

levels of abstraction, but they do not provide a unified

namespace across clouds and they require the application

to know where a specific data object is located and which

service to use to access it. Cloudloop[5] provides a

filesystem-like interface to blob storage, but does not

support other abstractions such as tables and queues. The

jclouds[16] project provides a framework for interacting

with both blob storage, queue storage, and compute

resources for a variety of clouds but requires service and

location information to access a data item. Dasein Cloud

API[7] includes blob storage, compute, and network

abstractions, but does not include table or queue-based

storage, and because it aims to interface with all aspects

of cloud infrastructures it is quite complex.

SimpleCloud[24] is a PHP API for interacting with blob,

table, and queue storage services of several providers. It

is a good PHP implementation, but PHP is typically

limited to web applications.

 The critical difference between the existing multi-

cloud API projects and CSAL is the idea of a unified

namespace across providers and the abstraction to the

application that a single cloud exists rather than a set of

clouds which must be managed independently. CSAL

maintains state about the namespace it manages and thus

is more than a simple API pass-through to translate calls

to web services.

The SAGA API [22], has similar goals as CSAL, but

in the Grid Computing space. SAGA presents a complete

application API for the entire execution environment and

thus can be quite complex. It attempts to abstract the grid

application away from the details of its execution

environment in a way that is largely achieved by

virtualization in typical clouds and thus CSAL focuses

exclusively on storage resources in order to maintain

simplicity.

The contributions of this paper are:

• We show the design of a set of single set of cloud

storage abstractions that can be mapped to existing

(and near-future) cloud offerings.

• We show its efficient implementation on two of the

major cloud providers (EC2 and Azure [17]) and

describe our plans for more cloud implementations.

• We argue that the technique described in this paper is a

valuable foundation for a multi-cloud application,

whereby an application spans multiple clouds at once,

essentially leveraging the capabilities of multiple

cloud infrastructures.

 Overall, we believe that the value of CSAL is not the

particular storage abstractions supported (e.g., Blobs,

Tables, and Queues) but rather the ability of our CSAL

implementation to provide good performance, a single

unified view of cloud storage across platforms, and to

manage the metadata necessary for utilizing storage

services across multiple clouds.

The rest of this paper is organized as follows: Section

2 describes the overall design of CSAL and introduces the

main components. Section 3 provides an overview of the

implementation and issues encountered. Section 4

presents a performance evaluation of the CSAL and its

overhead versus programming directly against a given

cloud API. Sections 5 and 6 present a discussion of the

future of CSAL and our conclusions respectively.

2. Design of CSAL

 CSAL provides the application developer with three

storage abstractions: blobs, tables, and queues. These

three abstractions should be familiar to those who have

used Amazon’s or Microsoft’s cloud infrastructures. We

have intentionally kept our basic storage abstractions

close to those already provided by multiple vendors

because users are familiar with the basic concepts and

could thus easily transition to using CSAL without having

to learn new abstractions or figure out how to map their

existing storage objects to a new structure. We do not

directly address whether these storage abstractions are the

best abstractions for scalable storage in cloud computing,

as others do [1][21]; however, we hope to gain some

insight on the issue through the course of building and

using CSAL on multiple platforms.

 The consistency semantics provided by CSAL are the

same as those of many cloud storage services: eventual

consistency. Eventual consistency [25] guarantees that

data will be consistent eventually, but there may be a

window of time in which strong consistency is not

guaranteed. CSAL does not implement any techniques

for strengthening the consistency guarantees of the

underlying services it utilizes.

 Increasingly, vendors are providing the option of

operations with stronger consistency semantics but with a

performance penalty as well as faster eventually-

consistent versions. CSAL currently does not utilize these

stronger consistency operations, but they could be easily

incorporated as a preferred mode of operation by the plug-

ins, which interact directly with the storage services.

Providing transparent strong consistency under the

assumption of eventual consistency is preferable to the

reverse because the semantics of an application will not

be changed if it is assuming eventual consistency.

 CSAL is designed around providing three storage

abstractions that we describe next. We next present each

abstraction and the operations it supports. We will then

describe the design for namespaces and metadata

management.

2.1. Blob

 The blob abstraction is a common cloud computing

storage abstraction in which data is organized into an

unstructured sequence of bits that have simple get/put

semantics and are intended to store potentially large

amounts of data in a single object. In CSAL, blob names

are only valid within a container—CSAL represents these

containers only as a name. A blob’s name is only

required to be unique within its container, but a single

container may house many blobs.

 The interface to perform operations on blob containers

and to get/put blobs is the BlobStore. Table 1 is a

summary of the operations available on the BlobStore

interface and the semantics of each.

 The blob semantics of CSAL more closely follow

those found in Amazon’s S3 service in that blobs are

immutable objects which may be replaced wholly, but not

modified in place and which are operated only as an

atomic unit. We chose this abstraction because it is

simpler and easier to understand for application

developers.

Table 1. BlobStore API

Operation Description

createContainer Create an empty blob container

deleteContainer Deletes a container

listContainers Lists all blob containers

listBlobs Lists the BlobObjects stored in the

named container

getBlob Get the BlobObject

putBlob Create or overwrite the blob specified

in the named BlobContainer.

2.2. Table

 CSAL’s table storage provides an abstraction for

storing semi-structured data composed of sets of named

attributes. A table is a named set of rows, each of which

has a unique identifier—a RowKey. A TableRow is a set

of RowAttributes, and TableRows within a given table

need not have the same sets of RowAttributes. A

RowAttribute is a name-value pair associated with a type

(string, binary, date, etc). Tables are semi-structured

because no schema is enforced on a table by the storage

system. TableRows can be accessed via get/put based on

RowKey or via a query interface that allows querying on

any attribute or a set of attribute.

 The TableStore in CSAL is the primary interface to

interact with tables. Table 2 below summarizes the

operations supported by the TableStore.

Table 2. TableStore API

Operation Description

createTable Create new table, location may be

specified

deleteTable Delete a table by name

listTables List tables

query Query table either by RowKey or by a

set of attributes with comparison and

logical operators

insert Insert a new row into a table

update Update a row

delete Delete a row based on RowKey

consistentRead A strongly consistent read, but slower

than a normal query

 The query operation allows queries against a table to

be based on the RowKey or a set of other attributes and

standard comparison and logical operators are available.

Of particular note in the TableQuery interface is the lack

of a join operation or the concept of foreign keys as found

in nearly every relational database implementation. The

join operation is not supported in this abstraction, as is the

case in all of the major commercial cloud storage

services.

2.3. Queue

 Queues abstract a FIFO storage structure with the

semantics typically expected of a queue data-structure.

Queues are relatively simple abstractions that provide get,

put, and peek operations to retrieve messages, add

messages, and view the end of the queue without altering

its state respectively. Table 3 shows the API calls.

Additionally, CSAL adopts the message visibility-timeout

feature found in many queue implementations.

Associated with each message is a timeout value that

initializes a timer when the message is retrieved from the

end of the queue.

 Between when the message is retrieved and the timer

has not expired, the message is not visible to any

subsequent ‘get’ calls by any client. If the timer expires

before the message is explicitly deleted by the client that

retrieved it then the message will automatically become

visible, or retrievable, again to any following operations

to view the end of the queue. This feature slightly

violates strict FIFO rules, but is very useful in highly-

scalable systems where nodes may fail while processing a

message and the message contains information that needs

to be reprocessed by another node.

Table 3. QueueStore API

Operation Description

createQueue Create new queue by name

deleteQueue Delete a queue by name

listQueues List all queues

getMessage Returns the message at the tail of the

queue and sets its visibility to false for

the duration of a timer

putMessage Insert a message into the head of the

queue

viewMessage Similar to getMessages, but does not

change the visibility of the message or

move the tail of the queue.

deleteMessage Deletes the message with the given

message receipt

getMessageCount Returns the number of messages in the

queue

clearMessages Deletes all messages in the queue

without deleting the queue itself

2.4. Namespaces

 A blob container in CSAL is wholly located within a

single storage service such as Amazon’s S3 and does not

span services. Additionally, CSAL is designed to provide

a unified namespace for blob containers so a container can

simply be referenced by its name and container names

must be unique across a user’s accounts in all the services

accessible in a given CSAL deployment. The advantage

to such a design is that an application does not have to

keep track of where containers are located unless it

explicitly wants to in order to optimize performance or

cost, for example. CSAL will eventually be able to

optimize the location of storage for the application based

on various metrics, which we discuss further in Section 5.

2.5. Metadata

Because CSAL presents a single namespace across all

storage services utilized it must maintain metadata about

each storage container entity—blob containers, tables, and

queues. The metadata management component utilizes a

table-base storage service to store service, credential, and

naming information about each storage entity. We do not

utilize explicit synchronization of metadata between

clients but rather rely on the backing store as the

synchronization point.

CSAL can accept relaxed consistency models for

metadata storage because in the event that data is stale the

client will fail when attempting to access the storage

entity and the metadata manager simply catches the

failure, re-fetches the metadata, and retries the operation.

Because we only maintain metadata for container entities

rather than the data-objects themselves, we expect that

metadata updates will be rare and this will not

significantly impact performance. We provide more

details on how metadata is managed in the

implementation section.

3. Implementation of CSAL

 The implementation of the CSAL is architected in a

plug-in style and thus the principle implementation

challenge is mapping the storage abstractions’

requirements into actual calls to a storage service. Our

implementation currently supports Microsoft’s Windows

Azure Platform and Amazon Web Services storage

service (S3, SimpleDB, and SQS).

 CSAL currently leverages readily available Java APIs

for the cloud services supported in order to build the

connector objects interact with the vendors’ services

directly. Our implementation leverages the Windows4j

Java API[26] for Windows Azure built by Soyatec as well

as the Amazon Web Services provided Java API

implementations for S3, SimpleDB, and SQS. CSAL

provides a namespace management and metadata layer on

top of the existing API implementations, although a

completely custom plug-in which speaks REST to the

underlying services will be implemented in the future.

 The Windows4j package handles REST

communications with Windows Azure’s Blob Service,

Table Service, and Queue Service. The AWS

implementations use the S3 HTTPS SOAP interface and

the REST interfaces for SimpleDB and SQS. A long-

term goal is to remove these intermediate layers and

implement direct calls to the services ourselves in order to

improve performance and enable code-reuse.

 In implementing the various connector classes we

found that while the basic abstractions are often similar

between vendors the specific API details often require

significant workarounds to achieve the common CSAL

semantics and naming conventions.

 One example is the difference between Windows

Azure blobs and AWS S3’s blob storage services.

Windows Azure Blob Service requires that all blobs

larger than 64MB use a block-type interface in which a

blob is composed of a set of smaller blocks and a listing

of the ordering of the blocks. Thus, for large blobs the

connector for Azure must break the data into smaller

pieces and create a manifest and then upload them and the

ordering to the Azure Blob Service in two distinct

operations whereas Amazon supports only a single-piece

blob using a single get/put operation.

 The naming scope of each service presented barriers as

well. Windows Azure defines names within a namespace

prefixed automatically by the user’s access key

(username) whereas AWS requires that names be globally

unique. In practice this means that AWS names are

usually prefixed by the user’s access key, a non-protected

key so a layer of name translation between the AWS

connectors and CSAL was required in order to shield the

application developer from having to know the specific

AWS account access key and naming containers to

conform to AWS requirements.

 One difficult hurdle with regard to any cross-platform

abstraction layer is the performance variation across

platforms. Depending on which service is being used and

how the CSAL connector is implemented, the same

operation, for instance a putBlob call, could have

dramatically different performance. The block-type blob

interface in Windows Azure mentioned previously can

lead to either increased performance due to parallel block

transfers or slower performance if used sequentially due

to the 2-operation commit process required--upload the

blocks, then send the ordering information.

3.1. Managing Metadata

 As mentioned in Section 2, CSAL manages metadata

for container-level entities—blob containers, tables, and

queues—as well as for the cloud storage services

themselves. Storage container entities are uniquely

named across all services used and thus a lookup of a

name should at most resolve to a single service and entity.

This allows the application to simply refer to these

containers, tables, or queues by a simple name rather than

having to keep track of location information and

credential information and also allows applications to

move entities to new locations without having to

explicitly inform all other components that the entity has

been moved to a new service.

 The implementation of CSAL uses a table-based back-

end storage service to keep the entity metadata as well as

service metadata such as account credentials and service

endpoints. In our experiments we utilized SimpleDB and

the Azure Table service for metadata storage. The service

information for the metadata backing-store is included in

the configuration file used by the application client to

configure CSAL. Because accessing metadata requires

network activity and can quickly degrade performance,

caching of metadata is used whenever possible. This

includes both service metadata as well as entity metadata.

 All metadata is organized by a single namespace

identifier. The metadata manager utilizes a set of tables,

one for each storage type and namespace pair. Thus, the

performance of applications concurrently accessing

metadata for different namespaces is not impacted.

4. Evaluation

 To evaluate the performance overhead of CSAL we

measured the difference in the time to execute calls to

storage resources located within the same cloud

infrastructure using CSAL compared to the native,

vendor-provided cloud-specific API. We ran a series of

micro-benchmarks testing the total latency of each storage

operation using both the vendor-recommended or

provided Java API and the CSAL call. Each operation

was run 100 times and the latency recorded using the Java

timer System.nanotime() to record the time immediately

before and after the API call being tested. We also

instrumented the CSAL code to get a breakdown of the

total operation time into both core operation time, the

time to perform the actual intended operation, as well as

the time for metadata operations. In all graphs we show

the median value because it is less affected by outliers,

and the error bars on each graph show one standard

deviation of the data series.

The payload data used for the benchmarks is a 155KB

text file for the blob operations, address information (first

name, last name, city, state, ID#) in string fields for the

table tests, and a simple short string, approximately 100

characters, for the queue tests. We chose small payloads

to ensure that the payload data transfer time would be

minimal allowing us to see the affects of the API

implementation on the operation performance.

The configuration of the CSAL for the tests was set so

that the metadata storage used to maintain the namespace

was stored in the same cloud infrastructure as the test in

order to more directly compare the two APIs by not

introducing unnecessarily large overheads to the metadata

service requests. In a real deployment scenario it is

possible that an application component using CSAL and

the metadata service back-end could be in entirely

different clouds potentially very far geographically from

each other. We omit performance measurements from

such as scenario as the network overhead would be so

significant that the difference between the native API and

CSAL would merely be the difference between LAN and

WAN performance. While such an evaluation would be

useful for a specific application deployment with specific

requirements, for general benchmark purposes we think it

offers much less insight.

For each of the performance benchmarks, we compare

CSAL to the Java SDK API provided by each cloud

vendor—in our case Amazon and Microsoft. Because the

actual storage services provide a REST interface the APIs

provided by the vendors merely create the requests and

parse responses from the services. Therefore, we make no

claims that the APIs provided by the vendors are the best

performing or that third-party implementations of the

APIs for the same services would not be able to be more

efficient. We compare CSAL to the vendor provided

APIs because they are the de-facto choices for application

developers.

4.1. Amazon Web Services

We evaluated CSAL’s performance overhead on

Amazon’s EC2 platform against the S3, SimpleDB, and

SQS services using the Amazon-provided Java APIs for

each service as a baseline. Each test was run from within

EC2’s ‘us-east’ region on a Fedora Core 8 32-bit instance.

Figure 1 shows the performance of container-level

operations-creating blob containers, tables, and queues-

benchmarks in Amazon’s EC2 using both the API library

provided by Amazon as well as CSAL. The slowdown

seen is expected because CSAL requires additional

metadata be stored in the backing-store (SimpleDB in this

case) for all container-level operations. The metadata

operations required are a single table-row lookup and a

single table-row ‘put’ operation, the combined time for

both the lookup and get is shown as the ‘Metadata Op

Time’ column in Figure 1. The ‘CSAL Total Time’

shows the total time to perform the intended operation and

is composed of the ‘Core Op Time’ and the ‘Metadata Op

Time’ as well as all client-local overheads. The overhead

for table creation is low because the native operation itself

dwarfs the cost of the additional metadata operations

required by CSAL.

 Figure 2 shows the performance of CSAL when

compared to the Java API for AWS for data-object

operations is very similar and incurs little overhead. Note

that the variance between operations was very high in

several tests. In this specific case the metadata for

container used was cached locally as a result of the client

using CSAL for the container creation operation. If the

container had not been previously used or created on that

node, then we would expect to see an overhead increase

for the metadata lookup of the container being used, but

only on the first operation. All subsequent operations

would use the cached data rather than having to perform

more lookups.

Figure 1 Time Breakdown of Container-Level Operations of

CSAL in AWS. Error bars indicate one standard deviation.

Figure 2 Performance of CSAL vs AWS Native API in Data-

Object Operations. Error bars indicate one standard

deviation.

 In some cases the CSAL data-object performance is

actually slightly better than the native API. There were a

relatively small number of operations that experienced

very long delays in the AWS native API test runs which

affect the median calculation even though they are not

indicative of the typical performance, and since we are

showing the median value the data points reflect a single

operation execution. The error bars displaying the

standard deviation of these tests also show how widely the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Create

Container

Create Table Queue

Create

M
e

d
ia

n
 O

p
e

ra
ti

o
n

 T
im

e
 (

S
e

co
n

d
s)

CSAL Total Time Native API

Core Op Time Metadata Op Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
e

d
ia

n
 O

p
e

ra
ti

o
n

 T
im

e
 (

S
e

co
n

d
s)

CSAL Total Time Native API

performance varied between iterations of the same

operation and exemplify one property of all cloud storage

services, which is that performance may vary significantly

from one invocation to the next based on factors beyond a

developer’s control.

4.2. Windows Azure Platform

 We performed the same set of benchmarks on the

Windows Azure Platform service. The code used for both

AWS and Azure is exactly the same. The only difference

is a few lines in the configuration files which specify to

use Azure for metadata storage and to use Azure as the

default service location for all storage operations.

Figure 3 Time Breakdown of Container-Level Operations of

CSAL in Windows Azure. Error bars indicate one standard

deviation.

 In contrast to the performance of CSAL on AWS, we

see that in the Azure platform, CSAL incurs a higher

performance penalty for container-level operations, but

part of the reason is that the Azure container-level

operations themselves are significantly faster in AWS, so

any additional processing and network time shows a more

significant impact. Figures 3 and 4 are the performance

of CSAL in Windows Azure. Note how the vertical axis

scales differ from those of Figures 1 and 2 in their

magnitude. We saw consistently lower latencies in Azure

for the container-level operations. This may be a product

of differing replication strategies between Azure and

AWS or how storage resources are allocated with respect

to compute resources. However, because the primary

goal of this paper is not to compare the performance of

AWS to Azure, we will forgo a more lengthy analysis of

what may cause the difference in performance.

Figure 4 Performance of CSAL vs Azure Native API in

Data-Object Operations. Error bars indicate one standard

deviation.

 In Azure, CSAL exhibits slowdown within 2X for all

container-level operations except the queue creation

operation, which exhibited a slowdown in the core

operation as seen in Figure 3. The core operation time

itself was significantly slower for the queue creation run.

The core operation time is essentially the time to do the

exact same operation as the ‘Native API’ operation, so

either the network or the storage service exhibited some

performance degradation which impacted the results of

the core operation and the overall slowdown is attributed

to that factor rather than the impact of the metadata

operations themselves.

5. Discussion

 Abstraction layers have the inherently difficult position

of trying to remove detail from the model presented to

developers while still maintaining performance and

flexibility. There is always a tradeoff between exposing

lots of detail to programmers, who can customize for

performance as they see fit, and providing simpler

interfaces that are easier to use but prevent tuning for

performance. CSAL does make flexibility tradeoffs for

ease-of-use, but it does allow a degree of flexibility to

remain through the use of user-created plug-ins. If

required, optimizations can be incorporated into a custom

plug-in for use against a specific service.

 Our work on CSAL to date has focused on abstracting

the storage resources provided by many cloud

infrastructures; however, the long-term goal of CSAL is

to provide a cross-cloud platform such that applications

can be deployed easily across clouds to take advantage of

0

0.05

0.1

0.15

0.2

0.25

0.3

Create

Container

Create

Table

Queue

Create

M
e

d
ia

n
 O

p
e

ra
ti

o
n

 T
im

e
 (

S
e

co
n

d
s)

CSAL Total Time Native API

Core Op Time Metadata Op Time

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

M
e

d
ia

n
 O

p
e

ra
ti

o
n

 T
im

e
 (

S
e

co
n

d
s)

CSAL Total Time Native API

the quickly changing landscape of cloud infrastructure

offerings.

 One criticism of any API as a research tool is that it is

difficult to argue its ‘correctness’. Rather than arguing

that our API is the correct API for cross-cloud

applications we merely posit that CSAL represents an

API and that a common API is one way to address issues

of cloud vendor lock-in as well as application portability

and mobility. We intend CSAL to be a tool with which

we can study how developers and scientists might

approach applications that have extremely high

availability requirements, such that a single provider is a

single point of failure, as well as those that seek to exploit

the ever-changing nature and costs of cloud computing as

the marketplace develops.

 The CSAL API provides developers with a simple

storage API which works on multiple platforms to access

the vendor provided storage services, but what if a user

wants to leverage CSAL on a cloud that does not provide

the same abstractions or even any storage services at all?

Examples of such clouds are Eucalyptus[11], GoGrid[12],

and Rackspace[23], which provide either no storage

services or provide only a blob-type service. There are,

however many third-party storage systems available that

can be installed and used within such infrastructures.

Third party services can be leveraged by CSAL using the

connector interface just as SimpleDB or Azure Queues

are. Ultimately, out goal with CSAL is to leverage

application portability to explore multi-cloud application

deployments and management as well as dynamic

resource allocation optimization for cost and performance

metrics.

5. Conclusion

 Vendor lock-in is a difficult problem that needs to be

addressed immediately because the cloud landscape is just

taking shape. Standards take too long to develop, so we

have presented CSAL, a vendor-agnostic abstraction layer

that sits above cloud-specific APIs to provide common

storage abstractions for multiple cloud platforms and to

support highly portable applications even if the data itself

is not as portable due to size and/or cost. Our

performance results show that this layer imposes small

overhead for common data-object operations—and

reasonable overhead—typically within 2X—for metadata-

intensive container-level operations.

 CSAL provides a set of generic storage abstractions

common to many cloud platforms. By combining a

unified namespace across all supported platforms as well

as high-level abstractions, CSAL allows an application to

be moved with nearly no code changes and provides a

foundation for multi-cloud applications that, because of

mobility, can exploit the dynamic nature of the cloud

landscape optimize costs and/or performance.

References

[1] R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha, P.

Sarkar, M. Shah, and R. Tewari, “Cloud Analytics: Do

We Really Need to Reinvent the Storage Stack?” in Proc. of

Usenix HotCloud’09, 2009.

[2] Amazon. Amazon Elastic Compute Cloud (EC2).

http://aws.amazon.com/ec2/

[3] AppScale. http://code.google.com/p/appscale/

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and

M.i Zaharia. “Above the Clouds: A Berkeley View of Cloud

Computing.” Univ. of California, Berkely, Technical Report

EECS-2009-28, 2009.

[5] Cloudloop. http://www.cloudloop.com

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” in Proc. of Sixth Symposium

on Operating System Design and Implementation (OSDI),

2004.

[7] Dasein Cloud API: http://dasein-cloud.sourceforge.net/

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters.” in Proc. of Sixth Symposium

on Operating System Design and Implementation (OSDI),

2004.

[9] DeltaCloud. http://deltacloud.org/

[10] DMTF Open Virtualization Format.

http://www.dmtf.org/standards/published_documents/DSP02

43_1.0.0.pdf

[11] Eucalyptus. http://www.eucalyptus.com

[12] GoGrid. http://www.gogrid.com

[13] Google AppEngine. http://code.google.com/appengine/

[14] Hadoop. http://hadoop.apache.org/

[15] Libcloud: http://incubator.apache.org/libcloud/

[16] jclouds. http://www.jclouds.org/

[17] Microsoft Windows Azure Platform.

http://www.microsoft.com/windowsazure/windowsazure/

[18] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.

Soman, L. Youseff, and D. Zagorodnov, “The Eucalyptus

Open-Source Cloud-Computing System,” Proc. of IEEE

International Symposium on Cluster Computing and the

Grid (CCGrid), 2009.

[19] Open Cloud Computing Interface Working Group.

http://www.occi-wg.org/doku.php

[20] OpenNebula: http://opennebula.org/start

[21] S. Patil, G. A. Gibson, G. R. Ganger, J. Lopez, M. Polte, W.

Tantisiroj, and L. Xiao , “In Search of an API for Scalable

File Systems: Under the Table or Above It?”, Proc. of

Usenix HotCloud’09 , 2009.

[22] SAGA: Simple API for Grid Applications,

http://saga.cct.lsu.edu/

[23] Rackspace Cloud. http://www.rackspacecloud.com/

[24] SimpleCloud API. http://www.simplecloud.org/

[25] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer,

and C. Hauser. “Managing Update Conflicts in Bayou, a

Weakly Connected Replicated Storage System.” in Proc. of

the Symposium on Operating Systems and Principles, pages

172-182. ACM Press, 1995.

[26] WindowsAzure4J. http://www.windowsazure4j.org

