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Abstract—Data with high security requirements is being 

processed and stored with increasing frequency in the Cloud. To 

guarantee that the data is being dealt in a secure manner we 

investigate the applicability of Assurance methodologies. In a 

typical Cloud environment the setup of multiple layers and 

different stakeholders determines security properties of 

individual components that are used to compose Cloud 

applications. We present a methodology adapted from Common 

Criteria for aggregating information reflecting the security 

properties of individual constituent components of Cloud 

applications.  This aggregated information is used to categorise 

overall application security in terms of Assurance Levels and to 

provide a continuous assurance level evaluation. It gives the 

service owner an overview of the security of his service, without 

requiring detailed manual analyses of log files.  

Keywords — critical infrastructures, assurance, cloud  

I. INTRODUCTION  

An important transformation process in IT systems is 

currently taking place triggered by the rapid propagation of the 

Cloud Computing paradigm across distinct domains and 

organisations. Hence it is envisaged that ICT services will in 

future be delivered in a manner similar to utilities such as 

water, electricity, gas, and telephony. The main motivation for 

adopting Cloud technology is to increase efficiency and 

minimize IT costs by offering new concepts such as elasticity, 

scalability and on-demand resource provisioning. However, in 

order to automatically provision resources for elastically 

adaptive Cloud applications it requires both, the applications 

and the underlying platform to be constantly monitored to 

capture information at various system and operational levels 

and time intervals. This is particularly manifested in Critical 

Infrastructures, which require even more attention when these 

systems are hosted on top of Cloud environments.  

However, the use of Cloud computing has introduced new 

risks that have to be sufficiently understood before an 

organisation should consider adopting the Cloud and using 

Cloud services. Moreover, due to the complexity of the 

application execution environment, routine tasks such as 

monitoring or security analysis becomes quite complex. These 

tasks often require close interaction and assessment between 

different layers of the Cloud stack. For example, certain 

distributed applications running within a Cloud cluster on 

specific virtual machine(s) (VM) require a general assurance, 

or even have to be certified, for maintaining specific security 

properties. This might also require monitoring the execution of 

the application on the VMs, as well as monitoring the 

availability of the physical resources of the VMs. Thus, this 

would require the use of different tool sets to collect and 

analyse the performance of data from each level in order to 

reach the point where the application can be certified.  

Under these circumstances, we should gather different 

types of information at various levels of granularity, from low-

level system metrics (e.g. CPU usage, network traffic, memory 

allocation, etc.) to high-level application specific metrics (e.g. 

throughput, latency, availability, etc.). These are collected 

across multiple system layers (physical, virtualization, 

application level) in a Cloud environment at different time 

intervals. Hence, the challenge in this case is to define a way to 

aggregate these different types of information from different 

levels in order to provide an overall assurance, and determine 

how changes in individual assurance levels of every 

component affects the overall assurance.  

In this paper, we propose, based on existing work[10] an 

assurance method. We refer to assurance, motivated by 

common criteria, as the likelihood for a service falling victim 

to a cyber-attack. A high assurance level means a low 

probability for this to happen. Security properties, based on 

measurable metrics, of substituent components contribute to 

the overall assurance level and how they are aggregated is 

subject to dependency policies. This is based on a 

comprehensive concept for assessing security properties across 

multiple layers with different stakeholders for composite based 

systems. The dependency policies, can be flexibly adopted 

according to various use case requirements to derive evaluation 

of every individual component of a service or a system.    

The rest of the paper is structured as follows. Section II 

outlines the related work. Section III describes our approach 

and introduces the Assurance Assessment Method, the way we 

define assurance levels, how we abstract the service as a 

general tree, and the assurance aggregation process. In Section 

IV the evaluation of the approach is provided based on a Use 

Case Scenario. Finally, section V provides concluding remarks 

and directions for future work. 

II. RELATED WORK 

Traditional approaches for assurance assessment in the 

Cloud, such as Cloud Security Alliance (CSA) [12], 

Information Technology Assurance Framework (ITAF) [17], 

or the Cloud Computing Information Assurance Framework 

from ENISA [18], are usually built on existing frameworks 

such as ISO/IEC 27000-series (e.g. current work in progress 

ISO/IEC 27017 and ISO/IEC 27018 which are focusing on 



 

 

information security and data protection in Cloud), PCI DSS 

Cloud Guideline [13], COBIT [14], NIST [16], or IT Baseline 

Protection Catalogues [15]. 

We have considered existing approaches, namely the 

Common Criteria framework [6] for assurance of IT systems 

(as it is the most dominant work in the field) and extends it 

[10] since its main focus is on assessing assurance in the 

development phase of the life cycle but lacks support in the 

subsequent production phase.   

 Unlike traditional approaches, the work derived from 

Krotsiani et.al. [11] proposes a novel approach for certifying 

the security of Cloud services based on incremental 

certification of security properties for different types of Cloud 

services (including IaaS, PaaS and SaaS services). This 

approach uses operational evidence from the services 

provisioning through continuous monitoring. Although the 

model does not directly address assurance as an explicit 

objective, it can be adopted to efficiently assess assurance at 

various levels and time intervals. 

Our approach is related to autonomic monitoring systems 

that are based on the SECCRIT architecture model [7] and on 

an evidence-gathering model for assurance assessment in 

critical infrastructures hosted on top of Cloud environments (as 

introduced in [8]). Moreover, we found the concepts of 

Common Criteria for analysing and assessing application in 

preproduction phases. However, we emphasize the importance 

of observing systems in their production phase, as well as their 

dependencies with other corresponding elements inside of 

heterogeneous systems
1
 

III. MULTI LAYER ASSURANCE ASSESMENT MODEL 

. The popular National Institute of Standards and 

Technology (NIST) [3] model depicts the Cloud architecture 

through a dynamic tree-layered service-provisioning model 

(infrastructure, platform and software - as a Service layer) 

capable of scaling services across distinct administrative and 

legislative domains. However, the common practices for 

provisioning and delivering services (as well as the abstraction 

of those layers and driven technologies) differentiates based on 

the business objectives of a particular Cloud provider. Hence, 

the traditional assessment frameworks (e.g. COBIT, ISO 

27000 series) are not fully applicable, especially when 

addressing security related concerns in Cloud environments (as 

discussed in [10]).   

However, in order to build a comprehensive and flexible 

framework that is able to acquire heterogeneous information 

across the Cloud stack the following objectives have to be 

addressed: 

 cross layer assessment  

 technology independence 

 information acquisition restrictions 

 assessment, quantification and aggregation of 

different information sets 

                                                           
1 It should be noted that our work is a part of a broader research programme, 
undertaken by the EU F7 project SECCRIT [4] 

The assessment of such services when taking into account 

different Cloud layers requires a compact solution, able to 

embrace all requirements and produce an effective assessment 

tool. Especially when considering different stakeholders, 

various business and security objectives, a high degree of 

service complexity, business model, and distinct technologies. 

Hence, we adopt Common Criteria [6] to address assurance in 

Cloud related environments. Although, Common Criteria 

offers a comprehensive solution for assurance assessment, it 

lacks support for the production phase, especially when 

referring to those services that are hosted on top of the Cloud 

architectures. Taking this and the above-mentioned objectives 

into account, we use the Common Criteria approach in order to 

address assurance assessment of complex services hosted in 

Cloud infrastructures. Furthermore, the policies of some Cloud 

providers restrict information crawling across their Cloud stack 

(for instance software as a service Cloud provider will hesitate 

to reveal the information of underlying service being provided, 

in order to mitigate potential attack vectors on its 

infrastructure). Hence it is harder to analyse, indicate or predict 

security issues in such environments. Thus, we distinguish two 

main categories: a) solutions based on open-source Cloud 

environments (i.e. solutions where we are able to freely acquire 

necessary information without restrictions); and b) closed 

Cloud environments with restricted information access (i.e. 

public Cloud providers which provide any additional 

information via the Service Level Agreements (SLA) 

[21][22]). Due to the flexibility of acquiring the information 

and ability to modify services for provisioning the information, 

this paper focuses primarily on open-source Cloud solutions 

(e.g. OpenStack [23], CloudStack [24]). This does, however, 

not limit our approach to these environments. 

The assessment and aggregation of different information 

sets (i.e. analysis of a particular entity in the Cloud with 

respect to a specific set of properties) is derived from the 

concept of assurance levels, supported through aggregation 

policies (i.e. decision making algorithms that cluster the 

security properties of each class towards the predefined 

assurance levels), aligned with the Common Criteria approach 

[6].  

A.  Assurance assesment method  

Considering these objectives and building on the research 

presented in [10] we propose a comprehensive and flexible 

approach for performing assurance assessment. The approach 

is using a well-defined set of security properties, provided by 

the CUMULUS project [5]. These are additionally aligned with 

the SECCRIT vulnerability catalogue [20] and The Notorious 

Nine from Cloud Security Alliance [19]. 

 Our assessment method emphasises three core assessment 

entities: Target of Evaluation (ToE), Group of Evaluation 

(GoE) and Component of Evaluation (CoE). These entities are 

aligned with the Common Criteria assessment framework, and 

are therefore designed to offer flexibility, determination of the 

precise impact of the individual components or group of 

components, scalability of assessment across different time 



 

 

intervals, and the possibility to highlight each individual entity 

of the system as an independent point of evaluation.  

Furthermore, we designed our method as a hierarchical tree 

structure defined with parent-child object relationship. Each 

parent can be in a direct relationship with multiple child 

objects. The parent object that does not have any related child 

objects is referred to as leaf object. Additionally, we also 

define associations, dependencies, associated component sets 

and assurance profiles, as supporting assessment elements of 

the ToE. Figure 1 illustrates the fundamental elements of our 

Assurance Assessment Method. More specifically, it presents 

how a particular service can be abstracted through a set of 

hierarchically organized components. We use these abstraction 

elements to build our method and to efficiently assess 

assurance according to a predefined set of security properties 

derived from the CUMULUS project.  

The initial step of the assessment method defines and 

details the ToE. This can be either an asset of the Cloud 

referred to as service (e.g. a specific service operation, a set of 

service operations, data managed by the service) or an asset 

that is required or contributes to the realization of a Cloud 

service (e.g., a virtual machine).  

Moreover, each ToE contains a set of attributes such as: (i) 

security objectives, which are mapped towards the related set 

of security claims and are formally referred to as Security 

Properties (SP); (ii) attributes that define the type of assurance 

(e.g. information or system assurance) according to the 

assurance model presented in [10]; (iii) a short description of 

the ToE; and (iv) the assessment interval. The security 

objectives are the statements of intent to counter the identified 

threats by IT measures. Each ToE can be formally defined as 

ToE ≡ T = {COEi, i ∈ N} | {GOEi, i ∈ N}. This generalized 

statement as presented in Figure 1 can be formulated as ToE ≡ 

COEA = {COEi, i ∈ 〈B, C, D, E, F, G, H, I, J〉}. The group of 

objects, formally referred as Group of Evaluation (GoE) and 

defined as GoE = {CoEi, i ∈ N}, are a compound set of 

individual objects that share common properties based on 

which the assessment is conducted. Considering Figure 1, GoE 

can be formulated as compound of objects, e.g. GOE1 = 

{COEi, i ∈ 〈F, H, I, J〉}. Each individual object to which we 

refer to as the component of evaluation (CoE) can be also 

handled as an independent ToE. Each GoE is composed of (i) 

attributes, used for describing a particular group; (ii) assurance 

profile, which is the essential element for evaluation; (iii) 

associations, an element used to describe relationships between 

different groups in the scope of the evaluated target; and (iv) 

individual components. 

Component Dependency (CD) is a correlation between two 

individual components of the evaluated system (i.e where CDij 

{〈COEi , COEj〉, i, j ∈N}), that arises when a component is not 

self-sufficient and relies upon the presence of another 

component, e.g. when referring to Figure 1 CDCG={COEC, 

COEG}. Association is a set of two individual components that 

are in a direct parent-child relationship with a defined 

dependency, for which it is valid: ∀ ASi i ∈ N ≡ !∃ CDij { 

〈COEi , COEj〉, i, j ∈N} ⟹ COEi  parent of COEj. An 

individual parent object can be associated with N distinct child 

objects, which we formally refer to as Associated Component 

Set (ACS), for which the following statements are valid: ACSK 

≔ ACS (COEK) = {COEi, i ∈ N}, ∀ COEi ⟹ !∃ Parent = 

COEK and ∄ CDij {〈COEi , COEj〉, i, j ∈ N}.  

Last but not least, the Assurance profile (AP), an essential 

element in our method used to define policy related with 

security properties that are mapped to the Assurance classes 

(AC) of a particular CoE or GoE. These security properties 

will at the end define the level of assurance for an individual 

component, group or even a whole system. We emphasize two 

types of Assurance profiles setup: Uniform Assurance Profile 

(APU), which is always the same regardless of class, evaluated 

object, group or target; and Custom Assurance Profile (APP), 

which can be customised depending on the object of appliance.  

In Table 1 we illustrated the APU for a particular assurance 

class. Furthermore, we can also assign a custom Assurance 

Profile to a particular CoE, GoE or ToE.    

B. Assurance Levels  

 Assurance levels (AL) outline the scale of measurement 

for evaluating predefined ToE, GoE or CoE. Every individual 

CoE or GoE contributes directly to the assurance level of the 

ToE by meeting a set of SPs (i.e. a certain set of security 

criteria). Moreover, the SPs derive the AL per individual AC 

by also taking into consideration the dependencies of the 

evaluated object, e.g. component, group or target of evaluation 

if such are present. However, each AC may contain k of SP (k 

number of SPs) as shown in equations (5) and (6). Due to the 

binary decision making concept applied in our approach there 

can be 2
k
 combinations of distinct SP states where 2

k
 > N, and 

N is the cardinality of AL, in terms of security properties (AL= 

Figure 1: Hierarchical illustration of services via the general tree model 
structure.  The service or application is defined as a Target of Evaluation (ToE) 

depicted with the individual Components of Evaluation (CoE), whereby each 

individual CoE can be associated with N distinct CoEs, referred as Associated 
Component Set (ACS). The correlation between two individual CoEs is 

referred to as a Component Dependency, which is a formal compound of 

Association. Moreover, CoEs are grouped in order to establish assurance of 

components with respect to specifc security classes, these groups are then 

formally defined as Groups of Evaluation (GoE). 

 

 



 

 

{1, 2, 3, 4 … N}). Thus, each individual combinations of SPs 

{SP1, SP 2, SP3, SP4 … SPN}, associated with a particular AC, 

are formally referred to as Security Property Vector (SPV) 

(equations (3, (4, (5, (6). Security Property Vector defines the 

current state of an object by identifying particular set of 

security properties. Each SPV, is associated with a particular 

assurance class, whereby each class can comprise multiple 

SPVs. Thus, in order to scale 2
k
 states over N assurance levels, 

we encode ranges in hexadecimal vectors that cluster a 

potential set of states that correspond to a particular SPV, as 

shown in Table 1. Hence, each individual AL is assigned with 

multiple SPVs, which are formally referred as Vector Set (VS), 

(equation (2)).  

Table 1 presents an example of Assurance profile for a 

particular Assurance class. More specifically, it illustrates a set 

of relevant SPs clustered per individual ACK represented with 

a hexadecimal vector. The left hand side of the table shows the 

SPVs, sorted by relevance, and all potential combinations for a 

particular security vector SPV = [SP4, SP3, SP2, SP1]. The right 

hand side shows a binary vector for ALi (i ∈ {1, 2, 3 … 7}), 

which associates particular set of SV vectors. At the bottom of 

the table the Hexadecimal representation of each particular 

binary AL vector is illustrated.  
Table 1 Assurance level association for a particular assurance class. Set of 

relevant SPVs clustered per individual ACK represented with a hexadecimal 

vector. The left hand side of the table shows the SPVs, sorted per relevance, 

and all potential appearance combinations for a particular  vector SPV = [SP4, 

SP3, SP2, SP1]. The right hand side shows a binary vector for ALi, i ∈ {1, … 

7}, which associates particular set of SV vectors. At the bottom of the table the 
Hexadecimal representation of each particular binary AL vector is illustrated. 

 
Security 

Property Vector 

(SPV) 

Assurance level association 

SP4 SP3 SP2 SP1 AL AL1 AL2 AL3 AL4 AL5 AL6 AL7 

0 0 0 0 - 0 0 0 0 0 0 0 

0 0 0 1 AL1 1 0 0 0 0 0 0 

0 0 1 0 AL2 0 1 0 0 0 0 0 

0 0 1 1 AL2 0 1 0 0 0 0 0 

0 1 0 0 AL3 0 0 1 0 0 0 0 

0 1 0 1 AL3 0 0 1 0 0 0 0 

0 1 1 0 AL4 0 0 0 1 0 0 0 

0 1 1 1 AL4 0 0 0 1 0 0 0 

1 0 0 0 AL5 0 0 0 0 1 0 0 

1 0 0 1 AL5 0 0 0 0 1 0 0 

1 0 1 0 AL6 0 0 0 0 0 1 0 

1 0 1 1 AL6 0 0 0 0 0 1 0 

1 1 0 0 AL7 0 0 0 0 0 0 1 

1 1 0 1 AL7 0 0 0 0 0 0 1 

1 1 1 0 AL7 0 0 0 0 0 0 1 

1 1 1 1 AL7 0 0 0 0 0 0 1 

Hexadecimal AL vector 0002 000C 0030 00C0 0300 0C00 7000 

 

 

For each individual AC that is associated with a set of 

SPVs particular SP (part of SPV) may vary. Nevertheless, 

every individual AC, regardless of the SPs, always has to have 

the same cardinality k (equation (5)). In order to efficiently 

aggregate the assurance across the variety of architectural 

layers, ACs first has to fulfil the equations (5) and (6), stating 

that regardless of the AC, none of the SPs can be associated 

with more than one AC (equation (7)).  

 Although, we abstract ALs over N levels, for the purpose 

of our empirical evaluation we will conduct the assessment 

over 7 ALs, therefore having minimum 3 SP per AC to be able 

to map all assurance levels with SPVs. Depending on the 

property set that a particular entity (i.e. class component, group 

or even a whole target of evaluation) is assigned with and due 

to the dynamic behaviour of the Cloud the AL will also be 

dynamic and vary. Hence, it is crucial to efficiently assess the 

assurance in a continuous manner without impacting on the 

performance of the evaluated service or collocated services.  

C. Assurance Aggregation 

As mentioned above, we propose a concept for the 

assurance aggregation through a recursive process, which 

aggregates the individual assurance levels of the underlying 

associated objects (i.e. it calculates the overall assurance of the 

components that are associated with the root component). The 

overall assurance can be derived by applying the method 

depicted in Figure 1. Further, by conducting the proposed 

algorithm described in Figure 4 we can then derive the overall 

assurance. Therefore by referring to Figure 1, we state the 

CoEA as the ToE. Since, the CoEA is associated with two 

additional components, CoEB and CoEC, which represent the 

associated components set (ACSA) of the CoEA and are 

additionally connected with other components. The overall 

assurance in this case has to be recursively aggregated from the 

leafs of the tree (i.e. by aggregating all ACS (ACSB, ACSC and 

ACSF). Therefore we will use tree traversal post order method 

to iteratively walk through the tree. For the first use case, we 

just refer to the concept of the tree traversal post order method 

as a tool for our concept. This method is slightly extended by 

integrating our Assurance Level Calculation Procedure 

(ALCP) from Figure 3 using recursively aggregate assurance. 

The assurance level of the referenced ACS (ACSF, ACSB 

and ACSC, respectively), by applying the ALCP aligned with 

the equation (8). The procedure sequentially conducts bitwise 

conjunction of individual SPs for each CoE across each ACS. 

Depending on the result of conjunction (1 or 0) it is decided if 

all SPVs are discarded with the bit that matches the result of 

the conjunction. For example, by discarding certain SPVs we 

are indirectly discarding those ALs that are not fulfilling the 

∀ALK ∈ ACX:  !∃ VS,   (1) 

VS = {SPV1, SPV2 … SPVN}, (2) 

SPVi= [ SP1, SP2, SP3, SP4], SPi = {0,1} (3) 

∀VS ∈  ALK :  ∃ SPVi, i ∈ℕ (4) 

∀ SPVi ∈ ACX: |SPVi| = k (5) 

ACX= {SPV1, SPV2, SPV3, … SPVn} (6) 

⋂   

   

   

   
(7) 

ACSAL = ⍝ACX (SPVi) ,  ACX ∈ CoEM, i ∈ {1…N} (8) 

ACSAL(i) ⊢ DALVS(i) (9) 

ALVS ⊆  DALVS (10) 

 (DALVS(i) ∧ ALVS(i)) ⇒ AL(ACX)=i, ACX ∈ CoEM (11) 

!∃ ALi ⊧  ∀Min(CALj)  i∈ {1…7}, j∈ {1…N} (12) 



 

 

current set of SPs for particular ACS. The next step is to map 

the suitable ACSAL, according to the Table 2, towards the 

appropriate DALVS. The DALVS is not only used for mapping 

the calculated ACSAL, but also to customize the underlying 

security properties of a particular AL. Finally, we calculate the 

AL of the root CoE for a particular ACS, equation (9), 

depending on the SPs that the CoE corresponds to the AL of 

the ACS whereby the equations (10) and  have to be fulfilled.  

However, in case of multiple ACs per CoE we have to consider 

equation (12) where we consider the AL of individual ACs to 

determine consolidated ALs for a CoE.  
Table 2: Assurance Level per distinct Assurance classes depicted with 

Hexadecimal vectors. We define minimal assurance level requirements 

(DALVS) of the objects that are in direct relationship with the parent object. It 
also defines the assurance level requirements per level of the parent object 

itself, ALVS. Additionally we define the minimum requirement for each AC in 

terms of AL, i.e. we define at which assurance level individual AC has to 
satisfy to define the overall assurance of the object. In case when we have 

multiple AC to consider in order to derive the overall AL we use the 

Consolidated Assurance Level (CAL). 
 

ASSURANCE LEVEL I II III IV V VI VII N 

AC1 
ALVS 0002 0008 0010 0080 0C00 7000 8000 8000 

DALVS 0002 0004 0030 00C0 0D00 3000 C000 8000 

CAL - AL1 AL2 AL3 AL5 AL6 AL7 ALN 

AC2 
ALVS 0002 0008 0020 0040 0300 1800 4000 8000 

DALVS 0004 0018 0020 00C0 0300 1C00 6000 8000 

CAL - AL1 AL3 AL4 AL5 AL6 AL7 ALN 

AC3 
ALVS 0002 000C 0010 00C0 0200 0C00 4000 8000 

DALVS 0006 0004 0030 01C0 0200 1C00 6000 8000 

CAL AL1 AL2 AL3 AL4 AL5 AL5 AL6 ALN 

ACN 
ALVS 0006 000C 0030 00C0 0D00 1C00 7000 8000 

DALVS 0006 000C 0030 00C0 0D00 1C00 7000 8000 

CAL AL1 AL2 AL3 AL4 AL5 AL5 AL7 ALN 

D. General Tree Model  

A general tree G is a finite compound set of nodes such that 

there is only one designated node R, referred as root of the tree 

G, where each individual node has only one ancestor (Parent) 

node, with exception of the root, and multiple successors 

(Children). Each node of the tree is defined by two properties: 

Depth and Degree. Depth of the node is the distance of the 

node from the root node, and Degree of the node is the number 

of successors for a particular node. Moreover, each general tree 

can be partitioned in n > 0 disjoint subsets T0, T1, T2 … Tn-1, 

where each is a tree whose roots R0, R1, R2 … Rn-1 are children 

of the tree G. The subset Ti (0 ≤ i ≥ n) is a subset of the trees 

of T.  

Although we intent to depict our services through a general 

based tree model, they can be also depicted via the binary tree 

model, since the general tree model is easily transformed to A 

binary tree. For demonstrational purpose of our algorithm 

(Figure 3) we will use the general tree model. Since the model 

can be easily transformed, our implementation can be adopted 

to apply the algorithm on binary trees as well. However, we 

will not address the assessment of binary trees as it exceeds the 

scope of this work.  

IV. EVALUATION 

The introduced approach is evaluated and explained in 

more details using two scenarios. As first step, the cyber-risks 

that exist in the use case scenario have to be understood 

alongside the security properties that need to be assessed and 

certified.  

Perceptions of risk in the context of Cloud computing have 

to be well understood since they will inevitably influence 

decisions about the adoption of Clouds or the security controls 

that will be applied to them. Two important factors that must 

be taken into consideration for a better understanding of cyber-

security risks are: (i) the threats and their likelihood to occur; 

and (ii) the vulnerabilities and an indication of their severity. A 

key challenge when understanding the risks associated with 

Cloud computing is to determine those that are specific to the 

use of Clouds.  

Figure 2: Evaluation use cases derived with respect to the SECCRIT [4] case studies. The subfigure (a) illustrates the basic model of a general tree where the 
depth of the tree is one and the degree is N. This is an initial model where the algorithm introduced in Figure 3calculates iteratively the conjunction of SPV bits 

to determine the overall assurance of the leaves of ACS for CoEi, i ∈ {B,C,D…N} and aggregates towards root according the policies defined in Table 2 and 

equations (8, (9, (10, (11, (12).  Although this is straight forward, in subfigure (b), the same process is aligned with the post-order traversal method, 
which at the end aggregates the Assurance towards the root COEA. 

(a)                                                                                                              (b)  



 

 

Therefore, in order to comprehend the Cloud-specific risks 

of our scenario we use the Cloud vulnerability catalogue the 

SECCRIT project [4] has developed, in which we then mapped 

the Notorious Nine Top threats from CSA [1]. Further, with 

the help of the CUMULUS project’s security property 

catalogue [2], we map these vulnerabilities to possible security 

properties for their assessment. The basis of this catalogue is 

the identification of a number of categories that enable us to 

focus directly on Cloud-related issues. The core of these 

categories is based on the NIST essential Cloud computing 

characteristics [3].  

 

Figure 3: Assurance level calculation procedure (ALCP) for associated objects 

used in equation (8). The procedure does the bitwise conjunction of the most 

significant bit and based on the result decides whether to discard the SPV that 

have 0 or 1 assigned to a particular bit that is being analysed. Furthermore, 
during each iteration, the procedure checks if the remaining vectors that define 

a particular component are a subset of one of the vector sets associated to a 

particular ALi, as shown in Table 1, for a particular ACk 

A. Use Caseses  

The aim of the evaluation is to illustrate a real world 

scenario via the abstraction of a general tree model. This is 

used to assure the public safety of critical infrastructure 

services and assesses the assurance according to a set of 

security classes/properties. We refer in particular to the case 

studies from the SECCRIT project [4] in order to abstract our 

approach and make a proof of concept assessment algorithm.   

To demonstrate our algorithm we abstract a service via the 

use case scenarios explained below. Moreover, we 

implemented our assurance algorithm in Java so we can 

randomly define properties of evaluation such as depth of a 

tree, degree of a node, security property vector bit length. 

Furthermore, our implementation method is founded on post-

order tree traversal model in order to efficiently evaluate the 

assurance of service by traversing the tree to aggregate security 

in respect to assurance policies.  

For the first use case scenario, the Depth (D1) of the tree T1 

is 1, meaning that we have only a root with a set of children, 

Degree (D2) will be N, generated randomly, as shown in 

(Figure 2 (a)). In the second use case both degree and depth 

properties are predefined, e.g. D1=3 and D2=3 (Figure 2 (b)).  

Within the second use case we want to demonstrate the 

application of our algorithm in a more complex general tree, 

which would illustrate the service more realistically.   

B. Security Properties, Vulnerabilities and Threats 

The SECCRIT case studies consider mainly risks related to 

the authorisation of users, data storage and data leakage. In 

Figure 4 we present the architecture of the system with 

components in different levels, as well as their dependencies. 

Moreover, some relevant security properties are mapped to 

each component that needs to be certified in order to assure the 

whole service. 

 

 

Figure 4: Identified set of Security Properties across various architecture layers 

of the Cloud environment, mapped towards the SECCRIT vulnerability 

catalogue and CUMULUS property catalogue. Due to the fact that both 
catalogues enumerate large number of properties we only illustrated most 

representative ones for time being and will provide more detailed catalogue in 

our further work. 

Table 3 presents a number of security properties that are 

relevant for the case study, their security property category, as 

well as the vulnerabilities and threats that are related to each of 

them. Moreover, the dependencies between these properties are 

also provided according to Figure 4. From this list we have 

selected four properties, e.g. SP_7, SP_4, SP_6 and SP_1 to 

proceed to the evaluation of our approach, as a starting point of 

our on-going research on multi-layer assurance dependencies 

policies. 

C. Scenario based assessment 

To demonstrate the approach we distinguish two specific 

use cases: the fundamental general tree model (illustrated in 

Figure 2- a) and the advanced tree model (illustrated in Figure 

2- b).  Both models illustrate a service through a general tree 

model, where each individual node represents a standalone 

entity of the particular service that is being evaluated. 

Furthermore, we use our set of identified security properties to 

demonstrate our approach by distinguishing the four most 

relevant properties SP_7, SP_4, SP_6 and SP_1 assigning them 

as SP4, SP3, SP2 and SP1 respectively. We implemented a 

begin procedure:  
for i=k … i=1 do  

if (∀ CoEC (SPV[i]) ∃! ALM, M ∈ {1,2,…,7}) { 
AL = M; 
end procedure 

} 

else if (∏ Co  (   [i])    
   
   ) { 

discard ∀ SPV where SPV[i] =1; 
continue; 

} 

else (∏ Co  (   [i])    
   
   ) { 

discard ∀ SPV where SPV[i] =0; 
continue; 

} 
end procedure 

 



 

 

random bit vector generator that generates four bit sets, 

regardless of the use case, and associates them with individual 

SPV for a particular object. 

For the evaluation of our first use case scenario we 

illustrate a general tree model for each COEi, i ∈ {B, C, 

D…N} generated SPV [SP4, SP3, SP2, SP1], as shown in Table 

4 (a). We use the traversal post order method to recursively 

assess the use case scenarios. 
 

Table 3: Security Properties, Vulnerabilities & Threats 

ID 
Security 

Property 

Category Vulnerability Threats Depen

dencies 

SP_1 

User 

Authenticatio

n and Identity 
assurance 

level 

Identity 

Assurance 

Loss of human-
operated control point 

to verify security and 

privacy settings 

Data Breaches                               
Data Loss                                   

Shared Technology 

Vulnerabilities 

None 
Insufficient 

authentication security, 

e.g., weak 

authentication 
mechanisms, on the 

Cloud management 

interface 

Account or Service 

Traffic Hijacking                           

Insecure Interfaces 

and APIs                         
Malicious Insiders 

SP_2 

Data deletion 
quality level  

Data Disposal  Data recovery 
vulnerabilities, e.g., 

unauthorised access to 

data in memory or on 
disk from previous 

users 

Data Breaches 
Account or Service 

Traffic Hijacking 

Insecure Interfaces 
and APIs 

Malicious Insiders 

Insufficient Due 
Diligence 

None 

SP_3 

Storage 

Freshness 

Durability 

SP_4 

Data 

alteration 

prevention / 
detection 

Integrity Poor/ no integrity 

checks of the billing 

information 

Data Breaches 

Insecure Interfaces 

and APIs                     
Insufficient Due 

Diligence 

SP_1, 

SP_2, 

SP_3 

SP_5 

Storage 

Retrievability  

Durability Poor/ no backup & 

restore strategy is in 

place to prevent the loss 
of billing information, 

e.g., in the case of a 

system failure 

Data Breaches 

Insecure Interfaces 

and APIs                     
Insufficient Due 

Diligence 

SP_4 

SP_6 

Data leakage 

detection / 

prevention  

Data Leakage  Poor/ no encryption of 

the VM data through a 

wide-area migration 
process 

Data Breaches 

Malicious Insiders 

Shared Technology 
Vulnerabilities 

SP_5 

SP_7 

Cryptographi

c module 
protection 

level 

Key 
Management 

Unmonitored and 

unencrypted network 
traffic between VMs is 

possible, e.g., for VMs 

on the same node 

through virtual network                                    
Unencrypted physical 

storage, which is the 

underlying for allocated 
virtual storage of the 

VMs 

Insufficient Due 

Diligence 
Shared Technology 

Vulnerabilities                    

Data Breaches                      

Malicious Insiders None 

SP_8 
Percentage of 
Up Time 

Availability 

Poor/ no implemented 

QoS (Quality of 
Service) services, e.g., 

to guarantee connection 

bandwidth required by 
the Cloud user.                          

Only one ISP 

connection is 

considered for 
operation 

Insufficient Due 

Diligence 
Shared Technology 

Vulnerabilities 

SP_6 
 

Poor/ no failover 

mechanism, e.g., in 

case of losing one out 
of two ISP connections                                      

Missing redundant 

power connection leads 
to a higher risk of 

losing power 

Denial of Service 

 

Due to the simplicity of the first use case scenario the traversal 

post order method only determines the sequence of the 

evaluated objects, which is {B, C, D … N} since we have a 

one-level deep tree. Consolidating this with our procedural 

algorithm from Figure 3 we conduct bitwise conjunction. In 

particular we start by conducting the procedure illustrated in 

equation (8) and implemented in our algorithm in Figure 3 on 

the SP4. The result of this is 0. This indicates that according to 

Table 1 we discard all potential combination that fulfil SP4 

(upper eight combination 8-15) and reduce to 3-bit vector set 

for further evaluation. Our next sequential step, applies the 

same process on SP3 resulting also to 0, which also lead to the 

same outcome, but reducing it into 2-bit vector. The next 

iteration for the SP3 resulted to 1 that maps the remaining bit 

vector sets towards the assurance level two, therefore making 

the last bit irrelevant for the assurance since both potential 

outcomes (0 and 1) would lead towards assurance level two.  

Hence, the final vector, according to Table 1, associates the 

underlying Associated component set (ACS) of the root node 

with AL=2 is SPV = [001X]. This process is derived for each 

AC until we derive the final SPVi for each ACi. The final 

aggregation towards the root is defined with equation (8), 

which leverages the policies of Table 2 to decide whether both 

conditions of the DALVS and ALVS are satisfied to determine 

the root assurance level (the equations (9, (10 and (11 have to 

be fulfilled.), In this particular case this is CoEA(AL)=2. 

However, in case of multiple ACs it has to be also checked 

weather for each AC the minimum CAL is satisfied to fulfil a 

particular AL, as stated in Table 2 and defined by equation 

(12).  
 

 Table 4: Randomly generated SPV per individual CoE for demonstrating our 

algorithm Figure 3, via the use cases from Figure 2. Left table (a) is referring 

to the first use case scenario, Figure 2 (a), and table (b) refers to the second use 

case scenario Figure 2 (b).  

                       (a)                                                       (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To evaluate the second use case, i.e. the advanced tree 

model (see Figure 2- b), we generate for each COEi, i ∈ {A, B, 

C, D…N} SPVi Table 4 (b). Due to the fact that the first use 

case tree is a subset of the tree in the second use case, we can 

apply the whole process conducted in the first use case 

scenario iteratively, until we aggregate the assurance towards 

the root. Therefore, in order to avoid redundancy we will just 

refer to the process explained in the first use case and extend it 

accordingly. The traversal post order method in the second use 

case, Figure 2 .b has the following sequence {D, F, L, M, N, G, 

B, H, C, I, J, K, D, A}. Therefore we marked 5 steps in Figure 

2 b that illustrate this procedure. The first step will aggregate 

 SP4 SP3 SP2 SP1 

CoEA 0 1 1 1 

 CoEB 0 1 1 0 

CoEC 0 0 1 0 

CoED 0 0 1 1 

CoEN 1 0 1 0 

 SP4 SP3 SP2 SP1 

CoEA 0 1 1 0 

CoEB 1 0 0 0 

CoEC 1 0 1 0 

CoED 1 0 1 1 

CoEE 0 1 0 1 

CoEF 0 1 1 0 

CoEG 1 0 0 1 

CoEH 0 1 1 0 

CoEI 1 0 0 0 

CoEJ 1 0 0 0 

CoEK 1 0 1 1 

CoEL 0 1 0 0 

CoEM 0 1 1 1 

CoEN 0 1 0 1 



 

 

the assurance for ACSG = (COEi, i ∈ {L, M, N}) with the 

ALCP procedure which results in CoEG(AL) = [010X]. Then, 

as second step, when the Assurance level of CoEG has been 

reached we aggregate the assurance of ACSB = (COEi, i ∈ {E, 

F, G}), e.g. CoEB(AL) = [0110]. The third step determines the 

assurance level of CoEC directly according to one child node 

CoEH, CoEH(AL)=[0110]. The fourth step aggregates the 

assurance level of ACSD = (COEi, i ∈ {I, J, K}), 

CoED(AL)=[1001].  Finally the last step of the assessment 

process is to aggregate the assurance level of ToEAL = ACSA = 

(COEi, i ∈ {B, C, D}), where CoED(AL)=[0110], by fulfilling 

the equations (9, (10 and (11 leads to the overall assurance of 

AL=4. However, just as in the first use case scenario, if dealt 

with multiple assurance class we have to use equation (12 to 

derive the final consolidated AL for a particular CoE. 

V. CONCLUSION AND FUTURE WORK 

In this paper we present an assurance methodology for 

Cloud security properties. This will support Cloud users in 

simplifying the assessment on whether a specific security level 

(i.e. assurance level) of a service can be maintained despite 

churn in the substitute components. The method supports 

multi-tenant environments and multi-layer environments. The 

scheme has been applied to two scenarios. This theoretic 

evaluation method shows efficient application of the proposed 

assurance assessment method over the use case where we 

demonstrate how services can be assessed according to a set of 

security properties with a defined set of policies.   

Based on this work the next steps will provide a complete 

assurance class and security property catalogue that 

comprehensively covers the different aspects of Cloud 

environments. Furthermore, we are planning to use real-world 

applications from the SECCRIT and CUMULUS projects and 

benchmark them using the introduced scheme. As far as the 

model itself is concerned we will also further investigate the 

use of a binary tree model instead of the currently used general 

tree model, since we can easily transform a general tree to a 

binary tree model in order to empirically evaluate the 

performance of our algorithm. 
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