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Abstract—Given the diversity of commercial Cloud services,
performance evaluations of candidate services would be crucial
and beneficial for both service customers (e.g. cost-benefit analy-
sis) and providers (e.g. direction of service improvement). Before
an evaluation implementation, the selection of suitable factors
(also called parameters or variables) plays a prerequisite role in
designing evaluation experiments. However, there seems a lack
of systematic approaches to factor selection for Cloud services
performance evaluation. In other words, evaluators randomly
and intuitively concerned experimental factors in most of the
existing evaluation studies. Based on our previous taxonomy
and modeling work, this paper proposes a factor framework for
experimental design for performance evaluation of commercial
Cloud services. This framework capsules the state-of-the-practice
of performance evaluation factors that people currently take
into account in the Cloud Computing domain, and in turn can
help facilitate designing new experiments for evaluating Cloud
services.

Index Terms—Cloud Computing; commercial Cloud services;
performance evaluation; experimental design; factor framework

I. INTRODUCTION

Along with the boom in Cloud Computing, an increasing
number of commercial providers have started to offer public
Cloud services [24], [30]]. Since different commercial Cloud
services may be supplied with different terminologies, defini-
tions, and goals [30], performance evaluation of those services
would be crucial and beneficial for both service customers
(e.g. cost-benefit analysis) and providers (e.g. direction of
improvement) [24]. Before implementing performance eval-
uation, a proper set of experiments must be designed, while
the relevant factors that may influence performance play a
prerequisite role in designing evaluation experiments [18]. In
general, one experiment should take into account more than
one factor related to both the service to be evaluated and the
workload.

After exploring the existing studies of Cloud services per-
formance evaluation, however, we found that there was a lack
of systematic approaches to factor selection for experimental
design. In most cases, evaluators identified factors either ran-
domly or intuitively, and thus prepared evaluation experiments
through an ad hoc way. For example, when it comes to
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the performance evaluation of Amazon EC2, different studies
casually considered different EC2 instance factors in different
experiments, such as VM type [32], number [32]], geographical
location [|16]], operation system (OS) brand [24], and even CPU
architecture [[16] and brand [27], etc. In fact, to the best of our
knowledge, none of the current Cloud performance evaluation
studies has used “experimental factors” deliberately to design
evaluation experiments and analyze the experimental results.

Therefore, we decided to establish a framework of suitable

experimental factors to facilitate applying experimental design
techniques to the Cloud services evaluation work. Unfortu-
nately, it is difficult to directly point out a full scope of exper-
imental factors for evaluating performance of Cloud services,
because the Cloud nowadays is still chaotic compared with
traditional computing systems [33]. Consequently, we used a
regression manner to construct this factor framework. In other
words, we tried to isolate the de facto experimental factors
from the state-of-the-practice of Cloud services performance
evaluation. In fact, the establishment of this factor framework
is a continuation of our previous work [21], [22], [23] that
collected, clarified and rationalized the key concepts and their
relationships in the existing Cloud performance evaluation
studies. Benefitting from such a de facto factor framework,
new evaluators can explore and refer to the existing evaluation
concerns for designing their own experiments for performance
evaluation of commercial Cloud services.

Note that, as a continuation of our previous work, this study

conventionally employed four constrains, as listed below.

« We focused on the evaluation of only commercial Cloud
services, rather than that of private or academic Cloud
services, to make our effort closer to industry’s needs.

o We only investigated Performance evaluation of commer-
cial Cloud services. The main reason is that not enough
data of evaluating the other service features could be
found to support the generalization work. For example,
there are little empirical studies in Security evaluation of
commercial Cloud services due to the lack of quantitative
metrics [22].

o We considered Infrastructure as a Service (IaaS) and Plat-



form as a Service (PaaS) without considering Software
as a Service (SaaS). Since SaaS with special function-
alities is not used to further build individual business
applications [4]], the evaluation of various SaaS instances
could comprise an infinite and exclusive set of factors
that would be out of the scope of this investigation.

o We only explored empirical evaluation practices in aca-
demic publications. There is no doubt that informal
descriptions of Cloud services evaluation in blogs and
technical websites can also provide highly relevant in-
formation. However, on the one hand, it is impossible
to explore and collect useful data from different study
sources all at once. On the other hand, the published
evaluation reports can be viewed as typical and peer-
reviewed representatives of the existing ad hoc evaluation
practices.

The remainder of this paper is organized as follows. Section
briefly introduces the four-step methodology that we have
used to establish this factor framework. Section [III] specifies
the tree-structured factor framework branch by branch. An
application case is employed in Section |[V|to demonstrate how
the proposed factor framework can help facilitate experimental
design for Cloud services performance evaluation. Conclusions
and some future work are discussed in Section [V

II. METHODOLOGY OF ESTABLISHING THE FRAMEWORK

As previously mentioned, this factor framework is estab-
lished based on our previous work, which is mainly composed
of four steps, as listed below and respectively specified in the
following subsections:

¢ Conduct a systematic literature review (SLR).

o Construct a taxonomy based on the SLR.

o Build a conceptual model based on the taxonomy.
o Establish an experimental factor framework at last.

A. Conduct Systematic Literature Review

The foundation for establishing this factor framework is
a systematic literature review (SLR) on evaluating commer-
cial Cloud services As the main methodology applied for
Evidence-Based Software Engineering (EBSE) [8]], SLR has
been widely accepted as a standard and systematic approach
to investigation of specific research questions by identifying,
assessing, and analyzing published primary studies. Following
a rigorous selection process in this SLR, as illustrated in Figure
[l we have identified 46 Cloud services evaluation studies
covering six commercial Cloud providers, such as Amazon,
GoGrid, Google, IBM, Microsoft, and Rackspace, from a
set of popular digital publication databases (all the identified
evaluation studies have been listed online for reference: http:
/www.mendeley.com/groups/1104801/slr4cloud/papers/). The
evaluation experiments in those identified 46 studies were
thoroughly analyzed. In particular, the atomic experimental
components, such as evaluation requirements, Cloud service

IThe complete SLR report can be found online: https://docs.google.com/
open?id=0B9KzcoAAmi43LVIIaEgtNnVUenVXSy [FWTJKSzRsdw
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Fig. 1. The study selection sequence in the SLR on evaluating commercial
Cloud services.

features, metrics, benchmarks, experimental resources, and
experimental operations, were respectively extracted and ar-
ranged.

B. Construct Taxonomy

During the analysis of these identified evaluation studies,
we found that there were frequent reporting issues ranging
from non-standardized specifications to misleading explana-
tions [21]. Considering that those issues would inevitably
obstruct comprehending and spoil drawing lessons from the
existing evaluation work, we created a novel taxonomy to
clarify and arrange the key concepts and terminology for
Cloud services performance evaluation. The taxonomy is
constructed along two dimensions: Performance Feature and
Experiment. Moreover, the Performance Feature dimension is
further split into Physical Property and Capacity parts, while
the Experiment dimension is split into Environmental Scene
and Operational Scene parts, as shown in Figure[2] The details
of this taxonomy has been elaborated in [21].

C. Build Conceptual Model

Since a model is an abstract summary of some concrete
object or activity in reality [26], the identification of real
and concrete objects/activities plays a fundamental role in
the corresponding modeling work. Given that the taxonomy
had capsuled relevant key concepts and terminology, we
further built a conceptual model of performance evaluation
of commercial Cloud services to rationalize different abstract-
level classifiers and their relationships [23]]. In detail, we
used a three-layer structure to host different abstract elements
for the performance evaluation conceptual model. To save
space, here we only portray the most generalized part hosted
in the top classifier layer, as shown in Figure [3] which
reflects the most generic reality of performance evaluation
of a computing paradigm: essentially, performance evaluation
can be considered as exploring the capacity of particular
computing resources with particular workloads driven by a
set of operations.
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Fig. 2. Two-dimensional taxonomy of performance evaluation of commercial
Cloud services.
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Fig. 3. Conceptual model of Cloud services performance evaluation in the
top classifier layer.

D. Establish Factor Framework

In fact, the specific classifiers in the abovementioned
conceptual model [23] has implied the state-of-the-practice
of performance evaluation factors that people currently took
into account in the Cloud Computing domain. According to
different positions in the process of an evaluation experiment
[1l], the specific classifiers of Workload and Computing
Resource indicate input process factors; the specific classifiers
of Capacity suggest output process factors; while the
Operation classifiers are used to adjust values of input process
factors. The detailed experimental factors for Cloud services
performance evaluation are elaborated in the next section.

[ Geographical Location

[R— Number

- Type (Client vs. VM Instance)

Fo---- Duration

§ ------ Frequency

R Number

S Timing
[] Object

S Number

Fig. 4. The workload factors for experimental design.

IIT1. THE TREE-STRUCTURED FACTOR FRAMEWORK

As mentioned previously, the experimental factors for per-
formance evaluation of commercial Cloud services can be
categorized into two input process groups (Workload and
Computing Resource) and one output process group (Capac-
ity). Thus, we naturally portrayed the factor framework as a
tree with three branches. Each of the following subsections
describes one branch of the factor tree.

A. Workload Factors

Based on our previous work [21]], [23]], we found that
a piece of workload used in performance evaluation could
be described through one of three different concerns or a
combination of them, namely Terminal, Activity, and Object.
As such, we can adjust the workload by varying any of
the concerns through different experimental operations. The
individual workload factors are listed in Figure [}

1) Terminal: In contrast with services to be evaluated
in the Cloud, clients and particular Cloud resource (usually
VM instances) issuing workload activities can be viewed
as terminals. Correspondingly, the geographical location or
number of both clients [11] and VM instances [14] have
been used to depict the relevant workload. Meanwhile, the
terminal type can also be used as a workload factor. For
example, the authors evaluated Cloud network latency by using
client and EC2 instance respectively to issue pings [2]. In this
case, the terminal type has the equal essence to the factor
communication scope (cf. Subsection [[II-B1).

2) Activity: The concept “activity” here describes an in-
herent property of workload, which is different from, but
adjustable by, experimental operations. For example, disk I/O
request as a type of activity can be adjusted by operations like
the number or time of the requests. In fact, the number- and
time-related variables, such as activity duration [11]], frequency



[Sll, number (3], and timing [10], have been widely considered
as workload factors in practice. Furthermore, by taking a
particular Cloud resource being evaluated as a reference, the
factor activity direction can be depicted as input or output [2].
As for the activity sequence in a workload, the arrangement
generates either sequential [2] or parallel [14]] activity flows.
3) Object: In a workload for Cloud services performance
evaluation, objects refer to the targets of the abovemen-
tioned activities. The concrete objects can be individual mes-
sages [13l], data files [14], and transactional jobs/tasks [6]
in fine grain, while they can also be coarse-grained work-
flows or problems [6]. Therefore, the object number and
object size/complexity are two typical workload factors in
the existing evaluation studies. Note that we do not consider
object location as a workload factor, because the locations
of objects are usually hosted and determined by computing
resources (cf. Subsection [[II-B). In particular, a workload
may have multiple object size/complexity-related factors in
one experiment. For example, a set of parameters of HPL
benchmark, such as the block size and process grid size, should
be tuned simultaneously when evaluating Amazon EC2 [3]].

B. Computing Resource Factors

According to the physical properties in the performance
feature of commercial Cloud services [21], the Cloud Com-
puting resource can be consumed by one or more of four
basic styles: Communication, Computation, Memory (Cache),
and Storage. In particular, the VM Instance resource is an
integration of all the four basic types of computing resources.
Overall, the computing resource factors can be organized as
Figure [5] shows.

1) Communication: As explained in [21l], Communica-
tion becomes a special Cloud Computing resource because
commercial Cloud services are employed inevitably through
Internet/Ethernet. As such, the Ethernet I/O Index is usually
pre-supplied as a service-level agreement (SLA) by service
providers. In practice, the scope and level of communication
have been frequently emphasized in the performance eval-
uation studies. Therefore, we can summarize two practical
factors: The factor Communication Scope considers intra-
Cloud and wide-area data transferring respectively [24]], while
the Communication Level distinguishes between IP-level and
MPI-message-level networking [12].

2) Computation: When evaluating PaaS, the Computation
resource is usually regarded as a black box [16]]. Whereas,
for IaaS, the practices of Computation evaluation of Cloud
services have taken into account Core Number |3l, Elastic
Compute Unit (ECU) Number, Thread Number [2]], and a
set of CPU characteristics. Note that, compared to physical
CPU core and thread, ECU is a logical concept introduced
by Amazon, which is defined as the CPU power of a 1.0-1.2
GHz 2007 Opteron or Xeon processor [28]. When it comes
to CPU characteristics, the Architecture (e.g. 32 bit vs. 64
bit [16]) and Brand (e.g. AMD Opteron vs. Intel Xeon [27])
have been respectively considered in evaluation experiments.
Processors with the same brand can be further distinguished
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Fig. 5. The computing resource factors for experimental design.

between different CPU Models (e.g. Intel Xeon E5430 vs. Intel
Xeon X5550 [3]]). In particular, CPU Frequency appears also
as an SLA of Cloud computation resources.

3) Memory (Cache): Since Memory/Cache could closely
work with the Computation and Storage resources in com-
puting jobs, it is hard to exactly distinguish the affect to
performance brought by Memory/Cache. Therefore, not many
dedicated Cloud memory/cache evaluation studies can be
found from the literature. In addition to the SLA Memory
Size, interestingly, Physical Location and Size of cache (e.g.
L1=64KB vs. L2=1MB in Amazon m1.* instances [28]]) have
attracted attentions when analyzing the memory hierarchy.
However, in [28]], different values of these factors were ac-
tually revealed by performance evaluation rather than used for
experimental design.

4) Storage: As mentioned in [21]], Storage can be either the
only functionality or a component functionality of a Cloud
service, for example Amazon S3 vs. EC2. Therefore, it can
be often seen that disk-related storage evaluation also adopted
experimental factors of evaluating other relevant resources like
VM instances (cf. Subsection [[IlI-B3). Similarly, the predefined



Storage Size acts as an SLA, while a dedicated factor of
evaluating Storage is the Geographical Location. Different
geographical locations of Storage resources can result either
from different service data centers (e.g. S3 vs. S3-Europe
[29]) or from different storing mechanisms (e.g. local disk
vs. remote NFS drive [31]). In addition, although not all
of the public Cloud providers specified the definitions, the
Storage resource has been distinguished among three types of
offers: Blob, Table and Queue [24]]. Note that different Storage
Types correspond to different sets of data-access activities, as
described in [22]].

5) VM Instance: VM Instance is one of the most popular
computing resource styles in the commercial Cloud service
market. The widely considered factors in current VM Instance
evaluation experiments are Geographical Location, Instance
Number, and VM Type [3], [13], [14], [16], [24], [28], [32].
The VM Type of a particular instance naturally reflects its
corresponding provider, as demonstrated in [24]. Moreover,
although not common, the OS Brand (e.g. Linux vs. Windows
[24]]) and Physical Location [1] also emerged as experimental
factors in some evaluation studies. Note that the physical lo-
cation of a VM instance indicates the instance’s un-virtualized
environment, which is not controllable by evaluators in evalu-
ation experiments [7]]. In particular, recall that a VM Instance
integrates above four basic types of computing resources. We
can therefore find that some factors of evaluating previous
resources were also used in the evaluation of VM Instances,
for example the CPU Architecture and Core Number [3]], [28]].

C. Capacity Factors

As discussed about the generic reality of performance
evaluation in Subsection it is clear that the capacities
of a Cloud computing resource are intangible until they are
measured. Meanwhile, the measurement has to be realized
by using measurable and quantitative metrics [20]. Therefore,
we can treat the values of relevant metrics as tangible repre-
sentations of the evaluated capacities. Moreover, a particular
capacity of a commercial Cloud service may be reflected by
a set of relevant metrics, and each metric provides a different
lens into the capacity as a whole [9]. For example, Benchmark
Transactional Job Delay [25] and Benchmark Delay [19]]
are both Latency metrics: the former is from the individual
perspective, while the latter from the global perspective. As
such, we further regard relevant metrics as possible output
process factors [1]] when measuring a particular Cloud service
capacity, and every single output process factor can be used
as a candidate response [1] in the experimental design. Since
we have clarified seven different Cloud service capacities [21],
i.e. Data Throughput, Latency, Transaction Speed, Availability,
Reliability, Scalability, and Variability, the possible capacity
factors (metrics) can be correspondingly categorized as Figure
[6] shows. Due to the limit of space, it is impossible and unnec-
essary to exhaustively list all the metrics in this paper. In fact,
the de facto metrics for performance evaluation of commercial
Cloud services have been collected and summarized in our
previous work [22].
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Fig. 6. The capacity factors for experimental design.

IV. APPLICATION OF THE FACTOR FRAMEWORK

Since the factor framework is inherited from the aforemen-
tioned taxonomy and modeling work, it can also be used for,
and in turn be validated by, analyzing the existing studies of
Cloud services performance evaluation, as described in [21],
[23]. To avoid duplication, we do not elaborate the analysis
application scenario, and the corresponding validation, of
the factor framework in this paper. Instead, we particularly
highlight and demonstrate how this factor framework can help
facilitate designing experiments for evaluating performance of
commercial Cloud services.

Suppose there is a requirement of evaluating Amazon EC2
with respect to its disk I/O. Recall that relevant factors
play a prerequisite role in designing evaluation experiments.
Given the factor framework proposed in this paper, we can
quickly and conveniently lookup and choose experimental
factors according to the evaluation requirement. To simplify
the demonstration, here we constrain the terminal to be clients,
while only consider the direction of disk I/O and data size to be
read/write in workload factors, and only consider the EC2 VM
type in computing resource factors. As for the capacity factors,
we can employ multiple suitable metrics in this evaluation, for
example disk I/O latency and data throughput. However, since
only one metric should be determined as the response in an
experimental design [1]], we choose the disk data throughput in
this case. Thus, we have circled active direction, object size,
and VM type as factors, while data throughput as response
in the framework for designing experiments. In particular, we
use two-level settings for the three factors: the value of active
direction can be Write or Read; object size can be Char or
Block; and VM type only covers M1.small and M1.large. In
addition, we use “MB/s” as the unit of data throughput.

Since only a small amount of factors are concerned, we



can simply adopt the most straightforward design technique,
namely Full-factorial Design [1], for this demonstration. This
design technique adjusts one factor at a time, which results
in an experimental matrix comprising eight trials, as shown in
Matrix (I). For conciseness, we further assign aliases to those
experimental factors, as listed below. Note that the sequence of
the experimental trials has been randomized to reduce possible
noises or biases [1] during the designing process.

o A: Activity Direction (Write vs. Read).

« B: Object Size (Char vs. Block).

e C: VM Type (M1l.small vs. M1 .large).

o Response: Data Throughput (MB/s).

" trial A B C Response ]
1 Write Block M1.small ?
2 Read Char Ml.large ?
3 Write Char M1.small ?
4 Read Char M1.small ? €))
5 Read Block M1.large ?
6 Read Block M1.small ?
7 Write Char Ml.large ?
. 8 Write Block Ml.large ? ]

Following the experimental matrix, we can implement
evaluation experiments trial by trial, and fill the Response
column with experimental results. For our convenience, here
we directly employ the evaluation results reported in [15], as
listed in Matrix (2).

[ trial A B C Response
1 Write Block M1.small 73.5 MB/s
2 Read Char Ml.large 50.9 MB/s
3 Write Char M1l.small 259 MB/s
4 Read Char Ml.small 22.3 MB/s 2)
5 Read Block Ml.large 64.3 MB/s
6 Read Block M1.small 60.2 MB/s
7  Write Char Ml.large 35.9 MB/s
| 8 Write Block M1l.large 632 MB/s |

Finally, different analytical techniques can be employed to
reveal more comprehensive meanings of experimental results
[L] for commercial Cloud services. For example, in this case,
we can further investigate the significances of these factors to
analyze their different influences on the disk I/O performance.
In detail, by setting the significance level a as 0.05 [17],
we draw a Pareto plot to detect the factor and interaction
effects that are important to the process of reading/writing
data from/to EC2 disks, as shown in Figure

Given a particular significance level, Pareto plot displays a
red reference line besides the effect values. Any effect that
extends past the reference line is potentially important [[1]. In
Figure[/| none of the factor or interaction effects is beyond the
reference line, which implies that none of the factors or inter-
actions significantly influences the EC2 disk I/O performance.
Therefore, we can claim that EC2 disk I/O is statistically stable
with respect to those three factors. However, Factor B (Data
Size to be read/written) has relatively significant influence on
the performance of EC2 disk I/O. Since the throughput of
small-size data (Char) is much lower than that of large-size

Pareto Chart of the Effects
(response is Data Throughput, Alpha = 0.05)

39.52

Factor Name
B4 A Activity Direction
B Data Size

c VM Instance Type

Effect

Lenth's PSE = 10.5

Fig. 7. The Pareto plot of factor effects.

data (Block), we can conclude that there is a bottleneck of
transaction overhead when reading/writing small size of data.
On the contrary, there is little I/O performance effect when
switching activity directions, which means the disk I/O of EC2
is particularly stable no matter reading or writing the same size
of data.

Overall, through the demonstration, we can find that this
factor framework offers a concrete and rational foundation for
implementing performance evaluation of commercial Cloud
services. When evaluating Cloud services, there is no doubt
that the techniques of experimental design and analysis can
still be applied by using intuitively selected factors. Never-
theless, by referring to the existing evaluation experiences,
evaluators can conveniently identify suitable experimental
factors while excluding the others, which essentially suggests
a systematic rather than ad hoc decision making process.

V. CONCLUSIONS AND FUTURE WORK

Cloud Computing has attracted tremendous amount of at-
tention from both customers and providers in the current
computing industry, which leads to a competitive market
of commercial Cloud services. As a result, different Cloud
infrastructures and services may be offered with different
terminology, definitions, and goals [30]]. On one hand, different
Cloud providers have their own idiosyncratic characteristics
when developing services [24]. On the other hand, even
the same provider can supply different Cloud services with
comparable functionalities for different purposes. For example,
Amazon has provided several options of storage service, such
as EC2, EBS, and S3 [5]. Consequently, performance evalua-
tion of candidate services would be crucial and beneficial for
many purposes ranging from cost-benefit analysis to service
improvement [24].

When it comes to performance evaluation of a computing
system, proper experiments should be designed with respect
to a set of factors that may influence the system’s performance
[[18]]. In the Cloud Computing domain, however, we could not
find any performance evaluation study intentionally concern-
ing “factors” for experimental design and analysis. On the
contrary, most of the evaluators intuitively employed experi-
mental factors and prepared ad hoc experiments for evaluating



performance of commercial Cloud services. Considering factor
identification plays a prerequisite role in experimental design,
it is worthwhile and necessary to investigate the territory of
experimental factors to facilitate evaluating Cloud services
more systematically. Therefore, based on our previous work,
we collected experimental factors that people currently took
into account in Cloud services performance evaluation, and
arrange them into a tree-structured framework.

The most significant contribution of this work is that the
framework supplies a dictionary-like approach to selecting
experimental factors for Cloud services performance evalu-
ation. Benefitting from the framework, evaluators can identify
necessary factors in a concrete space instead of on the fly. In
detail, as demonstrated in the EC2 disk I/O evaluation case in
Section given a particular evaluation requirement, we can
quickly and conveniently lookup and circle relevant factors in
the proposed framework to design evaluation experiments, and
further analyze the effects of the factors and their interactions
to reveal more of the essential nature of the evaluated service.
Note that this factor framework is supposed to supplement,
but not replace, the expert judgement for experimental factor
identification, which would be particularly helpful for Cloud
services evaluation when there is a lack of a bunch of experts.

The future work of this research will be unfolded along two
directions. First, we will gradually collect feedback from exter-
nal experts to supplement this factor framework. As explained
previously, Cloud Computing is still maturing and relatively
chaotic [33], it is therefore impossible to exhaustively identify
the relevant experimental factors all at once. Through smooth
expansion, we can make this factor framework increasingly
suit the more general area of evaluation of Cloud Computing.
Second, given the currently available factors, we plan to for-
mally introduce and adapt suitable techniques of experimental
design and analysis to evaluating commercial Cloud services.
With experimental design and analysis techniques, this factor
framework essentially acts as a solid base to support systematic
implementations of Cloud services evaluation.
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