
An Efficient Orchestration Engine for the Cloud

Rafael Z. Frantz

UNIJUÍ University
Ijuí, RS, Brasil

rzfrantz@unijui.edu.br

Rafael Corchuelo

University of Sevilla
Sevilla, Spain
corchu@us.es

José L. Arjona

Intelligent Integration Factory, Inc.
Huelva, Spain

arjona@i2factory.com

Abstract—The Cloud is evolving as a cost-effective solution
to run services that support a variety of business processes. It
is not surprising then that Orchestration as a Service (OaaS) is
gaining importance as a means to integrate the many services
a typical company runs or outsources in the Cloud. OaaS
requires very efficient orchestration engines: the faster they
work, the less customers have to pay and the more customers
can be served. In this paper, we report on a new orchestration
engine; we have performed a series of stringent experiments
that prove that it outperforms a state-of-the-art orchestration
engine in widespread use. Our conclusion is that our proposal
is an efficient, solid orchestration engine ready for the Cloud.

I. INTRODUCTION

Enterprise Application Integration (EAI) is a field of

Software Engineering whose focus is on providing method-

ologies and tools to integrate the many heterogeneous ser-

vices of which typical companies’ software ecosystems are

composed. Mapping business processes onto these services

and integrating them appropriately seems to be a cornerstone

for successful companies. Furthermore, the Cloud [26] is

revolutionising the way companies run their services: the

pay-per-use paradigm has proven an effective way to reduce

IT costs without sacrificing quality, which is attracting an

increasing number of companies.

Enterprise Service Buses (ESBs) lay at the heart of

many current EAI solutions. Their main constituents are

an array of adapters and an orchestration engine. The

adapters abstract software engineers from the burden of

wiring services using specific-purpose technologies. The

orchestration engine, aka integration engine, provides the

runtime support a collection of orchestration processes re-

quire. Roughly speaking, an orchestration process retrieves

data from some services and routes them to other services;

note that, in general, routing involves both transferring and

transforming data. Orchestration processes can be described

using a variety of languages, including WS-BPEL [4] and

new languages that are based on the well-know catalogue

of Enterprise Integration Patterns (EIPs) that was compiled

by Hohpe and Woolf [16], cf. [8, 10, 11, 19].

The shift towards the Cloud is promoting that orchestra-

tion processes are run as services, as well (Orchestration

as a Service, OaaS) [17]. OaaS is intimately related to the

Platform as a Service service model, in which providers

provide their customers with a computing environment to

which they can deploy their software packages, including

their orchestrations [26]. Wlodarczyk and others [33] men-

tioned that ESBs that work on the cloud are the key to

taking EAI a step forward: Inter-EAI. This motivates the

need for more efficient orchestration engines in the Cloud:

the more efficient the engine, the less users have to pay

to run their orchestration processes; similarly: the more

efficient the engine, the more customers a provider can serve

using the same resources. This has motivated mainstream

players to provide new technologies for OaaS: Microsoft

has recently launched the .NET Workflow Service1 as part

of the Azure Services Platform; CSC2, has launched the

Cloud Orchestration Services and Trusted Cloud Services

initiative; Cordys has also launched their Enterprise Cloud

Orchestration3 initiative to promote OaaS.

In this paper, we report on a new orchestration engine

called Guaraná RT4. Section §II, reports on the related work;

Section §III, describes our proposal; Its salient features are

that it relies on an efficient runtime that uses a configurable

thread pool that works at the task granularity level, i.e.,

instead of allocating threads to process instances or routes

inside them, it allocates threads to individual tasks inside

processes. According to our survey of the literature, this

seems to be a novel technique that has proven to work very

well in heavily-loaded scenarios; The experimental results in

Section §IV prove that Guaraná RT outperforms a state-of-

the-art open-source orchestration engine in widespread use:

Apache Camel. Section §V, sketchs our main conclusions.

II. RELATED WORK

There are a number of recent papers in which the authors

have paid attention to the problem of devising efficient

orchestration engines, namely: Höing and others [17] pre-

sented the BIS-Grid project, in which they are working

on providing the infrastructure required to develop and

deploy EAI solutions using grid-oriented technologies; their

orchestration engine is thus coarse-grained since their focus

is on complex services that are run on a grid infrastructure

1http://www.microsoft.com/azure/workflow.mspx
2http://www.csc.com/cloud/
3http://www.cordys.com/cordyscmscom/enterprisecloudorchestration.php
4http://www.guarana-project.net

711



and are orchestrated using WS-BPEL; Jia and others [20]

reported on a proposal to improve the scheduling of tasks

in the context of EAI solutions that build on clustered JBI

services; Grounds and others [12] reported on a technique

that allows to minimise the scheduling of tasks to increase

productivity in cloud environments, which lays at the heart

of their cloud workflow system [25]; Song and others [32]

presented additional details on how to select workflow tasks

optimally in cloud environments. Yang and others [34]

reported on a proposal whose focus is on orchestrating

services that are distributed across wide-area networks;

Panahi and others [28] reported on LLAMA, whose focus

is on monitoring, management, and configuration; finally,

Kirschnick and others [22] and Dörnemann and others

[7] reported on two proposals to support the automated

provision of cloud services.

Our focus is on the design an implementation of a

runtime system that can support orchestration engines very

efficiently. Our survey of the literature reveals that the key

to efficiency in EAI scenarios seems to be how threads are

managed and allocated to run instances of orchestration pro-

cesses. Processes are instantiated whenever the appropriate

incoming messages are available, which, in turn, depends

on the language used to describe them. (A message is an

envelop used to transfer data within an EAI solution.) In WS-

BPEL, the description must mention which messages can

instantiate a process, i.e., messages are correlated externally;

contrarily, in EIP-based languages, every incoming message

instantiates a process, i.e., messages are correlated internally.

The simplest approach to run a process instance is to

allocate a thread to it, like in ProActive [2]; this engine

is based on active objects that have their own thread of

control, so that method calls can always be asynchronous;

this approach is very straightforward and may work quite

well in scenarios in which there are not many process in-

stances, i.e., systems that are not heavily loaded, or scenarios

in which requests to external services are not common;

otherwise, allocating a thread per process instance degrades

performance very quickly as the number of service requests

increases (realise that threads must remain blocked until a

reply is received) [31]. Chrysanthakopoulos and Singh [6],

Schippers and others [30], Andrew and others [3] reported

on similar proposals that are also based on a per-process

instance allocation policy.

A simple improvement is to use a technique that is usually

referred to as dehydration/rehydration [29]; the idea is to

detect when a thread has been blocked for too long and

then serialise its state and allocate it to another process

instance that is ready for execution; when the expected reply

is received, the original process instance becomes ready for

execution and shall be allocated a thread the sooner as one is

available. Although dehydration/rehydration is conceptually

simple and may perform well in EAI scenarios [24, 29],

implementing it is not trivial at all since serialising a thread’s

state involves serialising its stack and other contextual

information required to resume it.

Further improvements to the way threads are allocated re-

quire to know about the internals of orchestration processes.

In general, they are composed of tasks that are arranged

into routes. Tasks include receiving, sending, and routing

a message appropriately through an orchestration process

to the appropriate services, to mention a few examples.

The usual approach is to allow software engineers configure

thread pools that are allocated to specific routes within an or-

chestration process [10, 19]. This approach may work quite

well, but has some drawbacks since orchestration processes

are tightly coupled with the way they are deployed; in other

words, thread pools must be pre-configured so that they can

deal the highest foreseen workload, which does not usually

lead to optimal performance during off-peak hours. Previous

results in the literature suggest that the over-provisioning of

stacks tends to lead to quick exhaustion of the virtual address

space [13, 21]; furthermore, it is well-known that locking

mechanisms often lack suitable contention managers, which

is also very problematic regarding high-performance orches-

tration engines [9].

Event-driven programming provides a few ideas to man-

age threads more efficiently using inversion of control.

Simply put, instead of calling blocking operations, process

instances register their interest to be resumed when an event

happens, e.g., receiving a reply from a service; when this

occurs, the runtime system invokes a call-back method on

the process instance. The problems with inversion of control

are that the interactive logic of a program is fragmented

across multiple event handlers and that control amongst

handlers is expressed implicitly through manipulation of

shared state [5, 18, 23]. Haller and Odersky presented a

proposal in which there is no inversion of control [13, 14];

instead they made process instances thread-less building on

the following idea: a process instance that waits in a receive

statement is represented by a closure that captures the rest of

the process computation; the closure is “piggy-backed” on

the thread of the sender when the expected message arrives.

If the receiving closure terminates, control is returned to

the sender; if it blocks on a new receive statement, control

is returned to the sender by throwing a special exception

that unwinds its call stack. Adya and others [1] discussed

advantages and disadvantages of multi-threading and event-

based programming, considering the distinction between

manual and automatic stack management, and the problems

involved in handling “passive” messages, i.e., messages that

need to be polled from its source.

III. OUR ORCHESTRATION ENGINE

In this section, we describe our orchestration engine

from both a structural and a dynamic perspective. In the

paragraphs below, we make it clear that the emphasis of our

design is on allocating the available threads to tasks, instead



���������	��
�
�������
�����
�
����
�
�����
�
��������
�
��������	���
�
�
���	���	�
�

��������	

����
���������
��
���
���������
���
������	�	
�


�	�
����

������	 �
���������
���
�	�!	����
	
����!��	
	"	���	
�
�����
��
���� ����

�	����
	���!��	


�	�����

������
�
�����
�
����	�
#���������	�	�


�	��	

�	��	���
�����
�	������

�����	�����
�	������

��$	���
����%���	�


�����
�
���������	�
���
�	�
���
	"	���	
�
 ���
�

����

�����
�
 ��	��
�

��	���

����

#�	�	��
����

&���	���
����

&���	�����
'

�	������
����

#�	�	

&�����	�	

����	��	�

��
���
�

���
����!����
���	
����!���

�����	

�	���

&���	�

Figure 1. Static model for the task-based execution engine.

of processes or routes within them. Our results prove that

this is very effective.

A. Structure

Figure §1 presents a class diagram that models the

main structural components of our proposal. Scheduler
is the central class since its objects are responsible for

co-ordinating all of the activities in an instance of our

orchestration engine. Note that this class is not a singleton

since we do not preclude the possibility of running several

instances concurrently. At run-time, a scheduler owns a work

queue, a list of workers, and three monitors.

The work queue is a priority queue that stores work

units to be processed. A work unit has a reference to a

task and a deadline. Note that class Task is abstract, which

means that our engine is not bound with a particular set

of tasks; this allows to create specific-purpose task toolkits

that can be plugged into the engine. Guaraná DSL is a

complementary proposal that provides a number of task

toolkits to design EAI solutions in different contexts [11].

Usually, the deadline of a work unit is set to the current

time, which means that the corresponding task can execute

as soon as possible. If the deadline is set to a time in future,

then the corresponding task is delayed until that time has

elapsed. This is very useful to implement tasks that need

to execute periodically, e.g., a communicator that polls a

service from time to time.

Class Worker extends the standard Thread class, i.e.,

objects of this class run autonomously. Each worker is given

a reference to the work queue, from which they concurrently

poll work units to process.

The monitors gather statistics about how memory, CPU

cores, and the work queue are used. The memory monitor

registers information about both heap and non-heap memory;

the worker monitor registers the user- and the system-time

worker objects have consumed; and, the queue monitor

registers the size of the queue and the total number of work

units that have been processed. Monitors were implemented

as independent threads that run at regular intervals, gather

the previous information, store it in a file, and become idle

the sooner as possible. Class Buffer represents in-memory

Figure 2. Initialising the engine.

Figure 3. Creating and starting monitors.

buffers from/to which tasks read/write messages. This allows

them to work in total asynchrony from each other.

B. Dynamics

Schedulers are configured using a simple XML file with

information about the number of workers, the files to which

the monitors dump statistics, the frequency at which they

must run, and the logging system used to report warnings

and errors. Figure §2 shows the sequence of operations in-

volved in the initialisation of a scheduler. The first operation

loads the configuration file and analyses it; then, the logging

system is started, and a work queue is created.

Note that engines are not started when they are created.

It is the user who must decide when to start them us-

ing the start() operation. Roughly speaking, this operation

causes the invocation of two other operations, namely:

startMonitors() and startWorkers(). The former starts the

monitors that have been activated in the configuration file,

cf. Figure §3, and the later creates and starts the workers.

Figure §4 shows the sequence of operations required to

create and start the workers. Note that they are started

asynchronously by invoking operation start(). The business



Figure 4. Creating and starting workers.

Figure 5. Executing a WorkUnit.

logic of a worker is defined inside its doWork() operation.

This operation implements a loop that enables the workers to

poll the work queue as long as the scheduler is not stopped.

When a work unit is polled, the worker first checks its

deadline; if it has expired, then the task can be executed

immediately; otherwise, the work unit is delayed until the

deadline expires.

Processing a work unit consists of invoking operation ex-
ecute() on the associated task. This operation first packages

the input messages, which are read from the appropriate

buffers, and then invokes operation doWork(), which de-

pends completely on the task toolkit being used. Then, the

task writes its output messages to the appropriate buffers,

which in turn notify the tasks that read from them. These

tasks determine then if they become ready for execution or

not; in the former case, the tasks create new work units and

append them to the work queue, cf. Figure §5.

IV. EVALUATION

In order to evaluate our proposal in practice, we selected

a well-known benchmark in the literature of EAI: the Café

�����

�����

�����

�����

�����

�����

�����

�����

� � � � � 	 
 �

�
��
���
�
	�
�

��
�

��
	�


���	��������	���

�����
�

��

��

��

��

��

	�


�����

�����

�����

�����

�����

�����

�����

�����

�����

� � � � � 	 
 �

�����	����	�

Figure 6. CPU execution times.

�

����

���

����

���

����

���

����

���

� � � � � 	 	 
 �

�
��
���
�
	�
�

��
�

��
	�


���	��������	���

�������
�	�
��
�����

�
�
�����
��������
�� �
�����
�
�
�����
������ �
�� �
�����

Figure 7. CPU execution times: Guaraná vs. Apache Camel

integration solution [15]. This benchmark is conceptually

simple, but illustrates well what typical orchestration pro-

cesses do: they read messages from a service, split them

into pieces, route the pieces to different services, wait for

their replies, assemble some result messages, and route them

to the appropriate services.

In our experiments, we compared Guaraná RT 1.3.0 and

Apache Camel 2.7.2. We used the Café implementation

that is provided by the Apache Camel team and ported

it to run on Guaraná RT for comparison purposes. The

experiments consisted of processing a total of 250 000 input

messages that were fed into the Café integration solution

in 25 bursts of 10 000 messages each. The bursts were

executed with message production rates of 1–6 milliseconds

to simulate a heavily-loaded scenario, and we introduced a

10-second delay between every two bursts. Each experiment

was repeated 25 times, and the results were averaged after

discarding outliers using the well-known Chevischev’s tech-

nique5; only 0.02% of the results were considered outliers,

which makes it clear that the experiments were quite stable.

The experiments were repeated using a thread pool with 1–

8 threads; note that Apache Camel requires the thread pool

to be configured inside the orchestration processes, which

required to stop the engine, make the appropriate changes

to recompile, and to re-start it. We ran our experiments

5Nisbet and others [27] provided a good summary of the statistical
techniques we have used; the tests were performed using the SPSS statistical
toolkit.



�����

�����

��� �

��� �

�����

�����

�����

�����

�����

�����

 � � � � � � �

�
��
��
��	

��
��

�
��
��
��
��
��
�

�������	
������
�

�������

 �

��

��

��

��

��


�

���

 ���

 ���

����

����

����

����

 � � � � � � �

������������

Figure 8. Pending messages after a burst completes.

on a university cloud in which we had access to a virtual

computer that was equipped with an Intel Core i7 that run

at 2.93 GHz, 3 GB of RAM, Windows 7 Pro SP1, and

Java Enterprise Edition 1.6. This makes actual times of little

interest, since the same infrastructure was used concurrently

by other users. This is the reason why we focused on

measuring CPU times.

Figure §6 presents the average CPU times Guaraná RT

and Apache Camel took to complete the experiments. Note

that we measured CPU time per thread, i.e., the actual time

the available threads took to process the workload, including

user and operating system time. Note that the CPU times

are almost insensitive to the message rate in each burst,

which makes sense because they consisted of exactly the

same number of messages; the differences are solely due to

the random effects that are inherent to experimenting with a

live system. We carried out a statistical study using the well-

known non-parametric, two-way Kruskal-Wallis test at the

standard confidence level (α = 0.05) and we got p-value

0.681, which means that there is no evidence at all that

the differences in the CPU times are statistically significant.

We then performed a standard power regression analysis on

our results to characterise them analytically; the analysis

concluded that G = 0.037T−0.947, with R2 = 0.999,

and C = 0.250T−0.861, with R2 = 0.999, respectively,

where G denotes the approximation of Guaraná RT’s CPU

execution time, C the approximation of Apache Camel’s

CPU execution time, and T denotes the number of threads

used. Note that the R2 coefficient is nearly 1.0 in both cases,

which indicates that these approximations are statistically

accurate at the standard confidence level, cf. Figure §7.

We then performed a standard non-parametric, two-way

Mann-Witney test to check if both approximations can be

considered statistically equal, and got p-value 0.002, which

indicates that there is strong statistical evidence that Guaraná

RT outperforms Apache Camel.

Note that the difference between both proposals is smaller

as the number of threads increases. This behaviour is not

surprising since, other things equal, the total number of

�

����

����

����

����

�����

�����

��
��
��
��
	
�


�
��



��

���
�
���	����
�����

�������

��	
��
�
��	
��
��
��	
��
��
��	
��
��
��	
��
��
��	
��
��
��	
��
��
��	
��
���

����

����

����

����

�����

�����
�
�������	��

Figure 9. Pending messages after a stringent burst completes.

messages each thread has to process decreases as the number

of threads increases. Note, however, that Guaraná RT takes

roughly 2.04 seconds of CPU less in average. At a first

glance, this difference does not seem important enough, but

it matters when a customer has to pay for that extra CPU

consumption or when a provider cannot use those extra

seconds to serve more customers. To make the difference

more evident, we also measured the number of messages

that had not been processed when every message burst

finished; we refer to these messages as pending messages.

The results are presented in Figure §8. It is not difficult to

see how Guaraná RT outperforms Apache Camel by orders

of magnitude. Note that when the message production rate

is one message every 6 milliseconds, Apache Camel can

handle the workload gracefully, but increasing the message

production rate to 5 milliseconds has a significant negative

impact. When the message production rate increased to 1
millisecond, the average number of pending messages raised

to 2703.11, and it does not seem that adding more threads

can help handle the workload successfully.

To check Guaraná RT’s limit to process messages, we

conducted a series of new experiments in which the message

production rate was increased from 1 message per millisec-

ond to 20 messages per millisecond. The CPU time both

engines required to process these bursts of messages was

roughly the same, as expected; contrarily, the number of

messages pending to be processed when each burst finished

increased significantly. Figure §9 shows the results we got.

Note that Guaraná can handle a workload of 20 messages

per millisecond quite efficiently with as little as 4 threads;

contrarily, Apache Camel gets totally saturated at the rate of

5 messages per millisecond, independently of the number of

threads available.

V. CONCLUSIONS

In this paper, we have explored a core component of every

ESB: integration engines. Current trends in the industry

seem to suggest that OaaS is gaining importance at an

increasing pace, as companies run more and more services

on the Cloud. This motivates the need for very efficient

orchestration engines that are specifically tailored to work



in this context in which resources are shared amongst many

users who pay per use of the platform. We have reported

on Guaraná RT, which is a new orchestration engine that

beats a state-of-the-art engine in the market by orders of

magnitude. Our conclusion is that Guaraná RT is quite

an efficient orchestration engine that is ready to used in

real-world integration scenarios in the Cloud. In future, we

plan on researching how Guaraná RT can work in elastic

environments in which, e.g., more cores can be available at

run time.

ACKNOWLEDGEMENTS

Our work was supported by the European Commission (FEDER
funds), the Spanish and the Andalusian R&D&I programmes
(grants TIN2007-64119, P07-TIC-2602, P08-TIC-4100, TIN2008-
04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-10811-E,
and TIN2010-09988-E). Rafael Z. Frantz was also supported by
the Evangelischer Entwicklungsdienst e.V. (EED).

REFERENCES

[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R.
Douceur. Cooperative task management without manual
stack management. In USENIX Annual Technical Conference,
General Track, pages 289–302, 2002

[2] B. Amedro, F. Baude, D. Caromel, C. Delbé, I. Filali, F. Huet,
E. Mathias, and O. Smirnov. An efficient framework for
running applications on clusters, grids and clouds. In Cloud
Computing: Principles, Systems and Applications, pages 163–
178, 2010

[3] B. Andrew, C. Magnus, J. Mark, K. Richard, and N. Johan.
Timber: A programming language for real-time embedded
systems. Technical report, Oregon Graduate Institute School
of Science and Engineering, 2002

[4] A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland,
N. Kartha, C. K. Liu, S. Thatte, P. Yendluri, and A. Yiu.
Web Services Business Process Execution language version
2.0 specification. Technical report, Organization for the
Advancement of Structured Information Standards, 2007

[5] B. Chin and T. D. Millstein. Responders: Language support
for interactive applications. In European Conference on
Object-Oriented Programming, pages 255–278, 2006

[6] G. Chrysanthakopoulos and S. Singh. An asynchronous
messaging library for C#. In SCOOL at OOPSLA, 2005

[7] T. Dörnemann, E. Juhnke, and B. Freisleben. On-demand
resource provisioning for BPEL workflows using Amazon’s
elastic compute cloud. In CCGRID, pages 140–147, 2009

[8] D. Dossot and J. D’Emic. Mule in Action. Manning, 2009
[9] A. Dunkels, B. Grönvall, and T. Voigt. Contiki: A lightweight

and flexible operating system. In IEEE Conference on Local
Computer Networks, pages 455–462, 2004

[10] M. Fisher, J. Partner, M. Bogoevici, and I. Fuld. Spring
Integration in Action. Manning, 2010

[11] R. Z. Frantz, A. M. Reina-Quintero, and R. Corchuelo.
A domain-specific language to design enterprise application
integration solutions. International Journal of Cooperative
Information Systems, 20(2):143–176, 2011

[12] N. G. Grounds, J. K. Antonio, and J. T. Muehring. Cost-
minimizing scheduling of workflows on a cloud of memory
managed multicore machines. In CloudCom, pages 435–450,
2009

[13] P. Haller and M. Odersky. Event-based programming without
inversion of control. In JMLC, pages 4–22, 2006

[14] P. Haller and M. Odersky. Scala actors: Unifying thread-
based and event-based programming. Theor. Comput. Sci.,
410(2-3):202–220, 2009

[15] G. Hohpe. Your coffee shop doesn’t use Two-Phase commit.
IEEE Softw., 22(2):64–66, 2005

[16] G. Hohpe and B. Woolf. Enterprise Integration Patterns
- Designing, Building, and DeployingMessaging Solutions.
Addison-Wesley, 2003

[17] A. Höing, G. Scherp, S. Gudenkauf, D. Meister, and
A. Brinkmann. An orchestration as a service infrastructure
using grid technologies and WS-BPEL. In ICSOC, pages
301–315, 2009

[18] K. Hong, J. Park, T. Kim, S. Kim, H. Kim, B. Scholz,
B. Burgstaller, Y. Ko, and J. Park. TinyVM, an efficient virtual
machine infrastructure for sensor networks. In Embedded
Networked Sensor Systems, pages 389–400, 2009

[19] C. Ibsen and J. Anstey. Camel in Action. Manning, 2010
[20] X. Jia, S. Ying, L. Hu, and C. Chen. Scheduling active

services in clustered jbi environment. In CloudCom, pages
413–422, 2009

[21] R. K. Karmani, A. Shali, and G. Agha. Actor frameworks for
the JVM platform: a comparative analysis. In PPPJ, 2009

[22] J. Kirschnick, J. M. A. Calero, L. Wilcock, and N. Edwards.
Toward an architecture for the automated provisioning of
cloud services. IEEE Communication, December:124–131,
2010

[23] P. Levis and D. E. Culler. Maté: a tiny virtual machine for
sensor networks. In Architectural Support for Programming
Languages and Operating Systems, pages 85–95, 2002

[24] B. Loesgen, C. Young, J. Eliasen, S. Colestock, A. Kumar,
and J. Flanders. BizTalk Server 2010 Unleashed. Sams, 2011

[25] J. Madden, N. G. Grounds, J. Sachs, and J. K. Antonio. The
gozer workflow system. In IPDPS, pages 1–8, 2010

[26] P. Mell and T. Grance. Draft nist working definition of cloud
computing. http://csrc.nist.gov/groups/SNS/cloud-computing,
2011

[27] R. Nisbet, J. E. IV, and G. Miner. Handbook of Statistical
Analysis and Data Mining Applications. Academic Press,
2009

[28] M. Panahi, K.-J. Lin, Y. Zhang, S.-H. Chang, J. Zhang,
L. Varela, and Y. Zhang. The LLAMA middleware support for
accountable service-oriented architecture. In ICSOC, pages
180–194, 2008

[29] C. Renouf. Pro IBM WebSphere: Application Server 7
Internals. Apress Academic, 2009

[30] H. Schippers, T. Van Cutsem, S. Marr, M. Haupt, and
R. Hirschfeld. Towards an actor-based concurrent machine
model. In Proceedings of the 4th workshop on the Im-
plementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems, pages 4–9. ACM,
2009

[31] B. Silvestre, S. Rossetto, N. Rodriguez, and J.-P. Briot.
Flexibility and coordination in event-based, loosely coupled,
distributed systems. Computer Languages, Systems & Struc-
tures, 2010

[32] B. Song, M. M. Hassan, and E. nam Huh. A novel heuristic-
based task selection and allocation framework in dynamic
collaborative cloud service platform. In CloudCom, pages
360–367, 2010

[33] T. W. Wlodarczyk, C. Rong, and K. A. H. Thorsen. Industrial
cloud: Toward inter-enterprise integration. In CloudCom,
pages 460–471, 2009

[34] H. Yang, M. Kim, K. Karenos, F. Ye, and H. Lei. Message-
oriented middleware with QoS awareness. In ICSOC, 2009


