
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Decision Support for the Migration of the Application
Database Layer to the Cloud

Steve Strauch, Vasilios Andrikopoulos, Thomas Bachmann, Dimka Karastoyanova,
Stephan Passow, and Karolina Vukojevic-Haupt

© 2013 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{StrauchABKPV2013,
 author = {Steve Strauch, Vasilios Andrikopoulos, Thomas Bachmann, Dimka
 Karastoyanova, Stephan Passow, Karolina Vukojevic-Haupt},
 title = {Decision Support for the Migration of the Application Database
 Layer to the Cloud},
 booktitle = {Proceedings of the 5th IEEE International Conference on Cloud
 Computing Technology and Science, CloudCom 2013,
 2-5 December 2013, Bristol, UK},
 year = {2013},
 pages = {639--646},
 publisher = {IEEE Computer Society},
 doi = {10.1109/CloudCom.2013.90}
}

:

Institute of Architecture of Application Systems

Decision Support for the Migration of the Application Database Layer to the Cloud

Steve Strauch, Vasilios Andrikopoulos, Thomas Bachmann, Dimka Karastoyanova, Stephan Passow, Karolina Vukojevic-Haupt

Institute of Architecture of Application Systems (IAAS),
University of Stuttgart, Stuttgart, Germany
{firstname.lastname}@iaas.uni-stuttgart.de

Abstract—Migrating an existing application to the Cloud is
a complex and multi-dimensional problem requiring in many
cases adapting the application in significant ways. Looking
specifically into the database layer of the application, i.e. the
aspect providing data persistence and manipulation capabilities,
this involves dealing with differences in the granularity of inter-
actions, refactoring of the application to cope with remote data
sources, and addressing data confidentiality concerns. Toward
this goal, in this work we present an application migration
methodology which incorporates these aspects, and a decision
support, application refactoring and data migration tool that
assists application developers in realizing this methodology. For
purposes of evaluating our proposal we present the results of
a case study conducted in the context of an eScience project.

Keywords-Data Migration, Decision Support, Database layer,
Application Refactoring

I. INTRODUCTION

The popularity of Cloud computing due to the promised

reduction of capital expenses and the virtually infinite

resource capacity [1] has motivated many application de-

velopers to Cloud-enable their applications, i.e. to migrate

them to the Cloud. Cloud service providers like Amazon

Web Services report a plethora of successful migrations of

applications to their services1. Furthermore, the introduction

of new Platform and Software as a Service (PaaS and SaaS,

respectively) solutions complements successfully the already

dominant Infrastructure as a Service (IaaS) model. Together,

these service delivery models offer multiple options in the

migration of one or more functional components of an

existing application to potentially multiple service providers,

resulting in different types of migration [2]. Supporting the

decision on whether and how to migrate an application

becomes in this manner a multi-dimensional problem with

multiple decisions that need to be made [3].

In order therefore to scope the discussion, we focus

this work on the migration of the database layer of the

application, i.e. the data persistence and data manipulation

aspect of the application [4]. In this context, and depending

on the intention, direction and temporality of the migration,

different scenarios can be realized. In [5], for example, the

authors identify ten distinct migration scenarios ranging from

complete outsourcing of the data to a Cloud hosting solution,

1AWS Case Studies: https://aws.amazon.com/solutions/case-studies/

to temporal replication of the local database in the Cloud to

cope with increased demand (Cloud bursting).
Data hosting solutions may also differ significantly with

respect to the interaction of the application with the data

store [2]. There can be either fine grained interactions using

e.g. SQL to execute operations on a migrated database, or

coarse grained interactions through pre-defined service APIs.

Furthermore, as discussed extensively in [2], migration may

result in the need to adapt the application, even in the case of

“simply” moving a database to a VM in the Cloud. Beyond

re-wiring of the application to access remote data, significant

changes to the application logic may be required due to

incompatibilities and performance concerns. In addition to

potential application refactoring, data confidentiality needs

to be considered when data are moved to the Cloud.
Migrating the database layer of an application to the

Cloud requires therefore to consider a number of aspects

when selecting which (public) Cloud data hosting solution

to use. Additional support has also to be provided to the

application developers in the case that application adaptations

are unavoidable for the preferred solution. Our fundamental

assumption in this case is that the decision to migrate

the database layer to the Cloud has already been taken.

Thus, we do not consider aspects like pricing and business

resiliency [2].
The contributions of this work addressing these concerns

can be summarized by the following:

• An application migration methodology geared towards

the database layer;

• A decision support and migration tool that supports

users in realizing this methodology; and

• An evaluation of the proposed methodology and tool

based on a case study performed in the context of an

eScience project.

The remainder of this paper is structured as follows:

Section II discusses the requirements for the migration of a

database layer to the Cloud, and our proposal for a step-by-

step methodology that addresses them. Section III presents

the Cloud Data Migration Tool, a decision support and

application refactoring tool that is used for the realization

of this methodology. The proposed methodology and tool

are used for evaluation purposes during the migration of an

existing eScience-related system to the Cloud. The structure

2013 IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-5095-4/13 $31.00 © 2013 IEEE

DOI 10.1109/CloudCom.2013.90

639

and results of this evaluation are presented in Section IV.

Related work is summarized in Section V. The paper

concludes in Section VI, discussing also future work.

II. METHODOLOGY

In this section we introduce a step-by-step methodology

for the migration of the database layer to the Cloud and

the refactoring of the application architecture. Before we

introduce the methodology, we investigate the requirements

to be fulfilled by such a methodology.

A. Requirements

The presented functional and non-functional requirements

have been identified during our work in various research

projects, and especially during our collaboration with industry

partners and IT specialists from the eScience domain. In

particular:

Functional requirements: The following functional require-

ments must be fulfilled by any methodology for migration

of the database layer to the Cloud and refactoring of the

application architecture:

FR1 Support of Data Stores and Data Services: The method-

ology must support the data migration for both fine-

and coarse-grained types of interactions, e.g. through

SQL and service APIs, respectively.

FR2 On-premise and Off-premise Support: The methodology

has to support data stores and data services that are

either hosted on-premise or off-premise, and using both

Cloud and non-Cloud technologies.

FR3 Independence from Database Technology: The method-

ology has to support both established relational

database management systems [6] and NoSQL data

stores [7] that have emerged in recent years.

FR4 Management and Configuration: Any tool supporting

such a methodology must provide management and

configuration capabilities for data stores, data services,

and migration projects for the documentation of the

decisions and actions taken during migration. This

includes, for example, the registration of a new data

store, including its configuration data, e.g. database

schemas, database system endpoint URLs, etc.

FR5 Support for Incompatibility Identification and Resolu-
tion: Any potential incompatibilities, e.g. between SQL

versions supported by different data services, must be

identified, and guidance must be provided on how to

overcome them.

FR6 Support for Various Migration Scenarios: As the data

migration depends on the context and the concrete use

case, the methodology has to support various migration

scenarios, e.g. outsourcing, backup, archiving.

FR7 Support for Refactoring of the Application Architec-
ture: The amount of refactoring of the application

architecture during the migration of the database layer

to the Cloud depends on many aspects, such as the

supported functionalities of the target data store or data

service, use case, etc. It is therefore required that the

methodology provides guidance and recommendations

on how to refactor the application architecture.

Non-functional requirements: In addition to the required

functionalities, a methodology for migration of the database

layer to the Cloud and refactoring of the application archi-

tecture should also respect the following properties:

NFR1 Security: Both data export from a source data store,

and data import to a target data store require confiden-

tial information such as data store location and access

credentials. Any tool supporting the methodology

should therefore consider necessary authorization, au-

thentication, integrity, and confidentiality mechanisms

and enforce user-wide security policies when required.

NFR2 Reusability: As the migration of data can be either

seen as the migration of only the database layer or

as part of the migration of the whole application,

the methodology has to be reusable with respect to

the integration into a methodology for migration of

the whole application to the Cloud, such as the one

proposed by Varia for Amazon [8].

NFR3 Extensibility: The methodology should be extensible

to incorporate further aspects that impact the data

migration to the Cloud, such as regulatory compliance.

For example, in the US the Cloud service provider is

responsible to ensure compliance to regulations, but in

the EU it is the Cloud customer that is ultimately

responsible for investigating whether the provider

realizes the Data Protection Directive [9].

B. Migration Methodology

The step-by-step methodology we introduce in this section

refines and adapts the migration methodology proposed

by Laszewski and Nauduri [10] in order to address the

identified requirements. The methodology in [10] consists

of seven distinct phases (Fig. 1): in Assessment, information

relevant for project management such as migration tools and

migration options is collected in order to assess the impact

of the database migration. Analysis and Design investigates

the implementation details on the target database, e.g.

potentially different data types and transaction management

mechanisms being used, and creates a plan to overcome such

incompatibilities. Migration deals with the migration of the

data from the source data store to the target data store in

a testing environment. After migration, both the database

and the application have to be tested in the Test phase;

this includes tasks such as data verification. Any necessary

optimizations based on the new target store are applied during

Optimization. Finally, the goal of the Deployment phase is

to deploy the final system, including actually migrating the

database, to the production environment.

At first glance, the methodology of Laszewski and Nauduri

addresses most of the identified requirements. However, it

640

Assessment

Analysis &
Design

Migration

Test

Optimization

Deployment

Support

Legend

Phases refined and adapted

Phases not addressed

Figure 1. Migration Methodology as proposed by [10], with supported
phases highlighted

Assessment

Analysis�&�Design

Migration\Deployment\Support

Select�Migration�
Scenario

Describe�Desired�
Cloud�Data�

Hosting�Solution

Select�Cloud�Data�
Store�or�Data�

Service

Describe�Source�
Data�Store�or�Data�

Service

Identify�Patterns�
to�Solve�Potential�

Migration�
Conflicts

Refactor�
Application�
Architecture

Migrate�Data

Figure 2. Methodology for migration of the database layer to the Cloud
and refactoring of the application architecture

discusses its phases on a very high level, requiring further

refinements in practice. Furthermore, it fails to satisfy some

of the most important requirements that we identified. For

example, it only supports Oracle solutions as target data

stores (FR1), no NoSQL support is provided (FR3), and it

is limited to the pure outsourcing of the database layer to

the Cloud scenario (FR6).

Addressing these deficiencies, in the following we propose

a vendor- and database technology-independent step-by-step

methodology which refines and adapts the one proposed

in [10]. Figure 2 provides an overview of our proposal

consisting of seven steps. All steps are semi-automatic,

in the sense that a human (e.g. the application developer

in charge of the migration) has to provide input and

follow the recommendations and guidelines provided by the

methodology. Figure 2 also shows the mapping between the

proposed methodology and the one in [10]. As it can be

seen, no direct support for the Test and Optimization phases

is provided by our proposal since there are no identified

requirements explicitly requiring these phases. The impact

of not supporting these phases is evaluated in Section IV.

The first step in our proposed methodology is the selection
of the migration scenario. For this purpose, we use the ten

Cloud Data Migration Scenarios identified in [5]: database

layer outsourcing, using highly-scalable data stores, geo-

graphical replication, sharding, Cloud bursting, working on

data copy, data synchronization, backup, archiving, and data

import from the Cloud (FR6). These migration scenarios

cover both migration directions between on-premise and

off-premise (FR2). Based on the selection of the migration

scenario, a migration strategy is formulated by considering

properties such as live or non-live migration, complete or

partial migration, and permanent or temporary migration to

the Cloud. During this step potential conflicts between the

migration scenario selected and the refined migration strategy

should be explicitly addressed by proposing solutions to the

user, e.g. the choice of a different migration scenario. An

example of a conflict is the selection of the migration scenario

Cloud bursting and the choice of a permanent migration to

the Cloud in the strategy. The purpose of this migration

scenario is by definition to migrate the database layer to

the Cloud in order to cover peak loads and migrate it back

afterwards; choosing therefore permanent migration as part

of the strategy cannot be satisfied.

The specification of functional and non-functional require-

ments with respect to the target data store or data service is

the focus of the second step, Describe Desired Cloud Data
Hosting Solution. We define Cloud Data Hosting Solution
as the concrete configuration of a Cloud data store or Cloud

data service in terms of a set of concrete functional and non-

functional properties (FR1). Examples for such properties

are transaction support, e.g. ACID characteristics of the

data store, and the consistency model supported, e.g. strong

or eventual consistency [11]. These categories cover both

relational and NoSQL solutions (FR3, FR5).

The concrete target data store or data service for the

migration is selected in step three by mapping the properties

of the Cloud Data Hosting Solution specified in the previous

step to the set of available data stores and data services

that have been categorized according to the same non-

functional and functional properties. Implementing this step

requires data stores and data services to be previously

specified according to the set of functional and non-functional

properties either directly by the Cloud providers, or by the

users of the methodology. The management and configuration

capabilities can also be used at a later time to include new

Cloud data stores and data services (FR4).

As it is not sufficient to consider only where the data

has to be migrated to, in step four the functional and non-
functional properties of the source data store or data service
are also described in order to identify and solve potential

migration conflicts, e.g. the database technology used, or

whether the location is on-premise or off-premise (FR5).

641

The usage of Cloud technology leads to challenges such as

incompatibilities with the database layer previously used or

the accidental disclosing of critical data, e.g. by moving them

to the Public Cloud. Incompatibilities in the database layer

may refer to inconsistencies between the functionalities of an

existing traditional database layer and the characteristics of

an equivalent Cloud Data Hosting Solution. Therefore, in the

fifth step conflicts are identified by checking the compatibility

of the properties of the target data store selected in step

three with the properties of the source data store or service

used before the migration (FR5). As a way to address these

conflicts we apply a set of Cloud Data Patterns, defined in

our previous work [12], as the best practices to deal with

them.

Since the migration of the database layer also has an impact

on the remaining application layers (presentation and business

logic [4]), the methodology should also provide guidelines

and hints on what to be considered for the refactoring of the

application. Special focus should be given on the adaptation

of the network, the data access layer, and the business

logic layer of the application, depending on the outcomes

of the previous steps (FR7). Networking adaptation might

require for example the reconfiguration of open ports in

the enterprise firewall. Although the Cloud data store might

be fully compatible with the data store previously used, the

migration requires at least a change to the database connection

string in the data access layer. The impact of the database

layer migration to the Cloud on the business logic layer

depends on several aspects, such as the migration scenario

and the incompatibilities of the source and target data store.

In case of switching from a relational database to a NoSQL

data service, the business logic needs to be significantly

adapted as the characteristics of these two technologies are

different for example with respect to transaction support,

relational database schema vs. schema-free or schema-less

NoSQL solution, and Quality of Services [7].

The final step, migrating the data, entails the configuration

of the connections to the source and target data stores or

services by requiring from the user information about the lo-

cation, credentials, etc. This step should also provide adapters
for the corresponding source and target stores, bridging

possible incompatibilities between them, and/or reuse of the

data export and import tools offered by the different Cloud

providers. Since this step deals with potentially confidential

information, in order to prevent other users from accessing

these data, a supporting tool has to guarantee the required

security properties (NFR1).

III. REALIZATION

In this section we introduce the realization of a Cloud
Data Migration Tool for the migration of the database

layer to the Cloud and the refactoring of the application

architecture. More specifically, in order to support the

proposed methodology, the Cloud Data Migration Tool

Figure 3. Screen shot of the realization of the Cloud Data Migration Tool

provides two main functionalities. On the one hand it

provides a repository for Cloud data stores and Cloud

data services and allows browsing through it, even without

user registration. Additionally, it implements the required

management functionality to add new entries in the repository

by specifying their functional and non-functional properties.

On the other hand, the tool guides the user through the first

six steps of the proposed methodology through a decision

support system. For the last step of migrating the data, the

tool is equipped with adapters that allow the automatic export

of data from the source data store and their import in the

target data store. Currently the tool has source adapters

for PostgreSQL2 and Oracle MySQL3. We provide target

adapters for a number of Cloud Data Stores and Data Services

like Amazon RDS4 and 10gen MongoDB5. In addition to

the adapters, the user is also referred to various guidelines

and tutorials provided by the different Cloud providers, like

e.g. [13]. This is especially useful if no appropriate adapter

is available for a particular data store or service.

Figure 3 provides an overview of the main page of the

Cloud Data Migration Tool publicly available for free use6.

As the user has to provide confidential data following the

guidelines and recommendations of the tool, e.g. access

credentials to the source and target data stores or services

for data export and import in the last step, he has to register

with user, password, and e-mail address. After a migration

project is finalized, the user can print a report of the decisions

made during the migration, the identified conflicts and their

2PostgreSQL: http://www.postgresql.org
3Oracle MySQL: http://www.mysql.com
4Amazon Relational Database Service: http://aws.amazon.com/rds/
510gen MongoDB: http://www.mongodb.org
6Cloud Data Migration Tool: http://www.cloud-data-migration.com

642

resolutions for the purpose of documentation and support.

Currently, we are supporting the migration from one source

data store to one target data store or service and one migration

project has to be created per migration. Extending the tool

in order to support more than one target data stores per

migration project is ongoing work.

The Cloud Data Migration Tool is realized as a Java 6

Web application and follows a three layer architecture. The

presentation layer is realized using HTML, JavaScript, JSP,

and CSS. The business logic layer is implemented in Java.

For the object-relational mapping we use Java Data Objects

version 3.1 and its implementation DataNucleus version 3.07.

For online hosting of the tool we use Google Cloud SQL

as the data layer and run the whole application in Google’s

App Engine. A stand-alone, offline version of the tool also

exists, allowing the user to run the tool locally. In this case

MySQL 5.5 is used for the data layer and Apache Tomcat

version 7 as the servlet container. Further information is

available on the Web site of the Cloud Data Migration Tool

http://www.cloud-data-migration.com.

IV. EVALUATION

For purposes of evaluating the proposed methodology and

the Cloud Data Migration Tool, we conducted a case study in

the eScience field using an integrated and interactive Scien-

tific Workflow Management System (SWfMS) developed in

the context of the SimTech project [14], [15]. This SWfMS

is based on conventional workflow technology adapted to

the needs of scientific workflows and implemented as a

distributed system. Its main components are: a modeling and

monitoring tool, a workflow engine, an auditing system, a

messaging system, several database management systems,

and an application server running simulation services. The

actual workflow, which serves as an example for our case

study, models a Kinetic Monte Carlo Simulation (KMS) for

solid bodies by orchestrating several Web services. These

Web services are implemented by modules of the OPAL

application [16]. During their operation, the OPAL Web

services access a MySQL database which is to be migrated

to the Cloud.

More specifically, the case study itself consists of the

temporary migration of the database layer of the OPAL Web

services to the Cloud. The selected use case can therefore

be mapped to the migration scenario Cloud Bursting [5],

with Amazon RDS as the migration target. To properly

execute and document our case study, we used the seven-

step improvement process that is typically followed by the

Continual Service Improvement (CSI) module of the IT
Infrastructure Library (ITIL) [17]. The goal of this process is

to identify weaknesses of IT services and to derive possible

improvements. A simplified representation of this process is

shown in Fig. 4.

7DataNucleus: http://www.datanucleus.org

Step 1
Identify the strategy
for improvement

Step 6
Present and use the
information

Step 7
Implement
improvement

Step 2
Define what you will
measure

Step 3
Gather the data

Step 4
Process the data

Step 5
Analyze the
information and data

Wisdom

Knowledge Information

Data

DO

CHECK

ACT

PLAN

Figure 4. CSI seven-step process used for the evaluation (adapted from
[17])

In the first step, a strategy for the realization of the process

is determined. In this case, our strategy is to use the Cloud

Data Migration Tool discussed in the previous section in

conjunction with a specific migration scenario, and investigate

whether it supports the scenario in an effective and efficient

manner. In the second step, the data to be collected needs

to be defined. These data are the basis for the subsequent

process steps. In our evaluation we collected both qualitative

and quantitative data. With respect to the former, we recorded

the user-identified problems that occured during the execution

of the SimTech SWfMS migration as the means to evaluate

the software quality of the Cloud Data Migration Tool. Such

problems are gathered only in a qualitative manner, i.e. we

are not interested in the number of occurred errors, but

in a comprehensive description and classification of these

problems. This approach increases the effort to gather the

data, but on the other hand enables a more detailed and

potentially more meaningful analysis. In terms of quantitative

data, we recorded the time required for executing the various

migration phases. In order to be able to compare our proposal

with the one in [10], we chose to use the phases of the latter

as the metric of the efficiency of our approach. In this manner,

we can attribute time elapsed to higher-level activities, in

addition to evaluating the impact of not incorporating the

testing and optimization phases in our proposal.

To enable a structured gathering and recording of occurring

problems we have defined a set of attributes related to

them. Table I shows an example of such a problem that

was identified during our evaluation, and the information

we collected for it. Every problem has a unique identifier

(ID) and a descriptive Name. The attribute Class is used to

classify the problem in predefined categories. We derived

these categories from ISO/ICE 9126-1, which defines a

quality model for software by subdividing software quality in

different characteristics and sub-characteristics [18]. In our

evaluation we focus on the characteristics functionality and

usability of the examined tool, and in particular on the sub-

characteristics suitability (for the former), and understand-

643

Table I
DOCUMENTATION OF AN IDENTIFIED PROBLEM

ID B7

Name Connection failed

Class Tool (operability)

Severity High

Description Although correct users with the required administra-
tive roles existed in the MySQL database in the Cloud,
the application could not connect to the database.

Error Handling We were going through all the security (user and
privilege) settings in the MySQL Workbench.

Solution We set max queries, max updates, max connections
to a value greater than zero for each user.

Adaptation The user should get information about the limitations
for the different accounts (users).

ability and operability (for the latter). The problem identified

in Table I, for example, is classified under the operability sub-

characteristic of usability. The attribute Severity describes the

severity of the problem impact on the migration result. The

allowed values are low, middle, high, or critical. The attribute

Description stands for a detailed description of a problem.

Error Handling describes how the user has proceeded to find

a solution for the occurred problem and Solution describes

how the problem was fixed. To eliminate the cause of the

problem, adaptations of the tool may be needed; these are

described by the attribute Adaptation.

In the third step the actual gathering of data is performed.

Using the Cloud Data Migration Tool, we migrated the

database layer used by the OPAL Web services (i.e. the My

SQL DB)to the Cloud (i.e. Amazon RDS). Throughout all

phases of the migration we recorded any occurring problems,

following the example in Table I. In addition, we measured

the time spent per migration phase supported by our step-

by-step methodology (i.e. Assessment, Analysis & Design,

and Migration, Deployment & Support), as well as the time

spent on testing. No optimization activity was implemented

as part of the case study.

In the fourth step, the previously gathered data are pro-

cessed in order to organize and structure for further analysis.

As we have already gathered the data in a structured and

uniform manner (as described in step 2), further processing

is not necessary.

In the fifth step, the analysis of the gathered and processed

data takes place. Altogether we have recorded seven problems.

Five of the recorded problems have a high priority; the

remaining two have a middle priority. Two of the occurred

problems are due to bugs in the graphical user interface of

the tool - one with middle and one with high priority. Two

problems were caused by missing features, also one with

middle and one with high priority. The rest of the problems,

all with high priority, were caused by lack of appropriate

information available to the user, as in the example of Table I.

The analysis of the identified problems with respect to their

10%
10%

50%

30%

Assessment

Analysis�&�Design

Test

Migration,
Deployment�&
Support

Figure 5. Quantitative data: amount of time spent per migration phase

priority and the cause of the problems shows that the main

weakness of the Cloud Data Migration Tool is a lack of

information provided to the user. Further improvements

toward this direction are therefore required in the future.

The analysis of the time spent per migration phase is

summarized Fig. 5, which shows that half of the time was

actually spent in the Test phase, which, as explained in

Section II, is not directly supported by our methodology

(and therefore also not by the Cloud Data Migration Tool).

While this identifies a deficiency in our proposal, it can also

be attributed at least in part to the acceleration of the other

phases by the use of the Cloud Data Migration Tool. In any

case, what can be identified is a clear need to incorporate

the remaining two phases (Test and Optimization) in our

methodology, and consequently their support in the Cloud

Data Migration Tool.

Finally, for the implementation of steps six and seven of

the ITIL CSI process (presentation and use of the information,

and implement improvements, respectively), we are currently

in the process of incorporating the lessons learned by this

case study in further research work.

V. RELATED WORK

With respect to vendor-specific methodologies for applica-

tion migration, Amazon proposes a phase-driven approach

for migration of an application to their Cloud infrastructure

consisting of six phases [8]. The data migration phase is

subdivided into a selection of the concrete Amazon AWS

service and the actual migration of the data. Amazon also

provides recommendations regarding which of their data and

storage services best fit for storing a specific type of data, e.g.

Amazon Simple Storage Service8 is ideal for storing large

write-once, read-many types of objects. As the methodology

proposed by Amazon focuses on Amazon AWS data and

storage services only, we abstract from this methodology

and integrate the guidelines in our proposal. Furthermore,

as discussed in Section II, Laszewski and Nauduri also

propose a vendor-specific methodology for the migration

8Amazon S3: http://aws.amazon.com/s3/

644

to Oracle products and services by providing a detailed

methodology, guidelines, and recommendations focusing on

relational databases [10]. We base our proposal on their

methodology, by refining and extending it.

In addition to several product specific guidelines and

recommendations [19], [20], Microsoft provides a Windows

Azure SQL Database Migration Wizard9 and the synchro-

nization service Windows Azure SQL Data Sync10. Google

is offering the tool Bulk Loader, which supports both the

import of CSV and XML files into the App Engine Data

Store and the export as CSV, XML, or text files11. The

potentially required transformations of the data during the

import are customizable in configuration files. In addition,

Google supports the user when choosing the appropriate data

store or service and during its configuration [21]. Moreover,

they provide guidelines to migrate the whole application to

Google App Engine [22]. Salesforce provides data import

support to their infrastructure via a Web UI or the desktop

application Apex Data Loader12. Another option to migrate

and integrate with Cloud providers such as Salesforce is to

hire external companies that are specialized on migration and

integration such as Informatica Cloud13. In addition to the

tools or external support, Salesforce provides data migration

guidelines [23]. All these guidelines were considered for

the proposed methodology, and links to many of the offered

tools are incorporated as recommendations in the Cloud Data

Migration Tool.

Apart from the vendor specific migration methodologies

and guidelines there are also proposals independent from

a specific Cloud provider. Reddy and Kumar propose a

methodology for data migration that consists of the following

phases: design, extraction, cleansing, import, and verification.

Moreover, they categorize data migration into storage mi-

gration, database migration, application migration, business

process migration, and digital data retention [24]. In our

proposal we focus on the storage and database migration as

we address the database layer. Morris specifies four golden

rules of data migration with the conclusion that the IT staff

does not often know about the semantics of the data to be

migrated, which causes a lot of overhead effort [25]. With

our proposed step-by-step methodology, we provide detailed

support for both data migration and required application

refactoring in order to minimize this overhead.

In the area of Decision Support Systems (DSS) for Cloud

computing, Khajeh-Hosseini et al. introduce two tools that

support the user when migrating an application to IaaS Cloud

services [26]. The first one enables the cost estimation based

9Windows Azure SQL Migration Wizard: http://sqlazuremw.codeplex.
com/

10Windows Azure SQL Data Sync: http://www.windowsazure.com/en-us/
manage/services/sql-databases/getting-started-w-sql-data-sync/

11Bulk Loader: http://bulkloadersample.appspot.com
12Apex Data Loader: http://sforce-app-dl.sourceforge.net
13Informatica Cloud: http://www.informaticacloud.com/

on a UML deployment model of the application in the Cloud.

The second tool helps to identify advantages and potential

risks with respect to the Cloud migration. We do neither

consider the estimation of costs nor the identification of

risks as our assumption is that the decision for migration

to the Cloud has already been taken. We consider aspects

like costs, business resiliency, effort, etc. to be considered

before following our methodology and using the tool [2].

Besides, none of the tools is publicly available. Menzel et al.

developed CloudGenius, a DSS for the selection of an IaaS

Cloud provider focusing on the migration of Web servers to

the Cloud based on virtualization technology [27]. As we

provide support for the migration of the database layer and

refactoring of the application we focus on another type of

middleware technology. Our approach is thus not limited to

a specific Cloud service delivery model and migration by

using virtualization technology.

VI. OUTLOOK AND FUTURE WORK

Supporting the migration of the database layer of an

application to the Cloud involves not only considering

the requirements on the appropriate data source or service

imposed by the application, but also the possible need for

adapting the application in order to cope with incompatibili-

ties. In this work we presented a step-by-step methodology

that considers these two aspects of migration. In order to

construct this methodology, we first identified a series of

functional and non-functional requirements. We then adapted

the methodology discussed in [10] in order to satisfy the

identified requirements, resulting in a 7-step end-to-end

methodology for the migration of the database layer to the

Cloud and for the application refactoring required as part of

this process.

We also presented the realization of our proposal as

a publicly available and free Cloud Data Migration Tool.

The tool provides two fundamental functionalities: decision

support in selecting an appropriate data store or service,

and refactoring support during the actual migration of

the data. Users of the tool can currently create migration

projects, define their requirements on the target data store

or service, describe their current database layer and receive

recommendations, hints and guidelines on where and how to

migrate their data. Conflict resolution is based on previously

identified Cloud Data Patterns and data adapters provided

for the automatic migration of data to recommended data

stores and services. We evaluated our proposal by migrating

a scientific workflow management system to the Cloud. We

showed that while useful, our methodology and tool need

further improvements.

In particular, according to our evaluation, our proposal

needs to be extended in order to provide explicit support for

the migration testing phase. The Cloud Data Migration Tool

must be extended to provide sandboxing capabilities and

both functional testing for bug fixing as well as performance

645

benchmarking tools for different application work loads.

These capabilities can also be used to support the optimiza-

tion of the database layer after its migration. Additional

functionalities that are currently being implemented in the

Cloud Data Migration Tool include addressing the impact of

the migration to compliance, security and data confidentiality,

supporting more than one source and/or target data stores

or services and multiple migrations per project, as well as

increasing the number of adapters available in the tool.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from the EU’s Seventh Framework Programme (FP7/2007-

2013) projects 4CaaSt (grant agreement no. 258862) and

ALLOW Ensembles (grant agreement no. 600792), and from

the German Research Foundation (DFG) within the Cluster

of Excellence in Simulation Technology.

REFERENCES

[1] M. Armbrust et al., “Above the Clouds: A Berkeley View
of Cloud Computing,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009.

[2] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch,
“How to Adapt Applications for the Cloud Environment,” In:
Computing, Springer, vol. 95(6), pp. 493–535, 2013.

[3] V. Andrikopoulos, S. Strauch, and F. Leymann, “Decision Sup-
port for Application Migration to the Cloud,” in Proceedings
of CLOSER’13. SciTePress, May 2013, pp. 149–155.

[4] M. Fowler et al., Patterns of Enterprise Application Architec-
ture. Addison-Wesley Professional, November 2002.

[5] S. Strauch, V. Andrikopoulos, T. Bachmann, and F. Leymann,
“Migrating Application Data to the Cloud Using Cloud Data
Patterns,” in Proceedings of CLOSER’13. SciTePress, 2013,
pp. 36–46.

[6] E. F. Codd, “A Relational Model of Data for Large Shared
Data Banks,” Communications of the ACM, vol. 13, no. 6, pp.
377–387, 1970.

[7] P. J. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide
to the Emerging World of Polyglot Persistence. Addison-
Wesley, 2012.

[8] J. Varia, “Migrating your Existing Applications to the AWS
Cloud. A Phase-driven Approach to Cloud Migration,” 2010.

[9] P. Louridas, “Up in the Air: Moving Your Applications to the
Cloud,” Software, IEEE, vol. 27, no. 4, pp. 6–11, 2010.

[10] T. Laszewski and P. Nauduri, Migrating to the Cloud: Oracle
Client/Server Modernization. Elsevier, 2011.

[11] W. Vogels, “Eventually Consistent,” Commun. ACM, vol. 52,
no. 1, pp. 40–44, 2009.

[12] S. Strauch, V. Andrikopoulos, U. Breitenbücher,
S. Gómez Sáez, O. Kopp, and F. Leymann, “Using
Patterns to Move the Application Data Layer to the Cloud,”
in Proceedings of PATTERNS’13. Xpert Publishing Services
(XPS), 2013, pp. 26–33.

[13] Google, Inc., “Google Cloud SQL – Importing and Ex-
porting Data,” http://developers.google.com/cloud-sql/docs/
import export.

[14] M. Sonntag and D. Karastoyanova, “Next Generation In-
teractive Scientific Experimenting Based on the Workflow
Technology,” in Proceedings of MS’10, 2010, pp. 349–356.

[15] M. Sonntag, M. Hahn, and D. Karastoyanova, “Mayflower -
Explorative Modeling of Scientific Workflows with BPEL,” in
Proceedings of CEUR Workshop’12. Springer, September
2012, pp. 1–5.

[16] M. Sonntag, S. Hotta, D. Karastoyanova, D. Molnar, and
S. Schmauder, “Using Services and Service Compositions
to Enable the Distributed Execution of Legacy Simulation
Applications,” in Towards a Service-Based Internet. Springer,
2011, pp. 242–253.

[17] G. Case and G. Spalding, ITIL Continual Service Improvement.
TSO, The Stationery Office, 2011.

[18] H.-W. Jung, S.-G. Kim, and C.-S. Chung, “Measuring Software
Product Quality: A Survey of ISO/IEC 9126,” Software, IEEE,
vol. 21, no. 5, pp. 88–92, 2004.

[19] Microsoft, “Guidelines and Limitations (Windows Azure
SQL Database),” http://msdn.microsoft.com/en-us/library/
windowsazure/ff394102.aspx.

[20] ——, “Develop and Deploy with Win-
dows Azure SQL Database,” http://social.
technet.microsoft.com/wiki/contents/articles/994.
develop-and-deploy-with-windows-azure-sql-database.aspx.

[21] Google, Inc., “Google App Engine – Uploading and Down-
loading Data,” http://developers.google.com/appengine/docs/
python/tools/uploadingdata?hl=en.

[22] ——, “Google App Engine – Migrating to the High Replica-
tion Datastore,” http://developers.google.com/appengine/docs/
adminconsole/migration.

[23] salesforce.com, Inc., “Salesforce Help – Data Importing
Overview,” http://help.salesforce.com/HTViewHelpDoc?id=
importing.htm&language=en US.

[24] V. G. Reddy and G. S. Kumar, “Cloud Computing With a
Data Migration,” Journal of Current Computer Science and
Technology, vol. 1, no. 06, 2011.

[25] J. Morris, Practical Data Migration, 2nd ed. BCS, The
Chartered Institute for IT, 2012.

[26] A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts, and P. Tere-
gowda, “Decision Support Tools for Cloud Migration in the
Enterprise,” in Proceedings of CLOUD’11. IEEE, 2011, pp.
541–548.

[27] M. Menzel and R. Ranjan, “CloudGenius: Decision Support
for Web Server Cloud Migration,” in Proceedings of WWW’12.
ACM, 2012, pp. 979–988.

All links were last followed on September 19, 2013.

646

	cover-IEEE
	Foliennummer 1

	INPROC-2013-56 - Decision Support for the Migration of the Application Database Layer to the Cloud

