
This is a repository copy of Leveraging Platform Basic Services in Cloud Application
Platforms for the Development of Cloud Applications..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98325/

Version: Accepted Version

Proceedings Paper:
Gonidis, F., Paraskakis, I. and Simons, A.J.H. (2014) Leveraging Platform Basic Services
in Cloud Application Platforms for the Development of Cloud Applications. In: IEEE 6th
International Conference on Cloud Computing Technology and Science. IEEE 6th
International Conference on Cloud Computing Technology and Science, 15-18 Dec 2014,
Singapore. IEEE Computer Society , pp. 751-754. ISBN 978-1-4799-4093-6

https://doi.org/10.1109/CloudCom.2014.150

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Leveraging Platform Basic Services in Cloud

Application Platforms for the Development of Cloud

Applications

Fotis Gonidis, Iraklis Paraskakis

South East European Research Centre

International Faculty of the University of Sheffield,

 City College

Thessaloniki, Greece

{fgonidis,iparaskakis}@seerc.org

Anthony J. H. Simons

Department of Computer Science

The University of Sheffield

Sheffield, UK

A.Simons@dcs.shef.ac.uk

Abstract— Cloud application platforms gain popularity and have

the potential to alter the way service based cloud applications are

developed involving utilisation of platform basic services. A platform

basic service is considered as a piece of software, which provides

certain functionality and is usually offered via a web API. However,

the proliferation and diversification of platform basic services and the

available providers increase the challenge for the application

developers to integrate them and deal with the heterogeneous

providers’ web APIs. Therefore, a new approach of developing

applications should be adopted in which developers leverage multiple

platform basic services independently from the target application

platforms. To this end, this paper presents a development framework

assisting the design of service based cloud applications. The

objective of the framework is to enable the consistent integration of

the platform services, and to allow the seamless use of the concrete

providers by alleviating the heterogeneities among them. The core

components of the framework are the reference meta-model, which

facilitates the modelling of the platform services and an ontology-

driven architecture enabling the description and the abstraction of the
providers’ specific web APIs.

Index Terms—Platform Basic Services, Cloud Application

Platform, Service-based Cloud Applications, PaaS, Cloud

Computing

I. INTRODUCTION

The rise and proliferation of cloud computing and cloud

platforms in specific, has the potential to change the way we

develop, distribute and consume cloud based service

applications. Cloud platforms popularity stems from their

potential to speed and simplify the development, deployment

and maintenance of cloud based software applications.

Nevertheless, there is a large heterogeneity in the platforms

offerings [1] which can be classified into three clusters. On

one cluster application development time is drastically

decreased with the use of bespoke visual tools and graphical

environments at the expense of a restricted application scope

which is usually limited to customer relationship management

(CRM) and office solutions. At the other end of the spectrum

platforms offer basic development and deployment

capabilities such as application servers and databases. The

intermediate cluster consists of cloud platforms, which offer

additional functionality via the offering of, what we call,

platform basic services (eg mail service, billing service,

messaging service etc). A platform basic service can be

considered as piece of software which provides certain

functionality and can be reused by multiple users. It is

typically provisioned via a web API. The platforms offering

such services are also referred to as cloud application

platforms [2].

The rise of the cloud application platforms has the

potential to lead to a paradigm shift of software development

where the platform basic services act as the building blocks

for the creation of service-based cloud applications.

Applications do not need to be developed from scratch but can

rather be constructed using, where appropriate, various

platform services, thus increasing rapidly the productivity.

Consequently, the barrier of studying the various platform

basic services and selecting the one(s) best offered for the task

at hand, is now removed. The software engineer has access in

a transparent manner to all platform basic services and the

selected platform basic services are seamlessly incorporated in

the service based cloud application.

However, these opportunities are accompanied by a

number of challenges. The first challenge arises from the fact

that there exist multitudes of a particular service, e.g., mail

service, since the services are offered by many different

providers. The second challenge arises from the need to

provide a framework that spans across a number of different

kind of services, i.e., mail services, billing services, message

queue services and so on.

The result of these two challenges implies that there exists

a large heterogeneity among the offered services. The

heterogeneity mainly arises due to (i) the differences in the

workflow for the execution of the operations of the services,

(ii) the differences in the exposed web APIs and (iii) the

various required configuration settings and authentication

tokens. The significant number of services that an application

may consist of, makes the integration and management of the

services a strenuous process. At the same time there is a lack

of tools and Integrated Development Environments addressing

the issue of proprietary technologies and APIs [3].

In order for the developers to be able to leverage platform

basic services from various environments a new approach of

application development should be adopted, where the latter

are decoupled from specific platform technologies.

Towards this direction, the paper proposes a framework ,

that tackles the two aforementioned challenges, thus assisting

the process of developing service-based cloud applications.

The objective of the framework is two-fold: (i) First to enable

the integration of platform basic services in a consistent way

and (ii) second to facilitate the seamless use of the platform

basic service providers by alleviating the heterogeneities

among them. Thus application developers can focus on the

design of the application without dealing with the peculiarities

of each provider.

The framework adopts a three phase process in order to

enable the abstraction of the platform service providers. First

the abstract functionality of the platform basic service is

described. During this phase the workflow of the platform

service is modelled and the reference API is defined. In the

next phase, the concrete vendor implementation is infused.

The specific workflow and web API is mapped on the

reference one defined in the first phase. During the third

phase, the framework handles the execution of the workflow

and automatically generates the client adapters to invoke the

providers’ web API.

The rest of the paper is structured as follows: Section II

states the variability points that may arise among the platform

basic services and which are addressed by the proposed

framework. Next Section reviews the related work while

Section IV lists the requirement of the framework. Section V

presents the high-level design of the framework and the

process of supporting additional platform services and

providers. Section VI and VII describe in details the process

of modelling the workflow and describing the API of the

platform service respectively. Finally in Section VIII we

conclude the paper and discuss future work.

II. VARIABILITY POINTS OF PLATFORM BASIC SERVICES

Preliminary work of the authors on several platform

service providers [4] offered by Heroku [5], Google App

engine [6], AWS marketplace [7] have shown that the

following three variability points needs to be addressed in

order to decouple application development from vendor

specific implementations: (i) Differences in the workflow for

the execution of the operations offered by the platform basic

services, (ii) variability in the web API exposed by the various

platform service providers, (iii) management of the

configuration variables and authentication tokens required

during the interaction with the services.
1) Differences in the workflow: Stateful services require

more than one state in order to complete an operation [8].

Such an example is the payment service that enables

developers to accept payments through their applications. The

process involves two states: (i) waiting for client’s purchase

request and (ii) submitting the request to the payment

provider. However, depending on the concrete payment

provider there may be variations in the states involved.

Therefore, a coordination mechanism is required to handle the

operation flow and additionally to alleviate the differences

among the various concrete implementations.

2) Differences in the web API: There are several platform

providers implementing a given platform service and specific

operations. However, they expose a diverse API resulting in

conflicts when an application developer attempts to integrate

with one or another. As an example we consider the e-mail

service and two service providers, the Amazon Simple E-mail

Service (SES)
1
 and the SendGrid

2
, an add-on mail service

offered via Heroku application platform. Upon the request for

sending an e-mail the minimum set of the four following

parameters are required: (i) the recipient, (ii) the sender, (iii)

the content and (iv) the title of the e-mail. The concrete

naming of the parameters as required by Amazon SES is

respectively: (i) Source, (ii) Destination.ToAddresses, (iii)

Message.Subject and (iv) Message.Body.Text whereas

regarding the SendGrid the anticipated parameters are: (i)

from, (ii) to, (iii) subject and (iv) text.

3) Management of the configuration and authentication

variables: In addition to the construction of the web calls and

the operation workflow handling, platform services require

certain configuration settings and authentication tokens to be

present during the interaction with the cloud application.

Indicatively, we refer to the Google Authentication service

(footprint) and the following set of required variables: a) the

redirect URL, b) the client_ID, c) the scope and d) the state.

The number and the type of the settings vary according to the

provider. Considering the large number of services that an

application may be composed of, the management of the

settings may become a time consuming and strenuous process.

III. RELATED WORK

The constant increase in the offering of platform services

has resulted in a growing interest in leveraging services from

multiple clouds. Significant work has been carried out on the

field, which can be grouped into three high-level categories:

middleware platforms, Model-driven Engineering techniques

and library based solutions. Representative work on each of

the three categories is listed.

Library-based solutions such as jclouds [9] and LibCloud

[10] provide an abstraction layer for accessing specific cloud

resources such as compute, storage and message queue.

While, library-based approaches efficiently abstract those

resources, they have a limited application scope which makes

it difficult to reuse them for accommodating additional

services.

Middleware platforms constitute middle layers, which

decouple applications from directly being exposed to

proprietary technologies and deployed on specific platforms.

Rather, cloud applications are deployed and managed by the

middleware platform, which has the capacity to exploit

multiple cloud platform environments. mOSAIC [11] is such a

PaaS solution which facilitates the design and execution of

1
 http://aws.amazon.com/ses/

2
 http://sendgrid.com

scalable component-based applications in a multi-cloud

environment. mOSAIC offers an open source API in order to

enable the applications to use common cloud resources offered

by the target environment such as virtual machines, key value

stores and message queues. OpenTOSCA [12], is a runtime

environment enabling the execution of TOSCA-based cloud

applications. TOSCA [13] is a specification which enables the

description of the deployment topology of a cloud application

in a platform independent way. Thus, applications are agnostic

with regard to the concrete platform provider resources they

use. Both mOSAIC and OpenTOSCA require that applications

are tightly connected with the specific technologies and thus

impose a restriction in case applications need to leverage

platform providers, which are not supported by those

environments.

Initiatives that leverage MDE techniques present meta-

models, which can be used for the creation of cloud platform

independent applications. The notion in this case is that cloud

applications are designed in a platform independent manner

and specific technologies are only infused in the models at the

last stage of the development. MODAClouds [14] and

PaaSage [15] are both FP7 initiatives aiming at cross-

deployment of cloud applications. Additionally, they offer

monitoring and quality assurance capabilities. They are based

on CloudML [16], a modelling language which provides the

building blocks for creating applications deployable in

multiple IaaS and PaaS environments. Hamdaqa et al. [17]

have proposed a reference model for developing applications

which leverage the elasticity capability of the cloud

infrastructure. Cloud applications are composed of

CloudTasks which provide compute, storage, communication

and management capabilities. MULTICLAPP [3] is a

framework leveraging MDE techniques during the software

development process. Cloud artefacts are the main

components that the application consists of. A transformation

mechanism is used to generate the platform specific project

structure and map the cloud artefacts onto the target platform.

Additional adapters are generated each time to map the

application`s API to the respective platform`s resources.

The solutions listed in this Section focus mainly on the

cross-deployment of application by eliminating the technical

restrictions that each platform imposes. However, they do not

support the use of additional platform services offered via web

API such as payment, authentication and message queue

service. In addition, the client adapters used to address the

variability in the providersಬ APIs are hardcoded and thus not

directly reconfigurable in case they are required to be updated.

On the contrary, the vision of the authors is to facilitate the

use of platform services from heterogeneous clouds in a

seamless manner. To this end, the proposed solution attempts

to alleviate the three variability points described in Section II,

namely: the differences in the workflow modelling, in the

providersಬ web APIs and in the configuration settings. In turn,

this will promote the design of applications, which leverage

services from multiple cloud application platforms without

being bound to the specific proprietary implementations and

APIs.

V. REQUIREMENTS OF THE FRAMEWORK

There are certain requirements identified for the development

framework as listed below. They have primarily been defined

upon the objective of addressing the variability points, which

were listed in Section II, namely, the differences in the

workflow, in the web API and the settings and tokens required

by each concrete platform service provider.

• Provide workflow modelling capabilities. The

development framework should provide application

developers with the necessary building blocks to enable the

workflow modelling in a consistent way. Independent of the

type of the platform service or the concrete provider, two

basic request types are present: (i) The outgoing request from

the application to the platform service using the web API of

the latter and (ii) the incoming requests usually by the

platform service to the application which needs to be received

and handled by the latter. The framework should enable the

modelling of these request types.

• Automating the execution of the workflow. In

addition to the modelling of the states of the platform service,

an execution engine should be able to handle the operation

workflow and thus decoupling the application developer from

directly accessing the provider specific implementation.

• Addressing the API variability. In order to

effectively abstract the vendor specific implementation, the

framework should address the peculiarities in the various web

APIs exposed by the concrete providers. Two further

dimensions are implied: (i) The capability of defining a

reference API for each given platform service and which is

exposed to application developers. (ii) The mapping of the

vendor specific API to the equivalent reference one.

• Automatic generation of the client adapters. The

framework should be able to generate the code required to

perform the invocation requests to the web API which is

exposed by the platform service providers. The majority of the

providers expose a web API, based on HTTP requests [18],

and often adhere to the REST principles [19]. By offering

code generation capabilities, the application developers are

alleviated from the task to manually code the invocation

request each time integration with a new service provider is

required.

• Generic nature of the framework. One of the main

requirements of the framework is its capability to support new

platform services and providers. Rather than being static an

rigid our objective is to ensure its flexibility so that it is

continuously expanded and updated with new types of

platform services and providers. This is partially achieved by

the first and third requirement, namely by providing the

generic building blocks to model the workflow of the platform

service and also the capability of defining the reference API

for the service which is supported by the framework.

• Distinct user roles: Two user roles should be

supported by the framework: (i) the administrator and (ii) the

consumer. The administrator should be capable of enhancing

the framework with new platform services and providers. On

the other hand, the consumer is the application developer who

uses the services supported by the framework.

• Management of the platform services and the

configuration variables. The framework should enable the

application developers to add or remove services seamlessly

from the application and also manage the configuration

settings and the authentication tokens required by each of the

concrete providers.
• User Friendliness. It is essential to ensure the ease

of use of the framework. Therefore, an intuitive graphical

environment should be designed and offered to the users so

that the administrators can add new services and providers to

the framework and the consumers can easily integrate or

release services from the application.

In the next Sections we describe how the framework can

be used to enable the integration of platform services and

providers.

VI. HIGH-LEVEL OVERVIEW OF THE FRAMEWORK

As it can be observed in Fig. 1, the process of adding a

new platform service and provider to the framework can be

divided into the following two parts:

i) Platform Service Workflow Modelling. Certain

platform services require more than one step to complete an

operation, such as the authentication and the payment service.

Thus, the states that are involved in the execution of an

operation shall be defined and modelled in a way that is

capable for the framework to automatically handle the

workflow.

ii) Platform Service API Description. One of the main

objectives of the framework is to provide the developers with

a single API for each platform service independent of the

concrete provider. Therefore, this part involves the definition

of the reference API, the description of the web API of each

concrete provider supported by the framework and the

subsequent mapping of the provider specific web API to the

reference one.

For each of the two parts the development process

involves the three following phases:

i) Platform service modelling phase. During this phase,

the abstract functionality of the platform service is defined.

Particularly, it requires the modelling of the states involved in

each operation and the definition of the reference API that is

exposed to the developers.

ii) Vendor implementation phase. Based on the abstract

model defined in the previous phase the vendor specific

implementation is infused. Specifically, the workflow required

by each provider is mapped to the abstract one defined for the

particular service. Likewise, the provider specific web API is

mapped to the reference one.

iii) Execution phase. During that phase, the Platform

Service Execution Controller (Fig. 1) handles the execution of

the workflow, while the API Client Generator produces the

code for the web API invocation of the chosen platform

service provider.

In order to illustrate how the framework can be used in a

real case scenario, the cloud payment service is used as an

example in the rest of the paper. The payment service enables

a website or an application to accept online payments via

electronic cards such as credit or debit cards. This platform

service has been chosen because of its inherent relative

complexity compared to other services such as e-mail or

message queue service. The complexity lies in the fact that the

purchase transaction requires more than one step to be

completed and there is a significant heterogeneity among the

available payment providers with respect to the involved

steps.

Fig. 2 describes the steps involved in completing a

payment transaction, while Fig. 3 shows the state chart of the

cloud application throughout the transaction.

Figure 1. High-level Overview of the Development Framework

Figure 2. Cloud Payment Service

Figure 3. State Chart of the Cloud Payment Service

Two states are observed. While the cloud application

remains in the first state, it waits for a purchase request. Once

the client requests a new purchase, the cloud application

displays the fill out form where the user enters the payment

details. Subsequently, the cloud application moves to the next

state where it waits for the transaction token issued by the

payment provider. The transaction token uniquely identifies

the current transaction and can be used by the cloud

application to complete the purchase. Once the user submits

the form, she is redirected to the payment provider who

validates the card details. Then a request to the cloud

application is submitted including the transaction token. Once

the token is received the application submits a request to the

provider with the specific amount to be charged. The provider

completes the transaction and responds with the outcome.

Depending on the outcome, the cloud application displays a

success or failure page to the client.

In the next section we describe in details the process of

adding the payment service to the framework. As concrete

payment provider, we use Spreedly an add-on offered via

Heroku platform.

VII. PLATFORM SERVICE WORKFLOW MODELLING

A. Platform Service Modelling Phase

During this phase, the abstract functionality of the

platform service is modelled. For that reason the reference

meta-model shown in Fig. 4 is used. The meta-model

comprises the following components, which enable the

modelling of the workflow during the execution of an

operation:

CloudAction: Cloud Actions are used to model stateful

platform services, as described in Section II, which define

more than one step in order to complete an operation. The

whole process required to complete the operation can be

modelled as a state machine. Each step can be modelled as a

concrete state that the platform service can exist in. When the

appropriate event arrives an action is triggered to handle the

event and subsequently causes the transition to the next state.

The events in this case are the incoming requests arriving

either by the application user or the service provider. A

separate Cloud Action is defined to handle each incoming

request and subsequently signals the transition to the next

state.

Figure 4. Reference Meta-model

CloudMessage. CloudMessages can be used to model

requests performed by the cloud application towards the

service provider using the web API of the latter. The API

usually conforms to the REST principles [19]. CloudMessages

can either be used in stateless services, where the operation is

completed in one step or within Cloud Actions when the latter

are required to submit a request to the service provider.

PlatformServiceStates. The PlatformServiceStates

description file holds information about the states involved in

an operation and the corresponding Cloud Actions which are

initialised to execute the behaviour required in each state.

ConfigurationData. Certain configuration settings are

required by each platform service provider. That information

is captured in the ConfigurationData. Example of settings

which needs to be defined are the clients’ credentials required

to perform web requests and the redirect URL parameter

which is often requested by the service provider in order to

perform requests to the cloud application.

The reference meta-model is used to construct the Platform

Service Constructor (PSC) as shown in Fig. 1. The PSC is a

model of the abstract functionality of a given platform service.

and is built based on the state chart defined for that service

using the following rules:

1) For each state where the application waits for an

incoming request, a CloudAction is defined to handle the

request.

2) For each outgoing request to the service provider

using the web API, a CloudMessage is defined.

In the case of the Cloud Payment Service, the middle

component of the Fig. 5 shows the Cloud Payment Service

Connector. It is constructed based on the state chart defined in

Fig. 3 and using the reference meta-model. It consists of the

following blocks:

FilloutForm. The FilloutForm is a CloudAction which

receives the request for a new purchase transaction and

responds to the client with the fill out form in order for the

latter to enter the card details. The communication is realised

using the servlet technology.

HandlePurchaseTransaction. The HandlePurchas

Transaction is a CloudAction which receives the request from

the service provider containing the transaction token. Then, a

request is submitted to the provider including the transaction

token and the amount to be charged. The provider replies with

the outcome of the purchase and subsequently the action

responds to the client with a success or fail message

accordingly.

SubmitPurchaseRequest. The SubmitPurchaseRequest is a

CloudMessage used internally by the HandlePurchase

Transaction action. Its purpose is to model the request to the

service provider, using the exposed web API, to complete the

purchase transaction. It receives the provider’s respond stating

the outcome and forwards it to the action.

ConfigurationData. The ConfigurationData contains the

service settings required to complete the purchase operation.

Particularly, the following pieces of information are listed: the

“redirectUrl”, the username and the password.

PaymentSerivceStates. In the PaymentServiceStates file

the states and the corresponding actions involved in the

transaction are defined. The file is used by the framework to

guide the execution of the actions. A part of the description

file is shown here:

<StateMachine>
 <State name="PaymentForm"

action="org.paymentservice.FillOutFormAction"
nextState="SendTransaction"/>

 <State name="SendTransaction"
action="org.paymentservice.SendTransactionAction"
nextState="Finish"/>

</StateMachine>

At this point the Cloud Payment Service Connector (PSC)

does not contain any provider specific information. Therefore

any payment service provider which adheres to the specified

model can be accommodated by the abstract model.

Figure 5. Cloud Payment Service Model

 B. Vendor Implementation Phase

After having defined the PSC, the specific implementation

and settings of each concrete providers needs to be infused.

For each CloudAction and CloudMessage defined in the PSC,

the respective provider specific blocks should be defined

forming the Provider Connector (PC).

In the case of the payment service example, the Cloud

Payment Provider Connector for the Spreedly provider is

shown in the lower part of the Fig. 5. It contains the following

blocks: (i) SpreedlyFilloutForm, (ii)

SpreedlyHandlePurchaseTransaction and the (iii)

SpreedlySubmitPurchaseRequest. In addition, the

ConifgurationData file needs to be updated accordingly in

order to match the specific provider.

Should the provider’s implementation accurately matches

the model, the provider specific Actions and Messages can

reuse the functionality of the generic model. In case the

provider’s implementation diverts from the generic model the

model’s functionality can be overridden.

C. Execution Phase

During the execution phase the PSC and the PC,

constructed in the previous phases, are managed by the

Platform Service Execution Controller (PSEC) as shown in the

Fig. 5. The PSEC automates the execution of the workflow

required to complete an operation. It consists of the main

following components shown in the upper part of the Fig. 5.

Front Controller. The Front Controller [20] serves as the

entry point to the framework. It receives the incoming

requests by the application user and the service provider.

Dispatcher. The dispatcher [21] follows the well-known

request-dispatcher design pattern. It is responsible for

receiving the incoming requests from the Front Controller and

forwarding them to the appropriate handler, through the

ICloudAction which is explained below. As mentioned in 3.1,

the requests are handled by the CloudActions. Therefore the

dispatcher forwards the request to the appropriate

CloudAction. In order to do so, he gains access to the platform

service states description file and based on the current state it

triggers the corresponding action.

ICloudAction. ICloudAction is the interface which is

present at the framework at design time and which the

Dispatcher has knowledge about. Every CloudAction

implements the ICloudAction. That facilitates the initialisation

of the new CloudActions during run-time.

Communication patterns. Two types of communication

pattern are supported by the framework: The first one is the

Servlets and particularly the Http Servlet Request and

Response objects [21] which are used by the Cloud Actions in

order to handle incoming requests and respond back to the

caller. The second type of communication is via the use of the

REST/SOAP protocol which enable the CloudMessages to

perform external requests to the service providers.

Cloud Service Registry. The Cloud Service Registry, as the

name implies, keeps track of the services that the cloud

application consumes.

In this section, we explained how the framework can be

utilised in order to model the workflow of the platform

services. The use of the reference meta-model enables the

consistent modelling of the platform services while the

construction of the Platform Service Connectors (PSC) allows

the abstraction of the providers’ peculiarities. The PSEC

automates the execution of the workflow offloading the task

from the application developer, to handle the various states.

VIII. PLATFORM SERVICE API DESCRIPTION

The second part in the process of adding a platform service

and providers to the framework constitutes the description of

the web API. As mentioned in Section II, the second

variability point among platform services is the different web

APIs that the concrete providers expose. Therefore, the

heterogeneity of the web APIs shall be captured by the

framework and abstracted by a common reference API

exposed to the application developers.

In order to enable the uniform description of the platforms

services’ API, the benefits of ontologies are exploited.

According to Gruber [22] ontologies are formal knowledge

over a shared domain that is standardised or commonly

accepted by certain group of people. The advantages here are

two-fold. First, ontologies allow to define clearly the domain

model of our interest; in our case the domain model is the

platform service providers web API. The fact that an ontology

can be a shared and a commonly accepted description of a

platform service, contributes towards the homogenisation of

the latter. The platform vendors can adhere to and publish the

description of their service based on the common and shared

ontology.

The reasoning capabilities that ontologies offer may be

exploited for consistency check of the service descriptions and

also for service discovery and recommendation.

Moreover, ontologies can be reused and expanded if

necessary. Thus, an ontology describing a platform service

may not be constructed from the ground up but may be based

on an existing one. The intention of the authors is to reuse and

expand the Linked USDL [23] ontology and particularly the

extended Minimal Service Model (MSM) as described in [24].

To the best of our knowledge and according to [24] the MSM

is the richest description model capable of capturing the web

API and enabling automatic invocation.

The platform service API description is based on an

hierarchy of a three level ontologies as shown in Fig. 6.

Inspiration has been gained by the Meta-Object-Facility

(MOF) standard [25] defined for the Model Driven

Engineering domain. Specifically, the hierarchy of the

ontologies resembles the bottom three levels of the MOF

structure, namely the meta-models, the models and the

instances of the models.

The level 2 Ontology (O2) includes the concepts required

to describe a web API. Such concepts are the Operations

offered by the service providers, the Parameters and the

endpoint for each operation etc. The level 1 Ontologies (O1)

include the concrete description of each of the platform

services which are supported by the framework. A dedicated

ontology corresponds to each of the platform services and

captures information about the functionality that each of the

services expose. For example, in the case of the cloud

payment service, information related to charging or refunding

a card is captured. The ontologies in the O2 level are also

referred to as Template ontologies. The level 0 Ontologies

(O0) include the description of the specific platform service

providers. A dedicated ontology corresponds to each of the

providers and describes the native web API. The ontologies in

the O0 level are also referred to as Instance ontologies.

During the three phases we describe how the ontological

service descriptions are formed and used to automatically

generate the clients.

A. Platform Service Modelling Phase

During this phase, the platform service reference API, as

shown in Fig. 1, is defined. The reference API is exposed to

the application developers and describes the operations

offered by the particular service. It is formed using the service

API description editor which offers a user interface and is

provided as plug-in in Eclipse IDE. The reference API is

captured in the Template Ontology.

Fig. 7 shows a snapshot of the Template ontology for the

payment service which describes the operation for charging a

card. For the sake of simplicity only the necessary amount of

information has been included. The name of the operation is

“ChargeCard”. It is a subclass of the class “Operation”.

“Operation” is defined in the Abstract platform service

ontology (O2 level) and includes all the operations offered by

the service. Fig. 7 also includes the following three elements:

“CardIdentifier”,which denotes the card to be charged,

“ChargedAmount”, which refers to the amount of money to be

charged during the specific transaction and “CurrencyCode”

which refers to the currency to be used for the specific

transaction. All three elements are subclasses of the class

“Attribute”. The class “Attribute” is defined in the Abstract

platform service ontology and includes all the attributes which

are used for the execution of the operations. An attribute is

linked to a specific operation with a property. Specifically, the

three afore mentioned attributes are linked to the

“ChargeCard” operation with the following properties

respectively: “hasCardIdentifier”, “hasChargedAmount”,

“hasCurrencyCode”.

B. Vendor Implementation Phase

In this phase the provider specific web API is described

and mapped to the reference API. The Service API description

editor is used to perform the mapping. The outcome is an

Instance ontology (O0 level) for each concrete provider.

Fig. 8 and 9 depicts two Instance Ontologies which

correspond to two payment service providers offered by

Heroku and Amazon respectively.

Figure 6. The three levels of the ontology hierarchy

Particularly, Fig. 8 shows the description of the charge

operation as defined in the API of the Spreedly service offered

via Heroku platform. Individuals are created to express each

of the specific elements of the provider`s API. An Individual,

in the field of Ontologies can be considered as an instance of a

class. Specifically, the “purchase” Individual denotes the

operation name which is equivalent to the “ChargeCard”

operation of the Template Ontology. This justifies the fact that

“purchase” individual is of type “ChargeCard”. The Individual

“amount” denotes the amount to be charged during the

transaction and is equivalent to the “ChargedAmount”

attribute. Thus it is defined of type “ChargedAmount”.

Likewise the Individual “currency_code” is of type “currency”

and the “payment_method_token”, which identifies the card to

be charged, is of type “CardIdentifier”.

Figure 7. Example of Template ontology for the cloud payment service

Figure 8. Example of Instance ontology for the Spreedly payment service

In the same way an Instance Ontology is created (Fig. 9) to

describe the API of the “Stripe” payment service provider

offered via Amazon. The individual “create” denotes the

creation of a charge and is equivalent to the “ChargeCard”.

Therefore it is of type “ChargeCard”. Likewise, the

individuals “amount”, ”currency” and “card” are of type

“ChargedAmount”, “CurrencyCode” and “CardIdentifier”

respectively.

Fig. 9. Example of Instance ontology for the Stripe payment service

In the same way the rest of the functionality of a platform

service can be described. At the same time, the differences in

the APIs between the various providers can be captured. The

payment service has been used as an example. The proposed

structure of the three levels of ontologies can be used to

describe the web API of additional platform services such as

authentication and message queue service. Initially, a

Template ontology is formed to describe the functionality of

each of the platform services. Consequently the Instance

ontologies are created to capture the vendor specific web

APIs.

C. Execution Phase

During the Execution Phase, the Platform Service

Reference and the provider specific API descriptions, which

correspond to the Template and the Instance Ontologies

respectively, are fed to the API Client Generator (Fig. 1). This

component parses the Ontologies and generates:

(i) A set of interfaces which correspond to the reference API

and provide the application developer with access to the

functionally of the service.

(ii) The client code for the web API invocation of each of the

concrete providers which implement the platform service.

Further information about the code generation can be

found in [26]. Therefore the application developers can

seamlessly deploy the platform service providers without

being required to adhere to the specific web APIs or manually

implement the client for each individual API.

IX. DISCUSSION AND CONCLUSIONS

This paper presented a development framework enabling

the design of service-based cloud applications. Particularly,

the framework facilitates the integration of platform basic

services in a consistent way as well as seamless deployment of

the concrete providers implementing those services. It

achieves this by alleviating the variability issues that may

arise across the platform services, namely: (i) the differences

in the workflow when executing an operation, (ii) the

heterogeneous web API exposed by the providers and (iii) the

various configuration settings and authentication tokens that

each provider requires. The main components of the

framework are: (i) the reference meta-model, which enables

the modelling of the abstract functionality of the platform

basic service and an ontology-based architecture for

alleviating the differences between the Providersಬ web APIs

and automatically generating the client adapters for the API

invocation. The process of adding a platform service provider

in the framework is divided in three steps: (i) The Platform

Service Modelling phase, where the abstract functionality is

captured, (ii) the Vendor Implementation phase, where the

specific provider functionality is infused and the (iii)

Execution phase where the framework handles the operation

execution.

The main limitation of the framework is that it is

inherently restricted to the abstraction of the common features

of the service providers. This means that the reference API

contains the operations which are collectively offered by the

supported providers. This is a natural limitation when dealing

with API abstraction that is also encountered by similar

solutions such as the jClouds, mOSAIC and TOSCA, which

are involved with cloud services API abstractions. A solution

to that is to provide the application developers with direct

access to the client adapters for the specific provider when

they need to use provider specific functionality, which is not

addressed by the reference API. In addition, the reference API

rather than being static, can be continuously updated to reflect

the new features offered by the platform service providers.

The current version of the framework supports the

abstraction of platform service providers and the management

of the services that are integrated in the cloud application.

Future work involves the expansion of the framework so that

it offers functionality for automatic discovery and

recommendation of services. Furthermore, it can provide

billing information about the incurring costs of the application

with respect to the services that it consumes.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the European Union Seventh Framework Programme

(FP7/2007-2013) under grant agreement nº264840, the

RELATE project (http://www.relate-itn.eu).

REFERENCES

[1] F Gonidis, I. Paraskakis, A. J. H. Simons and D. Kourtesis,

“Cloud Application Portability. An Initial View”, in 6th Balkan

Conference in Informatics, Thessaloniki, 2013, pp. 275-282.

[2] D. Kourtesis, K. Bratanis, D. Bibikas, and I. Paraskakis,

“Software Co-development in the Era of Cloud Application

Platforms and Ecosystems: The Case of CAST”, in

Collaborative Networks in the Internet of Services,

Bournemouth, 2012, pp. 196–204.

[3] J. Guillen, J. Miranda, J. M. Murillo and C. Cana, “Developing

migratable multicloud applications based on MDE and

adaptation techniques”, in the 2nd Nordic Symposium on Cloud

Computing & Internet Technologies, Oslo, 2013, pp. 30-37.

[4] F. Gonidis, “Experimentation and Categorisation of Cloud

Application Platform Services”, South East European Research

Centre (SEERC), Thessaloniki, 2013.

[5] Heroku. (2014). [Online]. Available: http://heroku.com

[6] Google App Engine. (2014). [Online]. Available:

https://developers.google.com/appengine.

[7] AWS Marketplace: Find and Buy Server Software and Services

that Run on the AWS Cloud. (2014). [Online]. Available:

https://aws.amazon.com/marketplace.

[8] S. Pautasso, O. Zimmerman andF. Leymann, “Restful web

services vs. "big"' web services making the right architectural

decision.” In 17th International Conference on World Wide

Web, Beijing, 2008, pp. 805-814.

[9] jclouds. (2014). [Online]. Available: http://www.jclouds.org.

[10] Apache LibCloud. (2014) [Online]. Available: https ://libcloud.

apache.org/index.html.

[11] D. Petcu, “Consuming Resources and Services from Multiple

Clouds in Journal of Grid Computing”, nr. 10723, Jan 2014, pp.

1-25.

[12] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann and

A. Nowak, “OpenTOSCA – A Runtime for TOSCA-Based

Cloud Applications” in 11th International Conference, ICSOC

2013, Berlin, 2013, pp. 692-695.

[13] T. Binz, G. Breiter, F. Leymann and T. Spatzier, “Portable

Cloud Services Using TOSCA in IEEE Internet

Computing” vol. 16, May-Jun 2012, pp. 80–85.

[14] D. Ardagna, E. Di Nitto, G. Casale, D. Petcu, P. Mohagheghi

and S. Mosser, ಯMODAClouds: A model-driven approach for

the design and execution of applications on multiple Cloudsರ in

Workshop on Modeling in Software Engineering, Zurich, 2012,

pp. 50-56.

[15] K. Jeffery, G. Horn and L. Schubert, “A vision for better cloud

applications” in Proceedings of the 2013 international workshop

on Multi-cloud applications and federated clouds, Prague, 2013,

pp. 7-12.

[16] A. Rossini, N. Nikolov, D. Romero, J. Domaschka, K. Kritikos,

T. Kirkham and A. Solberg, “D2.1.2 - CloudML

Implementation Documentation (First version)”, CloudML,

2014.

[17] M. Hamdaqa, T. Livogiannis and L. Tahvildari, “A reference

model for developing cloud applications” in 1st International

Conference on Cloud Computing and Services Science,

Noordwijkerhout, 2011, pp. 98-103.

[18] M. Maleshkova, C. Pedrinaci and J. Dominique,

“Investigatingweb APIs on the World Wide Web”, in 8th

European Conference on Web Services (ECOWS), Ayina

Napa, 2010, pp. 107-114.

[19] R. Fielding, “Architectural styles and the design of network-

based software architectures”, PhD thesis, University of

California, Irvine, 2000.

[20] D. Alur, J. Crupi and D. Malks, “Core J2EE Patterns. Sun

Microsystems Press”, 2001.

[21] J. Hunter and W. Crawford, “Java Servlet Programming”,

O'Reilly & Associates, Inc., Sebastopol, CA, 2001.

[22] T. R. Gruber, “A translation approach to portable ontology

specifications in Knowledge Acquisition”, vol. 5, Jun. 1993, pp.

199–220.

[23] C. Pedrinaci, J. Cardoso, and T. Leidig, “Linked USDL: A

Vocabulary for Web-scale Service Trading”, in 11th Extended

Semantic Web Conference (ESWC 2014), Crete, 2014.

[24] L. Ning, C. Pedrinaci, M. Maleshkova, J. Kopecky and J.

Domingue, “OmniVoke: A Framework for Automating the

Invocation of Web APIs” in Fifth IEEE International

Conference on Semantic Computing, Palo Alto, 2011, pp. 39-46.

[25] T. Gardner, C. Griffin, J. Koehler and Rainer Hauser, “A review

of OMG MOF 2.0 Query / Views / Transformations

Submissions and Recommendations towards the final Standard”,

in Workshop on Metamodeling for MDA, York, 2003, pp. 179–

197.

[26] F. Gonidis, I. Paraskakis and A. J. Simons, “On the role of

ontologies in the design of service based cloud applications”, in

Second Workshop on Dependability and Interoperability in

Heterogeneous Clouds, Porto, 2014, in press.

