
PARALLEL HIERARCHICAL AFFINITY PROPAGATION WITH

MAPREDUCE

DILLON MARK ROSE, JEAN MICHEL ROULY, RANA HABER, NENAD MIJATOVIC,
AND ADRIAN M. PETER

Abstract. The accelerated evolution and explosion of the Internet and social
media is generating voluminous quantities of data (on zettabyte scales). Para-

mount amongst the desires to manipulate and extract actionable intelligence

from vast big data volumes is the need for scalable, performance-conscious an-
alytics algorithms. To directly address this need, we propose a novel MapRe-

duce implementation of the exemplar-based clustering algorithm known as

Affinity Propagation. Our parallelization strategy extends to the multilevel
Hierarchical Affinity Propagation algorithm and enables tiered aggregation of

unstructured data with minimal free parameters, in principle requiring only a

similarity measure between data points. We detail the linear run-time com-
plexity of our approach, overcoming the limiting quadratic complexity of the

original algorithm. Experimental validation of our clustering methodology on
a variety of synthetic and real data sets (e.g. images and point data) demon-

strates our competitiveness against other state-of-the-art MapReduce cluster-

ing techniques.

1. Introduction

In 2010, big data was growing at 2.5 quintillion [1] bytes per day. This over-
whelming volume, velocity, and variety of data can be attributed to the ubiqui-
tously spread sensors, perpetual streams of user-generated content on the web, and
increased usage of social media platforms—Twitter alone produces 12 terabytes of
tweets every day. The sustained financial health of the world’s leading corpora-
tions is intimately tied to their ability to sift, correlate, and ascertain actionable
intelligence from big data in a timely manner. These immense computational re-
quirements have created a heavy demand for advanced analytics methodologies
which leverage the latest in distributed, fault-tolerant parallel computing architec-
tures. Among a variety of choices, MapReduce has emerged as one of the leading
parallelization strategies, with its adoption rapidly increasing due to the availabil-
ity of robust open source distributions such as Apache Hadoop [2]. In the present
work, we develop a novel MapReduce implementation of a fairly recent clustering
approach [3], and demonstrate its favorable performance for big data analytics.1

Clustering techniques are at the heart of many analytics solutions. They pro-
vide an unsupervised solution to aggregate similar data patterns, which is key to
discovering meaningful insights and latent trends. This becomes even more neces-
sary, but exponentially more difficult, for the big data scenario. Many clustering
solutions rely on user input specifying the number of cluster centers (e.g. K-Means

Key words and phrases. MapReduce, Cluster, Affinity Propagation, Hierarchical Affinity Prop-
agation, Hadoop .

1Implementation available at http://research2.fit.edu/ice/?q=software

1

ar
X

iv
:1

40
3.

73
94

v1
 [

cs
.D

C
]

 2
8

M
ar

 2
01

4

http://research2.fit.edu/ice/?q=software

PARALLEL HIERARCHICAL AFFINITY PROPAGATION WITH MAPREDUCE 2

clustering [4] or Gaussian Mixture Models [5]), and biasedly group the data into
these desired number of categories. Frey et al. [6] introduced an exemplar-based
clustering approach called Affinity Propagation (AP). As an exemplar-based clus-
tering approach, the technique does not seek to find a mean for each cluster center,
instead certain representative data points are selected as the exemplars of the clus-
tered subgroups. The technique is built on a message passing framework where
data points “talk” to each other to determine the most likely exemplar and au-
tomatically determine the clusters, i.e. there is no need to specify the number of
clusters a priori. The sole input is the pairwise similarities between all data points
under consideration for clustering—making it ideally suited for a variety of data
types (categorical, numerical, textual, etc.). A recent extension of the AP clustering
algorithm is Hierarchical Affinity Propagation (HAP) [3], which groups and stacks
data in a tiered manner. HAP only requires the number of hierarchy levels as input
and the communication between data points occurs both within a single layer and
up and down the hierarchy. To date, AP and HAP have been mainly relegated to
smaller, manageable quantities of data due to the prohibitive quadratic run time
complexity. Our investigations will demonstrate an effective parallelization strategy
for HAP using the MapReduce framework, for the first time enabling applications
of these powerful techniques on big data problems.

First introduced by Google [7], the MapReduce framework is a programming
paradigm designed to facilitate the distribution of computations on a cluster of
computers. The ability to distribute processes in a manner that takes the compu-
tations to the data is key when mitigating the computational cost of working with
extremely large data sets. The parallel programming model depends on a mapper
phase that uses key-value identifiers for the distribution of data and subsequent
independent executions to generate intermediate results. These are then gathered
by a reducing phase to produce the final output key-value pairing. This simple, yet
widely applicable parallelization philosophy has empowered many to take machine
learning algorithms previously demonstrated only on “toy data” and scale them
to enterprise-level processing [8]. In this same vein, we adopted the most popu-
lar open source implementation of the MapReduce programming model, Apache
Hadoop, to develop the first ever parallelized extension of HAP, which we refer to
as MapReduce Hierarchical Affinity Propagation (MR-HAP). This allows efficient
fault-tolerant clustering of big data, and more importantly, improves the run time
complexity to potentially linear time (given enough machines).

1.1. Relevant Work. To handle the explosion of available data, there is now a
vast amount of research in computational frameworks to efficiently manage and
analyze these massive information quantities. Here we focus on the MapReduce
framework [1, 9, 10, 11] for faster and more efficient data mining, covering the most
relevant to our approach.

Among the state of the art MapReduce clustering algorithms is Hierarchical Vir-
tual K-means (HVKM), which was implemented by Nair et al. [12]. HVKM uses
cloud computing to handle large data sets, while supporting top to bottom hierar-
chies or a bottom to top approach. Since it derives its roots from K-means, HVKM
requires one to specify the number of clusters. Our MR-HAP implementation does
not require presetting the number of required clusters; it instead organically and
objectively discovers the data partitions.

PARALLEL HIERARCHICAL AFFINITY PROPAGATION WITH MAPREDUCE 3

In Wu et al. [13], the authors propose to parallelize AP on the MapReduce frame-
work to cluster large scale E-learning resources. The parallelization happens on the
individual message level of the AP algorithm. We perform a similar parallelization
but significantly go beyond and allow for hierarchical clustering, which enables a
deeper understanding of the data’s semantic relationships. In addition, our devel-
opment is designed to work on a variety of data sources; thus, our experiments will
showcase results on multiple data modalities, including images and numerical data,
as shown in § 4.

The rest of this paper is organized as follows. In the next section, §2, we detail
the non-parallel HAP algorithm. §3 discusses the MapReduce paradigm and the
implementation details for these algorithms. The experimental validations provided
in §4 demonstrate our favorable performance against another clustering algorithm
which is readily available in the open source project Apache Mahout [14]. Finally,
we conclude with a summary of our efforts and future recommendations.

2. Hierarchical Affinity Propagation

AP is a clustering algorithm introduced by Frey et al.[6] motivated by the simple
fact that given pairwise similarities between all input data, one would like to par-
tition the set to maximize the similarity between every data point and its cluster’s
exemplar. Recall that an exemplar is an actual data point that has been selected
as the cluster center. As we will briefly discuss, these ideas can be represented
as an algorithm in a message passing framework. In the landscape of clustering
methodologies, which includes such staples as K-means [4], K-medoids [15], and
Gaussian Mixture Models [5], predominantly all methods require the user to input
the desired number of cluster centers. AP avoids this artificial segmentation by
allowing the data points to communicate amongst themselves and organically give
rise to a partitioning of the data. In many applications an exemplar-based cluster-
ing technique gives each cluster a more representative and meaningful prototype
for the center, versus a fabricated mean.

HAP, introduced by [3], extends AP to allow tiered clustering of the data. The
algorithm starts by assuming that all data points are potential exemplars. Each
data point is viewed as a node in a network connected to other nodes by arcs such
that the weight of the arcs sij describes how similar the data point with index i is
to the data point with index j. HAP takes as input this similarity matrix where
the entries are the negative real valued weights of the arcs. Having the similarity
matrix as the main input versus the data patterns themselves provides an additional
layer of abstraction—one that allows seamless application of the same clustering
algorithm regardless of the data modality (e.g.text, images, general features, etc.).
The similarity can be designed to be a true metric on the feature space of interest
or a more general non-metric [6]. The negative of the squared Euclidean distance
if often used as a metric for the similarities. The diagonal values of the similarity
matrix, sjj , are referred to as the “preferences” which specify how much a data
point j wants to be an exemplar. Since the similarity matrix entries are all negative
values, −∞ < sij ≤ 0, sjj = 0 implies data point j has high preference of being
an exemplar and sjj ≈ −∞ implies it has very low preference. In some cases, as
in [6, 3, 16], the preference values are set using some prior knowledge; for example,
uniformly setting them to the average of the maximum and minimum values of sij ,
or by setting them to random negative constants. Through empirical verification,

PARALLEL HIERARCHICAL AFFINITY PROPAGATION WITH MAPREDUCE 4

we experienced better performance with randomizing the preferences and adopt
this approach for most of our experiments. Once the similarity matrix is provided
to the HAP algorithm, the network of nodes (data points) recursively transmits two
kinds of intra-level messages between each node until a good set of exemplars is
chosen. The first message is known as the “responsibility” message and the second
as the “availability” message. The responsibility messages, ρlij , are sent at level l
from data point i to data point j portraying how suitable node i thinks node j is to
be its exemplar. Similarly, availability messages, αl

ij , are sent at level l from data
point j to i, indicating how available j is to be an exemplar for data point i. The
responsibility and availability update equations are given in Eq. 2.1 and Eq. 2.2,
respectively.

ρl>1
ij ← slij + min[τ li ,− max

ks.t.k 6=j

{
αl
ik + slik

}
](2.1)

αl<L
ij ← min

{
0, clj + φlj + ρljj +

∑
ks.t.k/∈{i,j}

max{0, ρlkj}
}

(2.2)

αl<L
jj ← clj + φlj +

∑
ks.t.k 6=j

max{0, ρlkj}(2.3)

where L is the number of levels defined by the user and l ∈ {1, · · · , L}. Eq. 2.3 is
the self-availability equation which reflects the accumulated positive evidence that
j can be an exemplar. The self-responsibility messages are updated the same way
as the responsibility messages. To avoid numerical oscillation, the responsibility
and availability messages are dampened by λ ∈ (0, 1) at every level l.

HAP also introduces two inter-level messages. These messages are denoted by τ
in Eq. 2.4, which receives messages from the lower level and φ in Eq. 2.5, which
receives messages from the upper level. At every level, the cluster preference cli is
updated using Eq. 2.6.

τ l+1
j = clj + ρljj +

∑
ks.t.k 6=j

max(0, ρlkj)(2.4)

φl−1i = max
k

(αl
ik + slik)(2.5)

cli ← max
j

(αl
ij + ρlij)(2.6)

A variety of strategies can be employed to update the similarity matrix slij to
vary level-wise. We have achieved good results by simply taking into consideration
the cluster relationship of the previous level:

(2.7) sl+1
ij = slij + κ max

js.t.j 6=i
[αl

ij + ρlij]

where κ is a constant value within [0,1]. This updates the relation between data
points in level l + 1 by negatively increasing the similarity between points that
belong to different clusters in level l and enforces the similarity between points that
fall under the same cluster in level l.

After all messages have been sent and received, the cluster assignments are cho-
sen, at every level, based on the maximum sum of the availability and responsibility
messages as in Eq. 2.8. These cluster assignments can be used to extract the list
of exemplars.

eli ← arg max
j
{αl

ij + ρlij}(2.8)

PARALLEL HIERARCHICAL AFFINITY PROPAGATION WITH MAPREDUCE 5

Algorithm 1 Hierarchical Affinity Propagation

1: Input: Similarity (S), Levels (L), Iterations, and λ
2: Initialize: α = 0, ρ = 0, τ =∞, φ = 0, c = 0, e = 0
3: for iter = 1→ Iterations do
4: for l = 1→ Levels do
5: Update ρlij (eq. 2.1) & Dampen ρl

6: Update αl
ij (eq. 2.2 & 2.3) & Dampen αl

7: Update τ lj , φ
l
j & clj (eq. 2.4, 2.5 & 2.6)

8: Optional Update slij (eq. 2.7)
9: end for

10: end for
11: for l = 1→ Levels do
12: Update elj (2.8)
13: end for

These net message exchanges seek to maximize the cost of correctly labeling a point
as an exemplar and gathering its representative members (a cluster). In Algorithm
1, we detail the pseudo-code implementation of HAP. Given this description of
HAP, we now proceed to discuss MapReduce and our novel parallelization strategy.

3. MapReduce Hierarchical Affinity Propagation

The MapReduce programming model [7] is an abstract programming paradigm
independent of any language that allows the processing workload of the imple-
mented algorithm to be balanced over separate nodes within a computer cluster.
Our overarching MapReduce approach for HAP was motivated by viewing the ma-
jor update equations for HAP (see Algorithm 1) as tensorial mathematical con-
structs [17]. One can simply view these tensorial constructs as two or three dimen-
sional matrices. The HAP algorithm can be parallelized because all the updates to
the various tensors require only a subset of the information provided. Therefore,
the updates can be split up into different jobs and each job will receive the subset
of data needed to evaluate the update.

To achieve a balance between computational partitioning and efficient formatting
for data representation on the Hadoop Distributed Filesystem (HDFS), all the data
is constructed as three dimensional tensors. In support of the fault tolerance aspect
of MapReduce, it is important to retain a copy at all times of the S, α, ρ, c, τ , and
φ tensors. (Recall S, α, ρ, and c refer to the Similarity, Availability, Responsibility,
and Cluster Preferences, respectively.) To this end, even those tensors not required
by a job must be passed directly through to the next job. For the S, α, and ρ
tensors, the dimensions represent the nodes, the exemplars, and the levels. Since
there are N nodes, N possible exemplars, and L levels, these tensors contain LN2

values. For the c, τ , and φ tensors, the first two dimensions represent the index
and level and the depth dimension has length one. Since there are N indices and L
levels, these tensors contain LN values. In the sequel, for the S, α, and ρ tensors,
the node dimension will be iterated by i, the exemplar dimension will be iterated
by j, and the level dimension iterated by l. As for the c, τ , and φ tensors, the index
dimensions will be iterated by both i and j.

PARALLEL HIERARCHICAL AFFINITY PROPAGATION WITH MAPREDUCE 6

Figure 3.1. Parallelization Scheme

With these underlying structures, data must be deconstructed and represented
as (key,value) pairs for use in the MapReduce framework. There are two formats
for storing the information: node-based and exemplar-based formatting. In the
node-based format, the keys are string tuples, (i, l, ξ), where i represents the node, l
represents the level, and ξ represents the tensor (α, ρ, ...). The values, represented
by ν, are the vectors for the ith node of the matrix on the lth level of the tensor. In
the exemplar-based format, the keys are string tuples, (j, l, ξ), where j represents the
exemplar, l represents the level, and ξ represents the tensor. The values, represented
by ν, are the vectors for the jth exemplar of the matrix on the lth level of the
tensor. With the data thus represented, MapReduce jobs must be constructed to
manipulate the information using the given HAP equations.

In our parallelization scheme, MR-HAP is broken down into three separate
MapReduce jobs. The first job handles updating τ , c, and ρ. The second job
handles updating φ and α. These first two jobs loop for a set number of itera-
tions. At the end of the iterations, the final job extracts the cluster assignments
on each level. Due to dependencies set out in the equations, the ρ update must
occur first. Therefore, τ and c are not updated during the first iteration. In all
other iterations they occur before the Responsibility update. At the start of each
iteration, the data will be in exemplar-based format. After the first job, the data
will have switched to node-based format. The second job converts the data back
to exemplar-based format to begin a new iteration or to be used as input to the
final job. See Fig. 3.1 for a visual representation of the parallelization scheme. The
figure represents what happens to the data during either of the first two jobs. The
tensors have been stacked to show how the indices line up. The yellow strips on
the left represent information being passed to one mapper, one strip per mapper.
The focus of each mapper is on providing the reducers with the necessary infor-
mation. The subsequent focus of each reducer is on performing the tensor updates
as defined in the HAP equations. As the data comes out of the job, the switch
between exemplar-based and node-based formats can be easily seen. The output is
now ready for use by the next job, which will follow a similar flow. The following
sections will provide in-depth explanations of each MapReduce job.

3.0.1. Updating τ , c, and ρ. This job takes as input the exemplar-based repre-
sentation of the data and outputs the node-based representation of the data with
updated values. In the first iteration, τ and c are not updated due to previously
mentioned dependencies. In this MapReduce job, the mapper deconstructs the
exemplar-based vectors into node-based values for the reducer to reconstruct node-
based vectors. Each mapper receives a key describing a unique (j, l, ξ) combination
and a value with the corresponding vector. The indices of the vector represent the
nodes; thus, the mapper iterates over the vector with i. Each reducer receives a

PARALLEL HIERARCHICAL AFFINITY PROPAGATION WITH MAPREDUCE 7

key describing a unique (i, l) combination and a list of values which will be used to
reconstruct the 6 node-based vectors, the 2 node-based vectors from the level below
and the 2 special diagonal vectors. The indices of the constructed vector represent
the exemplars so the reducer iterates over the vector with j.

3.0.2. Updating α and φ. This job takes as input the node-based representation of
the data and outputs the exemplar-based representation of the data with updated
values. In this MapReduce job, the mapper deconstructs the node-based vectors
into exemplar-based values for the reducer to reconstruct exemplar-based vectors.
Each mapper receives a key describing a unique (i, l, ξ) combination and a value
with the corresponding vector. The mapper iterates over the vector with j. Each
reducer receives a key describing a unique (j, l) combination and a list of values
which will be used to reconstruct the 6 exemplar-based vectors and the 2 node-
based vectors from the level above. The indices of the constructed vector represent
the nodes so the reducer iterates over the vector with i.

3.0.3. Extracting Cluster Assignments. This job takes as input the exemplar-based
representation of the data and outputs the cluster assignments. In this MapReduce
job, the mapper deconstructs the exemplar-based vectors into node-based values
for the reducer to reconstruct node-based vectors. Each mapper receives a key
describing a unique (j, l, ξ) combination and a value with the corresponding vector.
The mapper iterates over the vector with i. Since this is the last step, only the
required information has to pass to the reducer and the other information can be
neglected. Each reducer receives a key describing a unique (i, l) combination and a
list of values which will be used to reconstruct the 2 node-based vectors and the 2
special diagonal vectors. The reducer iterates over the vector with j.

3.1. Runtime Complexity. A standard sequential HAP implementation must
necessarily have a runtime complexity of O(kLN2) where k represents the number
of algorithmic iterations, run either as a hard limit or until convergence is reached,
L represents the number of output levels requested, and N represents the cardi-
nality of the input data set, such that the size of S is (L ×N ×N). The runtime
complexity is a direct result of iterating over all three dimensions of the tensors for
each iteration. By implementing the algorithms in the MapReduce framework, we
are able to achieve superior runtime complexity. Under MapReduce, the MR-HAP
runtime complexity reduces to a linear relationship with the data, assuming the
total number of Virtual Machines (VMs) on the cluster, M , scales to LN , i.e.

O(kLN2

M) = O(kN) as M → LN . In MR-HAP, M can only scale up to a maximum
of LN because M is limited to the number of tasks that can be evaluated at the
same time. In this case, it is limited to the minimum of the 6LN mapper tasks
and the LN reducer tasks, where the constant factor six represents the number of
tensor identifications introduced into the algorithm, namely α, ρ, S, τ, φ, and c.

4. Experimental Results

To demonstrate the effectiveness and adaptability of the proposed approach, we
executed validation experiments on several data sets with a variety of modalities,
e.g. imagery and synthesized numerical point data. Where applicable, we com-
pared our performance to a popular MapReduce hierarchical clustering algorithm

PARALLEL HIERARCHICAL AFFINITY PROPAGATION WITH MAPREDUCE 8

a) Original “Mandrill” b) 15 Exemplars

c) 7 Exemplars d) 6 Exemplars

Figure 4.1. Hierarchical clustering of “Mandrill” 103x103. See
text for discussion.

currently available in the Mahout library. At its core, their hierarchical cluster-
ing is based on a level-wise K-means clustering approach; thus, we refer to it as
Hierarchical K-Means (HK-Means). With K-means as the foundation, HK-Means
requires the number of cluster centers as input. Since our method does not ex-
plicitly impose this requirement, we adopted the initialization method of running
Canopy clustering, also available in Mahout, to discover the “natural” number of
centers. We then use these cluster centers to seed HK-Means. In order to truly
gain an objective understanding of MR-HAP performance versus HK-Means, we
use the purity extrinsic cluster quality metric to assess their respective aggregation
capabilities [18].

4.1. Image Segmentation. Hierarchical Affinity Propagation performs very well
in image segmentation tasks as shown in Fig. 4.1 & Fig. 4.2. The “Mandrill” image,
Fig. 4.1, is of size 103× 103, which provided 10,609 pixels (data points) to cluster.
Similarly, the “Buttons” image, Fig. 4.2, is of size 120× 100, resulting in a data set
of 12,000 pixels. The similarity input was computed using the negative Euclidean
distance between all pixels treating RGB intensities as vectors. The diagonal, or
preference entries, were selected as random numbers within [−106, 0]. As for the
other parameters, we set the iterations to 30 and the dampening factor to λ = 0.5.
To generate the clustered images, we re-color all pixels within a cluster with the
color of the selected exemplar. The number of hierarchy levels for the “Mandrill”
data set was set to L = 3. The top right image is the lowest level where the pixels
were grouped into 15 clusters. The bottom left image is the second level where the
pixels were grouped into 7 clusters. Finally, the bottom right image is the highest
level where the pixels were grouped into 6 clusters. From these images we can still
see the mandrill’s shape and most of its colors, but at the highest level it appears
fuzzier. This is because the members of the same clusters were given the color of
the exemplar.

For the “Buttons” image, the number of levels was set to L = 3. The top
right image is the lowest level where the pixels were grouped into 154 clusters. The
bottom left image is the second level where the pixels were grouped into 25 clusters.
Finally, the bottom right image is the highest level where the pixels were grouped

PARALLEL HIERARCHICAL AFFINITY PROPAGATION WITH MAPREDUCE 9

a) Original “Buttons” b) 154 Exemplars

c) 25 Exemplars d) 11 Exemplars

Figure 4.2. Hierarchical clustering of “Buttons” 120x100. See
text for discussion.

into 11 clusters. The highest level of the hierarchy appears fuzzier than the original
image due to similar colors clustering underneath a single exemplar.

4.2. Scalability and Comparison to HK-Means . In order to test the scalabil-
ity of the MR-HAP algorithm with respect to speed, we use the data set “Aggrega-
tion” [19], which is a shape set composed of 788 two-dimensional points. The pur-
pose of these tests was to observe trends in algorithm runtime as cluster computing
power increased, as well as to determine the benefits of running in a distributed en-
vironment as compared to an undistributed environment (a single-machine Hadoop
cluster). Hadoop clusters were provided using Amazon Elastic MapReduce (EMR)
to dynamically create clusters of standard Amazon Elastic Compute Cloud (EC2)
instances. Cluster computing power was scaled both by increasing the number
of VMs within a cluster and by provisioning more powerful VMs. The two VM
instance types used are: (1) the m1.small, which has 1.7 GB of memory and is con-
sidered to have 1 EC2 Compute Unit (ECU) with 160 GB of instance storage and
a 32-bit architecture, and (2) the m1.xlarge, which has 15 GB of memory, 8 ECU,
1,690 GB of instance storage, and a 64-bit architecture. The single-machine Hadoop
cluster utilized to simulate an undistributed environment has 8 GB of memory, 8
ECU, 40 GB of machine storage, and a 64-bit architecture.

For comparison to another state-of-the-art MapReduce clustering methodology,
our MR-HAP algorithm was benchmarked against HK-Means. Due to its inher-
ently parallel design, MR-HAP immediately begins to benefit from being placed in
a distributed environment. Represented by a solid blue line in Fig. 4.3, MR-HAP
runtime decreases by 64%, from 320 minutes to 115 minutes, when cluster compu-
tational power is increased by just 4 additional ECU. MR-HAP eventually reaches
the threshold of a linear relationship with the size of the input data at a runtime
of around 20 minutes, which is a 94% decrease from the single ECU cluster. Fur-
thermore, at its best, MR-HAP performs 66% faster in a distributed environment
than the undistributed environment which is represented by the blue dotted line
in Fig. 4.3. In contrast, the Mahout HK-Means algorithm used in this experi-
mentation, indicated by the solid green line in Fig. 4.3, is not parallelized to the
extent of MR-HAP. Each single iteration of K-Means is structured under Mahout
to distribute over a Hadoop cluster, but the hierarchical “Top Down” structure
requires iterative executions of K-Means for each level. This lack of an overall

PARALLEL HIERARCHICAL AFFINITY PROPAGATION WITH MAPREDUCE 10

Figure 4.3. Time vs. Number of EC2 CPUs. Our MR-HAP
better utilizes available compute resources to significantly improve
runtime.

parallelization scheme results in reduced performance at scale than MR-HAP. HK-
Means runtime initially increases by 8.5% when ECU is increased from 1 to 10
due to Hadoop cluster overhead, including network latency and I/O time. How-
ever, at 10 ECU, HK-Means overcomes this overhead and begins to benefit from
the MapReduce parallelization scheme. This results in an eventual 16% runtime
decrease between 1 and 80 ECU, at which point HK-Means eventually reaches a lin-
ear relationship with the data at a runtime around 225 minutes. Unlike MR-HAP,
HK-Means never surpasses its undistributed runtime threshold of 146 minutes indi-
cated by the green dotted line in Fig. 4.3. Finally, at its best, HK-Means runs 90%
slower than MR-HAP, requiring 226 minutes of execution compared to MR-HAP’s
23 minutes. With significantly faster runtimes, MR-HAP still posts purity levels
competitive with HK-Means, shown in Fig. 5.1. This combination of speed and
high performance is ideal for processing big data in a large-scale cloud computing
environment.

5. Conclusion

The need for efficient and high performing data analysis frameworks remain para-
mount to the big data community. The AP clustering algorithm is rapidly becom-
ing a favorite amongst data scientists due to its high quality grouping capabilities,
while requiring minimal user specified parameters. Recently, a multilayer struc-
tured version of the AP algorithm, HAP, was introduced to automatically extract
tiered aggregations inherent in many data sets. HAP is modeled as a message-
based network that allows communication between nodes and between levels in the
hierarchy, and mitigates many of the biases that arise in techniques that require
one to input the number of clusters. In the present work, we have developed the
first ever extension, MR-HAP, to address the big data problem—demonstrating
an efficient parallel implementation using MapReduce that directly improves the
runtime complexity from quadratic to linear. The novel tensor-based partitioning
scheme allows for parallel message updates and utilizes a consistent data represen-
tation that is leveraged by map and reduce tasks. Our approach seamlessly allows
us to cluster a variety of data modalities, which we experimentally showcased on
data sets ranging from synthetic numerical points to imagery. Our analysis and
computational performance is competitive with the state-of-the-art in MapReduce
clustering techniques.

PARALLEL HIERARCHICAL AFFINITY PROPAGATION WITH MAPREDUCE 11

Figure 5.1. Purity levels of MR-HAP vs. HK-Means. MR-HAP
posts results highly competitive with HK-Means.

Acknowledgment: The authors acknowledge partial support from NSF grant No.
1263011. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the
NSF.

References

[1] S. Humbetov, “Data-intensive computing with MapReduce and Hadoop,” in AICT, 2012, pp.

1–5.

[2] T. A. S. Foundation, “Hadoop 1.1.2 documentation,” The Apache Software Foundation, 03
2013. [Online]. Available: http://hadoop.apache.org/docs/r1.1.2

[3] I. E. Givoni, C. Chung, and B. J. Frey, “Hierarchical affinity propagation,” CoRR, vol.
abs/1202.3722, 2012.

[4] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means clustering algorithm,”

Applied Statistics, vol. 28, pp. 100–108, 1978.
[5] G. McLachlan and D. Peel, Finite Mixture Model. John Wiley & Sons, Inc, 2000.

[6] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,” Science,

vol. 315, 2007.
[7] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,” in

OSDI. USENIX Association, 2004, pp. 10–10.

[8] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun, “MapReduce
for Machine Learning on multicore,” in NIPS, 2007, pp. 281–288.

[9] C. Zewen and Z. Yao, “Parallel text clustering based on mapreduce,” in CGC, 2012, pp.

226–229.
[10] H. Wang, Y. Shen, L. Wang, K. Zhufeng, W. Wang, and C. Cheng, “Large-scale multimedia

data mining using MapReduce framework,” in IEEE CloudCom, 2012, pp. 287–292.
[11] R. M. Esteves, T. J. Hacker, and C. Rong, “Cluster analysis for the cloud: Parallel competitive

fitness and parallel k-means++ for large dataset analysis,” in IEEE CloudCom, 2012, pp.

177–184.
[12] T. Nair and K. Madhuri, “Data mining using hierarchical virtual k-means approach integrat-

ing data fragments in cloud computing environment,” in IEEE CCIS, 2011, pp. 230–234.
[13] F. Wu, W. Wang, H. Zhang, and Y. Zhuang, Handbook of Research on Hybrid Learning

Model: Advanced Tools, Technologies, and Applications. IGI Global, 2010, ch. The Clus-
tering of Large Scale E-Learning Resources, pp. 94–104.

[14] T. A. S. Foundation, “Apache Mahout: Scalable machine learning and data mining,” The
Apache Software Foundation, 2013. [Online]. Available: http://mahout.apache.org

[15] L. Kaufman and P. Rousseeuw, “Clustering by means of medoids,” Reports of the Faculty of
Mathematics and Informatics, Delft University Technology, vol. 87-3, 1987.

[16] J. Xiao, J. Wang, P. Tan, and L. Quan, “Joint affinity propagation for multiple view segmen-
tation,” in IEEE Computer Vision, 2007, pp. 1–7.

[17] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “A survey of multilinear subspace

learning for tensor data,” Pattern Recognition, vol. 44, no. 7, pp. 1540–1551, Jul. 2011.

http://hadoop.apache.org/docs/r1.1.2
http://mahout.apache.org

PARALLEL HIERARCHICAL AFFINITY PROPAGATION WITH MAPREDUCE 12

[18] N. Sahoo, J. Callan, R. Krishnan, G. Duncan, and R. Padman, “Incremental hierarchical

clustering of text documents,” in CIKM. ACM, 2006, pp. 357–366.

[19] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation,” ACM TKDD, vol. 1, Mar.
2007.

	1. Introduction
	1.1. Relevant Work

	2. Hierarchical Affinity Propagation
	3. MapReduce Hierarchical Affinity Propagation
	3.1. Runtime Complexity

	4. Experimental Results
	4.1. Image Segmentation
	4.2. Scalability and Comparison to HK-Means

	5. Conclusion
	Acknowledgment:

	References

