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Abstract—In order to improve service execution in Clouds,
the management of Cloud Infrastructure has to take measures
to adhere to Service Level Agreements and Business Level
Objectives, from the application layer through to how services
are supported at the lowest hardware levels. In this paper a
risk model methodology and holistic management approach is
developed specific to the operation of the Cloud Infrastructure
Provider and is applied through improvements to SLA fault
tolerance in Cloud Infrastructure. Risk assessments are used to
analyse execution specific data from the Cloud Infrastructure and
linked to a business driven holistic management component that
is part of a Cloud Manager. Initial results show improved eco-
efficiency, virtual machine availability and reductions in SLA
failure across the whole Cloud infrastructure by applying our
combined risk-based fault tolerance approach.

I. INTRODUCTION

Fault tolerance mechanisms in Cloud Infrastructures en-
hance the well-known reactive mechanisms that allow recov-
ering the execution of services upon infrastructure failures
with proactive capabilities. In our model we link the proactive
capabilities to profit that can be gained by the application of
risk assessment tools to apply preventive measures before the
actual failure occurs. We propose proactive management for IP
providers in order to deal with Virtual Machine (VM) and host
failures before they actually happen. If these failures take place
before we can pro-actively avoid them, our approach reverts
to the reactive recovery mechanism.

In any case, our fault tolerance mechanism suggests recov-
ery actions (reactively and proactively), which are evaluated by
a high-level manager with respect to the overall IP objectives.
Although carrying out these actions will surely improve the
availability and reliability of the IP, it could happen that their
impact on other metrics is not compliant with the provider’s
goals. For instance, some recovery actions can increase the cost
or reduce the eco-efficiency of the operation. For this reason,
suggested recovery actions are evaluated against the provider’s
global objectives and carried out only if they contribute to
accomplish these goals. We demonstrate this by analysing
the impact of risk-based proactive management of the Cloud
Infrastructure in relation to its eco-efficiency.

Proactive actions based on the level of risk are derived
from a risk management approach. Risk in Clouds spans the
need to support various parties involved in making informed
decisions regarding contractual agreements. Those decisions
require effective risk assessment that allows to analyze the

impact of failures before they actually occur [1]. Therefore,
there is a clear need to offer tools to efficiently manage the
full life cycle of Cloud services, which allow additionally to
make informed deployment and runtime management decisions
based on risk assessment models for evaluation of providers
and will permit the appropriate establishment of fault tolerance
mechanisms [2].

The paper presents two main contributions: 1) a novel
approach to fault tolerance and how this can be combined with
risk. Our experiments reveal how VM availability and eco-
efficiency can be improved using risk; and 2) the development
of the Risk model and its application on a Cloud testbed
and the results of the assessments and subsequent proactive
management based on real data. The paper focuses on the
risk assessment tools an Infrastructure Provider makes use of
during service operation and additionally, the fault-tolerance
mechanisms put in place for an optimized service management.

The rest of the paper is as follows. Section II presents the
related work. Section III introduces the risk models used in
this work. Section IV describes our approach for fault-tolerant
operation of IPs. Section V presents the evaluation results.
Finally, Section VI concludes the paper.

II. RELATED WORK

Risk as a basis for proactive or reactive service manage-
ment in Clouds can be seen within the domain of information
security / privacy [3]. Information security is suited to the
management of risk in Clouds as risk can be defined and linked
to existing ways of expressing security policy [4]. In these
cases an organisation or user can associate events expressed in
policy which can be measured using risk assessment, proactive
and reactive action can then added to the process to act upon
the risk [5]. Risk as a management concept has a significant
background in the concept of systems auditing and third party
insight into systems [6].

Risk from a third party service as an extension to risk
assessment mechanisms has also been explored in Cloud
environments [7]. In our proposed model we monitor risk
in terms of computing resource behaviour within the domain
of the Cloud provider and present interfaces for third party
auditing and control. Our focus is with respect to internal
threats to service execution based on analysis of historic and
current data from the infrastructure.
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Risk assessment in distributed computing has been re-
searched in various projects, which have included objectives
ranging from information protection, evaluation/prediction of
QoS and probability of SLA failures [8], [9], [10].

Other works aim for fault tolerance in computing systems.
Remus [11] provides completely transparent recovery from
fail-stop failures of a single host. The authors encapsulate pro-
tected software in a VM, which is replicated asynchronously.
This allows the VM to continue executing speculatively. Re-
mus uses timeouts to detect failures, so this is a completely
reactive approach. Although it uses VMs, Remus does not
consider individual VM failures, only physical host failures.

Jung et al. [12] propose a placement and resource allocation
scheme that, in reaction to hardware failures, regenerates the
affected software components and reconfigures the set of
applications on the resource pool, by either migrating the VM
to another host or changing the CPU share allocated to the
VM on its current host, to maintain a user-defined availability
level while minimizing response time degradation. Again, this
approach is reactive and considers only hardware host failures.

Fu [13] presents a self-reconfiguration system for HPC vir-
tualized environments and proposes a set of strategies to select
the nodes to execute the tasks. In addition to performance
states of candidate nodes, these strategies also consider their
reliability status, which is estimated by forecasting when the
next failure will occur in that node. Fu’s approach is proactive
as he proposes migrating a VM when the deadline of task is
after the predicted occurrence time of the next failure in its
running node. However, this work assumes at most one failure
that might occur in the lifetime of a job task. In addition, it is
oriented only to node failures.

Nagarajan et al. [14] promote a proactive approach where
processes automatically migrate from unhealthy nodes to
healthy ones. They monitor the health of nodes via periodic
sampling of values from the given set of sensors and compare
them with threshold values. In case any of the thresholds is
exceeded, a target node is selected to migrate the guest VM
to. In this aspect, this work is similar to ours. However, it only
considers host failures. In addition, their threshold values refer
to low-level parameters such as the safe temperature range for
the CPU, which is far from the knowledge of a common user.
Instead of this, we deal with risk level categories.

Alonso et al. [15] present a framework which provides
a transparent and predictive rejuvenation solution to web
services on virtualized platform. They use Machine Learning
to estimate the time to crash of a service due to software aging.
When this time is below a predefined threshold, software
rejuvenation for the service is triggered. This is coordinated
with the reconfiguration of the platform to maximize the
number of services running simultaneously while ensuring that
every service deployed has the resources requested by the
service owner. Although this is a proactive approach, it only
considers software aging failures, not physical node failures.

Notably, none of the above works proposes a holistic so-
lution including complementary proactive-reactive approaches
to tolerate both physical and VM failures, as we do in this
paper. In order to influence risk assessment along any business
/ third party grounds we have to take the management and the
setting of the risk assessment outside of the Cloud Fabric into a

service level [16]. In the OPTIMIS project we have developed
the Holistic Management service in order to achieve this [2],
ensuring proactive and reactive risk management linked to
higher/service level goals.

III. RISK MODELS

A. Elements of Risk

In order to assess the risk associated with the Cloud
resources based on (real-time) data provided by the Cloud
Monitoring Infrastructure (CMI), it is essential to know what
data is required by the risk assessor, and how it is going to be
analysed to estimate the actual risk. For this purpose, the risk
inventory is populated with:

Assets: Virtual Machine (VM), physical host, Service
Level Agreement (SLA) with a description of their charac-
teristics. Risk events will be assessed in terms of these.

Incidents / Risk Scenarios: aim to describe any event,
condition or their combination that has the potential to reduce
the capacity or availability of an asset. They are composed of:

Vulnerabilities: describe inherent weaknesses of the asset
(e.g. a faulty hardware) and their impact reflects the possibility
of a risk incident, e.g. violations of the Quality of Service
(QoS), and SLA indicators, inherent to the assets.

Threats: represent the other side of the risk which depends
on factors independent to the asset, e.g. loss of connectivity
of a physical host.

Adaptive capacity: description of the mitigating strategies
in place for the specific asset, e.g. server replication

Impact/Consequence of a risk incident, e.g. failure of a
physical host, and is defined using as degraded performance,
loss of data, or unavailability. It is evaluated according to the
indicators selected to describe the asset as well as associated
costs, e.g. of not meeting predefined service levels.

B. Process

A quantitative risk assessment approach is then applied to
estimate the level of risk attached to VMs, physical hosts, and
SLAs thanks to the data gathered by the CMI. Therefore, an
identification of the elements of risk in the risk inventory for
these assets becomes important. Note that the nature of risks
may differ thus, the quantitative risk estimation too.

We follow the generic risk assessment model, which di-
vides the risk assessment process into the following stages:

Risk Inventory. At this stage, requirements analysis is
performed to identify how the risk inventory is populated.

Vulnerability identification. A vulnerability is considered
as a weakness or flaw in system procedures, design or internal,
management controls that can be accidentally triggered or
intentionally exploited. Let each vulnerability be represented

as a single bit in the vulnerability vector: �V = {Vi} = {1,0} ∀i,
i=1,2, . . . n, where Vi represents an individual vulnerability.
The value 1 indicates the presence of this vulnerability in the
system under assessment, otherwise 0.

Threat identification. During a threat analysis process
potential threat sources and actions that may exploit system
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vulnerabilities are identified. Information about threats can be
gathered from experts, the Cloud provider’s historical database
or log files. Let each threat be represented as a single bit in

the threat vector: �T = {Tj} = {1,0} ∀j, i=1,2, . . . m, where
Tj represents an individual threat. The value 1 indicates the
presence of this threat, otherwise 0.

Data Monitoring. At this stage, the data requirements that
need support from the CMI are identified.

Event Analysis. An event can be defined as a pair: a
vulnerability and it matching threat. Events can be identified
from historical facts, which took place in a specific context.
In order to identify the possibility of an event occurring, the
likelihood should be estimated considering factors of threat-
source motivation and capability, and nature of the vulnerabil-
ity. Therefore, the likelihood of threat acting over vulnerability
is defined as : Lji = 〈Tj ,Vi〉

Quantitative Risk Analysis. Risk is defined as the likeli-
hood of an event and its consequence. After potential events
and their likelihood have been identified the quantitative risk
assessment approach is applied to estimate a level of risk for
VMs, Physical Hosts, SLAs and the IP.

C. Model

Individual risks associated with each event (vulnerability,
threat) are first calculated and then an aggregated risk for
enhancing knowledge based on these individual risks is es-
timated. Within the general risk assessment model, several
elements of risk are identified: Rj,i = Lji · Ii

Thereafter, the risk for an individual element within an
asset under context specific environment can be calculated as
follows: RE = 1 − ∏m

j=1(1 − Rji), where E = 1, 2, . . . is
an individual element of risk within the asset. It only applies
when an element has threats and vulnerabilities associated.

The aggregated risk consists of all individual risks within
an asset and is defined as: Ragg = 1− (RE1

·RE2
· . . . REk

)

IV. FAULT-TOLERANT IP OPERATION

Our approach for fault-tolerant VM management in an IP
considers the synergistic operation of several components:

Risk Assessor, which is able to assess the risk level of
a VM or a physical host according to the current status
and forecast their risk level according to foreseen status. In
addition, it can assess/forecast the overall risk level for the
provider, which adds SLA failure and legal risks to the afore-
mentioned VM and host failure risks. Risk assessments and
forecasts are derived as described in previous section.

Fault Tolerance Engine (FTE), which is responsible for
self-healing infrastructure operation, in particular, it enables
tolerance to physical host1 and VM failures. To detect such
failures, it monitors the state of physical hosts and virtual in-
frastructure. The engine processes this monitoring information
and decides whether any corrective action is required during
services’ operation, such as restarting a recently failed VM.

1We consider the failure of a whole host, not individual components within
a host.

The engine combines two complementary approaches to
enable fault tolerance, namely reactive and proactive. The
reactive approach is able to detect already occurred failures
and initiate recovery actions, as described in Section IV-A.
The proactive approach is able to anticipate foreseen failures
and initiate preventive recovery actions before the actual failure
occurs, as described in Section IV-B. Note that if a host or VM
fails without prior notice from the proactive fault tolerance
mechanism, the described reactive approach takes place.

Note that this component only deals with failures at the
infrastructure level. This means that software failures occurred
during the execution of services within the VMs are not
considered at this level, because this is a responsibility of
the SP. Additionally, it assumes stateless services. Therefore,
no transaction/check pointing mechanism is needed to handle
recovery of services execution upon failures.

However, the engine does not actuate directly. It notifies
holistic management components that corrective actions are
needed, suggesting what these actions can be. The acceptance
of those suggestions and the details of how to carry out
necessary actions are left to those higher-level components.
In particular, this is the role of Cloud Manager (CM), which
decides at global level about fault tolerance recommendations,
whether to accept them or not, and if accepted, where to
restart/migrate the virtual machine (i.e. in the provider’s local
infrastructure or bursting it to an external provider). This
decision is taken aiming to fulfil the BLOs of the IP, as
described in Section IV-C.

A. Reactive Fault Tolerance

To detect the failure of VMs, the engine periodically checks
if they are online by pinging them. When a VM does not
respond, the engine checks also its CPU consumption and its
state. When a VM failure is detected, the CM is asked to
restart the failing VM. To detect the failure of physical hosts,
the engine periodically checks if they are online by pinging
them. If any physical resource does not respond within a given
time, it is considered to be down, and the CM is asked to restart
the VMs running in that host in other hosts.

B. Proactive Fault Tolerance

Besides this reactive behaviour, the engine is also able
to anticipate failures in a proactive way. This is done is
collaboration with the risk assessor described previously. The
Fault Tolerance Engine can configure the risk assessor with
the aim to receive proactive notifications when the risk level
of VM or host failure is above a given threshold. The rationale
used to set this risk level is two-fold. On one side, it can be set
for all the VMs running in the provider and for all its physical
hosts if the provider’s business strategy includes a risk level
constraint or an aim to optimize the overall risk level during
its operation. On the other side, it can be set individually for
the VMs composing a specific service, if a risk level constraint
has been specified in the service manifest [2].

Once the engine receives an alert from risk assessor that
a physical host is going likely to fail, it informs the CM
about this situation by suggesting the migration of all the VMs
running in that host to other hosts. If the engine is alerted of a
potential VM failure, the process is the same than the reactive
behaviour: that is ask the CM to restart that VM.
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C. Holistic Management

This section describes how CM decides about fault toler-
ance recommendations coming from FTE, namely whether to
accept them or not, and if accepted, where to restart/migrate
the virtual machine. The algorithm is based on multi-faceted
management and considers four high-level facets of the IP,
namely Trust level, Risk level, Eco-efficiency, and Cost. Using
high-level facets allows an easily alignment with the provider’s
BLOs. The IP’s administrator can specify the provider’s inter-
ests through the definition of these BLOs, which can include a
high-level facet to optimize and a number of constraints over
these high-level facets. For instance, minimize the risk level
while keeping the cost under a given value.

When CM receives a request from the engine to restart
or migrate a VM, it builds four vectors (one for each high-
level facet) of size 3, where each cell represents the forecast
of the overall trust, risk, eco-efficiency, or cost for the IP
for a corresponding action, namely reject the suggestion to
restart/migrate the VM, accept this suggestion and deploy the
new VM in the local infrastructure of the IP, and accept
the suggestion and burst the VM to another IP. One vector
corresponds to the objective function defined in the BLOs and
all of them can be used to check constraints by eliminating
values over/below the threshold in the respective vector. The
goal is to select the allocation that max/minimizes the objective
function in the first vector and fulfils the constraints in the rest.

V. EVALUATION

Our approach for fault-tolerant IP operation has been
evaluated by means of a synthetic 24-hour web workload,
with a peak of workload during afternoon and an off-peak
during late night. In between the peak and off-peak phases,
there are intermediate workloads. The statistical description of
the workload is as follows. The average service deployment
frequency is 1 service every minute during peak and 1 service
every 10 minutes during off-peak. The running time of the
services follows a Normal distribution, where mean is 6
minutes and standard deviation is 5 minutes, with a maximum
of 30 minutes. The number of VMs per service follows also
a Normal distribution, where mean is 1 VM and standard
deviation is 2 VMs, with a maximum of 4 VMs.

To have statistically sound data, we have evaluated an
environment with a high rate of failures. This rate is unrealistic
compared to usual IP operation, but it may reflect some
situations such as general outages. Two types of failures
have been considered: VM failure and host failure. Using the
Reactive mode, after a VM failure, the VM can be restarted for
getting it operational after some seconds or minutes. When a
physical host fails, the VMs that are running there are restarted
in another host, if there is enough capacity. Otherwise, VMs
are restarted in the host that crashed after it gets restarted. The
Proactive mode can restart VMs or migrate VMs before the
actual failures occur. The placement of the VMs is decided by
the VM Manager component, that is configured in the same
mode as CM (Energy Efficiency Maximization or Risk Mini-
mization) and, depending on the configuration, will distribute
or consolidate the deployed VMs.

We have compared the same workload in a testbed of 4
nodes with 32 CPUs each node. As shown in Table I, for

each evaluation, different configurations have been considered
for Cloud Manager (CM) and Fault Tolerance Engine (FTE).
CM can work in energy efficiency maximization or in risk
minimization mode. FTE can be configured in reactive mode
(only notifies after VMs or nodes fail), proactive mode with a
low risk threshold (notifies CM when the probability of VM
or node failure is 50%), proactive mode with a medium risk
threshold (probability of failure is 70%), or proactive mode
with a high risk threshold (probability of failure is 90%).

In our experiments, we evaluate 3 metrics. a) Availability:
the amount of time in which the VM runs the services and
they are available to the client. We consider that the VM is
not available when it (or the host running it) has crashed, or
when the VM is being restarted, or migrated. b) IP risk level
calculated using the IP failure risk model. c) IP energy effi-
ciency, measured as a percentage. 100% means that the nodes
that are switched on are using all their CPUs. Nodes without
workload are switched off, and they will automatically switch
on when the running nodes do not have enough resources for
the incoming requests. 0% would mean that all the nodes are
switched on and there are no running tasks.

CM mode FTE mode Avail. Risk Energy Eff.
Risk Min Reactive 84% 3.5 30%
Risk Min Proactive (low) 81% 4.2 37%
Risk Min Proactive (medium) 89% 3.4 26%
Risk Min Proactive (high) 94% 3.6 28%
EE Max Reactive 79% 5.8 60%
EE Max Proactive (low) 81% 5.6 55%
EE Max Proactive (medium) 86% 5.7 54%
EE Max Proactive (high) 88% 5.5 54%

TABLE I: Results of the fault tolerance experiments

Table I shows how Risk Min policies provide better % of
VM availability, since they tend to distribute the workload and
minimize the probability of errors due to resources overload.
For proactive mode, the higher the threshold, the higher the %
of availability. This is because a low threshold would trigger
migration actions prematurely and, since the VM is unavailable
during migration, more migrations will entail less availability.
That explains that reactive mode provides more availability
than proactive mode with low threshold.

EE Max policies provide lower % of availability because
they tend to consolidate all the workloads in the nodes, and this
increases the probability of failure due to overload. Reactive
mode only restarts VMs when they fail, there are no preventive
actions to avoid VMs to be unavailable when Risk Assessor
detects that a physical node is about to fail. Proactive mode is
able to increase the % of availability because it can anticipate
the host failures and migrate many VMs when possible.

As expected, EE Max policies provide better energy ef-
ficiency. However, proactive mode actually decreases energy
efficiency when compared with reactive mode. This is because
proactive mode tends to distribute VMs when the risk of
failure is high to improve the availability, which reduces the
consolidation. It is important to remember the main goal of
fault-tolerant IP operation is to avoid the maximum number of
failures, so this behavior is compliant with this goal.

Note that proactive Risk Min with low threshold provides
higher energy efficiency than its other Risk Min counterparts
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Fig. 1: IP risk during off-peak hours using EE Max

Fig. 2: IP risk during peak hours using EE Max

because it favours the consolidation of VMs when they are
migrated from a node that is about to fail to other nodes that
already host running VMs. The consolidation caused by the
migrations is also increasing the risk of failure. In any case,
Risk Min policies provide lower risk than EE Max ones.

The effectiveness of the policies is different depending on
the overall load of the physical hosts. This can be appreciated
in the following figures. Note that proactive mode in the figures
refer to the version with medium threshold. In particular, as
shown in Fig. 2, the difference in terms of risk between
proactive and reactive modes for EE Max is minimum during
peak hours because of the overload of hosts, that minimize the
possibilities of redistributing VMs for consolidating them. As
shown in Fig. 1, during off-peak hours the higher risk level for
proactive mode must be considered a proof of the effectiveness
of such policy: the consolidation of VMs is always at its
maximum possible. Fig. 3 and Fig. 4 show that Risk Min
policies have similar results in terms of risk in both proactive
and reactive modes (the important fact is that proactive mode
helps increasing the availability rate, as explained later).

In terms of energy efficiency, Fig. 5 and Fig. 6 show that
proactive mode of EE Max policies provides lower energy ef-

Fig. 3: IP risk during off-peak hours using Risk Min

Fig. 4: IP risk during peak hours using Risk Min

Fig. 5: Energy efficiency during off-peak hours using EE Max

ficiency, as mentioned previously. Both reactive and proactive
modes are more stable during off-peak hours with respect to
peak hours because there are less deployments and failures, so
FTE is triggered less frequently. A similar behaviour can be
observed in Fig. 7 and Fig. 8, but with a lower rate of energy
efficiency caused by Risk Min policies.

VM availability over time is measured with a sample every
20 minutes, which denotes the average availability of all the
VMs deployed in the system during this period. According
to this, peak hours correspond to samples 30:50 and off-peak
to samples 0:30 and 50:80. Fig. 9 and Fig. 10 show that, as
opposite to energy efficiency and risk, the availability of the
VMs is kept stable during the whole experiment especially for
Risk Min in proactive mode, both in off-peak and peak hours.

VI. CONCLUSION

The management of Cloud Infrastructures in order to
improve the delivery of BLOs such as cost and eco-efficiency
needs the development of sensitive tools to link business
objectives with the management of the infrastructure. By using
risk-driven proactive/reactive fault tolerance mechanisms this
paper has illustrated a novel approach to deliver a greater level
of holistic management in the Cloud. This has produced results
that show generally increased availability of VMs. However,
by lowering the threshold on proactive risk the availability
is decreased as more VM migrations take place. Increases in
energy efficiency have also been observed using a proactive
risk approach due to greater VM consolidation occurring. In
terms of future work we will improve the identification of
vulnerabilities and threats, adding also a formal validation of
the risk forecasting methods. We will also make experiments
in a live Cloud testbed.

Acknowledgment. This work is supported by the European
Commission under FP7-ICT-2009-5 contract 257115 (OPTI-
MIS), by the Ministry of Science and Technology of Spain

431



Fig. 6: Energy efficiency during peak hours using EE Max

Fig. 7: Energy efficiency during off-peak hours using Risk Min
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