

City, University of London Institutional Repository

Citation: Hudic, A., Tauber, M., Lorünser, T., Krotsiani, M., Spanoudakis, G., Mauthe, A. &

Weippl, E. (2014). A Multi-Layer and Multi-Tenant Cloud Assurance Evaluation Methodology.
Paper presented at the 2014 IEEE 6th International Conference on Cloud Computing
Technology and Science (CloudCom), 15-18 Dec 2014, Singapore.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/14403/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

© 2014 IEEE, Published at IEEE CloudCom 2014

A Multi-Layer and Multi-Tenant Cloud Assurance Evaluation Methodology

Aleksandar Hudic,

Markus Tauber,

Thomas Lorünser

AIT

{aleksandar.hudic,

markus.tauber}@ait.ac.at

Maria Krotsiani,

George Spanoudakis

City University London

{g.e.spanoudakis,

maria.krotsiani.1} @city.ac.uk

Mauthe, Andreas

Lancaster University

a.mauthe@lancaster.ac.uk

Edgar R. Weippl

SBA Research

EWeippl@sba-research.org

Abstract—Data with high security requirements is being

processed and stored with increasing frequency in the Cloud. To

guarantee that the data is being dealt in a secure manner we

investigate the applicability of Assurance methodologies. In a

typical Cloud environment the setup of multiple layers and

different stakeholders determines security properties of

individual components that are used to compose Cloud

applications. We present a methodology adapted from Common

Criteria for aggregating information reflecting the security

properties of individual constituent components of Cloud

applications. This aggregated information is used to categorise

overall application security in terms of Assurance Levels and to

provide a continuous assurance level evaluation. It gives the

service owner an overview of the security of his service, without

requiring detailed manual analyses of log files.

Keywords — critical infrastructures, assurance, cloud

I. INTRODUCTION

An important transformation process in IT systems is

currently taking place triggered by the rapid propagation of the

Cloud Computing paradigm across distinct domains and

organisations. Hence it is envisaged that ICT services will in

future be delivered in a manner similar to utilities such as

water, electricity, gas, and telephony. The main motivation for

adopting Cloud technology is to increase efficiency and

minimize IT costs by offering new concepts such as elasticity,

scalability and on-demand resource provisioning. However, in

order to automatically provision resources for elastically

adaptive Cloud applications it requires both, the applications

and the underlying platform to be constantly monitored to

capture information at various system and operational levels

and time intervals. This is particularly manifested in Critical

Infrastructures, which require even more attention when these

systems are hosted on top of Cloud environments.

However, the use of Cloud computing has introduced new

risks that have to be sufficiently understood before an

organisation should consider adopting the Cloud and using

Cloud services. Moreover, due to the complexity of the

application execution environment, routine tasks such as

monitoring or security analysis becomes quite complex. These

tasks often require close interaction and assessment between

different layers of the Cloud stack. For example, certain

distributed applications running within a Cloud cluster on

specific virtual machine(s) (VM) require a general assurance,

or even have to be certified, for maintaining specific security

properties. This might also require monitoring the execution of

the application on the VMs, as well as monitoring the

availability of the physical resources of the VMs. Thus, this

would require the use of different tool sets to collect and

analyse the performance of data from each level in order to

reach the point where the application can be certified.

Under these circumstances, we should gather different

types of information at various levels of granularity, from low-

level system metrics (e.g. CPU usage, network traffic, memory

allocation, etc.) to high-level application specific metrics (e.g.

throughput, latency, availability, etc.). These are collected

across multiple system layers (physical, virtualization,

application level) in a Cloud environment at different time

intervals. Hence, the challenge in this case is to define a way to

aggregate these different types of information from different

levels in order to provide an overall assurance, and determine

how changes in individual assurance levels of every

component affects the overall assurance.

In this paper, we propose, based on existing work[10] an

assurance method. We refer to assurance, motivated by

common criteria, as the likelihood for a service falling victim

to a cyber-attack. A high assurance level means a low

probability for this to happen. Security properties, based on

measurable metrics, of substituent components contribute to

the overall assurance level and how they are aggregated is

subject to dependency policies. This is based on a

comprehensive concept for assessing security properties across

multiple layers with different stakeholders for composite based

systems. The dependency policies, can be flexibly adopted

according to various use case requirements to derive evaluation

of every individual component of a service or a system.

The rest of the paper is structured as follows. Section II

outlines the related work. Section III describes our approach

and introduces the Assurance Assessment Method, the way we

define assurance levels, how we abstract the service as a

general tree, and the assurance aggregation process. In Section

IV the evaluation of the approach is provided based on a Use

Case Scenario. Finally, section V provides concluding remarks

and directions for future work.

II. RELATED WORK

Traditional approaches for assurance assessment in the

Cloud, such as Cloud Security Alliance (CSA) [12],

Information Technology Assurance Framework (ITAF) [17],

or the Cloud Computing Information Assurance Framework

from ENISA [18], are usually built on existing frameworks

such as ISO/IEC 27000-series (e.g. current work in progress

ISO/IEC 27017 and ISO/IEC 27018 which are focusing on

information security and data protection in Cloud), PCI DSS

Cloud Guideline [13], COBIT [14], NIST [16], or IT Baseline

Protection Catalogues [15].

We have considered existing approaches, namely the

Common Criteria framework [6] for assurance of IT systems

(as it is the most dominant work in the field) and extends it

[10] since its main focus is on assessing assurance in the

development phase of the life cycle but lacks support in the

subsequent production phase.

 Unlike traditional approaches, the work derived from

Krotsiani et.al. [11] proposes a novel approach for certifying

the security of Cloud services based on incremental

certification of security properties for different types of Cloud

services (including IaaS, PaaS and SaaS services). This

approach uses operational evidence from the services

provisioning through continuous monitoring. Although the

model does not directly address assurance as an explicit

objective, it can be adopted to efficiently assess assurance at

various levels and time intervals.

Our approach is related to autonomic monitoring systems

that are based on the SECCRIT architecture model [7] and on

an evidence-gathering model for assurance assessment in

critical infrastructures hosted on top of Cloud environments (as

introduced in [8]). Moreover, we found the concepts of

Common Criteria for analysing and assessing application in

preproduction phases. However, we emphasize the importance

of observing systems in their production phase, as well as their

dependencies with other corresponding elements inside of

heterogeneous systems
1

III. MULTI LAYER ASSURANCE ASSESMENT MODEL

. The popular National Institute of Standards and

Technology (NIST) [3] model depicts the Cloud architecture

through a dynamic tree-layered service-provisioning model

(infrastructure, platform and software - as a Service layer)

capable of scaling services across distinct administrative and

legislative domains. However, the common practices for

provisioning and delivering services (as well as the abstraction

of those layers and driven technologies) differentiates based on

the business objectives of a particular Cloud provider. Hence,

the traditional assessment frameworks (e.g. COBIT, ISO

27000 series) are not fully applicable, especially when

addressing security related concerns in Cloud environments (as

discussed in [10]).

However, in order to build a comprehensive and flexible

framework that is able to acquire heterogeneous information

across the Cloud stack the following objectives have to be

addressed:

 cross layer assessment

 technology independence

 information acquisition restrictions

 assessment, quantification and aggregation of

different information sets

1 It should be noted that our work is a part of a broader research programme,
undertaken by the EU F7 project SECCRIT [4]

The assessment of such services when taking into account

different Cloud layers requires a compact solution, able to

embrace all requirements and produce an effective assessment

tool. Especially when considering different stakeholders,

various business and security objectives, a high degree of

service complexity, business model, and distinct technologies.

Hence, we adopt Common Criteria [6] to address assurance in

Cloud related environments. Although, Common Criteria

offers a comprehensive solution for assurance assessment, it

lacks support for the production phase, especially when

referring to those services that are hosted on top of the Cloud

architectures. Taking this and the above-mentioned objectives

into account, we use the Common Criteria approach in order to

address assurance assessment of complex services hosted in

Cloud infrastructures. Furthermore, the policies of some Cloud

providers restrict information crawling across their Cloud stack

(for instance software as a service Cloud provider will hesitate

to reveal the information of underlying service being provided,

in order to mitigate potential attack vectors on its

infrastructure). Hence it is harder to analyse, indicate or predict

security issues in such environments. Thus, we distinguish two

main categories: a) solutions based on open-source Cloud

environments (i.e. solutions where we are able to freely acquire

necessary information without restrictions); and b) closed

Cloud environments with restricted information access (i.e.

public Cloud providers which provide any additional

information via the Service Level Agreements (SLA)

[21][22]). Due to the flexibility of acquiring the information

and ability to modify services for provisioning the information,

this paper focuses primarily on open-source Cloud solutions

(e.g. OpenStack [23], CloudStack [24]). This does, however,

not limit our approach to these environments.

The assessment and aggregation of different information

sets (i.e. analysis of a particular entity in the Cloud with

respect to a specific set of properties) is derived from the

concept of assurance levels, supported through aggregation

policies (i.e. decision making algorithms that cluster the

security properties of each class towards the predefined

assurance levels), aligned with the Common Criteria approach

[6].

A. Assurance assesment method

Considering these objectives and building on the research

presented in [10] we propose a comprehensive and flexible

approach for performing assurance assessment. The approach

is using a well-defined set of security properties, provided by

the CUMULUS project [5]. These are additionally aligned with

the SECCRIT vulnerability catalogue [20] and The Notorious

Nine from Cloud Security Alliance [19].

 Our assessment method emphasises three core assessment

entities: Target of Evaluation (ToE), Group of Evaluation

(GoE) and Component of Evaluation (CoE). These entities are

aligned with the Common Criteria assessment framework, and

are therefore designed to offer flexibility, determination of the

precise impact of the individual components or group of

components, scalability of assessment across different time

intervals, and the possibility to highlight each individual entity

of the system as an independent point of evaluation.

Furthermore, we designed our method as a hierarchical tree

structure defined with parent-child object relationship. Each

parent can be in a direct relationship with multiple child

objects. The parent object that does not have any related child

objects is referred to as leaf object. Additionally, we also

define associations, dependencies, associated component sets

and assurance profiles, as supporting assessment elements of

the ToE. Figure 1 illustrates the fundamental elements of our

Assurance Assessment Method. More specifically, it presents

how a particular service can be abstracted through a set of

hierarchically organized components. We use these abstraction

elements to build our method and to efficiently assess

assurance according to a predefined set of security properties

derived from the CUMULUS project.

The initial step of the assessment method defines and

details the ToE. This can be either an asset of the Cloud

referred to as service (e.g. a specific service operation, a set of

service operations, data managed by the service) or an asset

that is required or contributes to the realization of a Cloud

service (e.g., a virtual machine).

Moreover, each ToE contains a set of attributes such as: (i)

security objectives, which are mapped towards the related set

of security claims and are formally referred to as Security

Properties (SP); (ii) attributes that define the type of assurance

(e.g. information or system assurance) according to the

assurance model presented in [10]; (iii) a short description of

the ToE; and (iv) the assessment interval. The security

objectives are the statements of intent to counter the identified

threats by IT measures. Each ToE can be formally defined as

ToE ≡ T = {COEi, i ∈ N} | {GOEi, i ∈ N}. This generalized

statement as presented in Figure 1 can be formulated as ToE ≡

COEA = {COEi, i ∈ 〈B, C, D, E, F, G, H, I, J〉}. The group of

objects, formally referred as Group of Evaluation (GoE) and

defined as GoE = {CoEi, i ∈ N}, are a compound set of

individual objects that share common properties based on

which the assessment is conducted. Considering Figure 1, GoE

can be formulated as compound of objects, e.g. GOE1 =

{COEi, i ∈ 〈F, H, I, J〉}. Each individual object to which we

refer to as the component of evaluation (CoE) can be also

handled as an independent ToE. Each GoE is composed of (i)

attributes, used for describing a particular group; (ii) assurance

profile, which is the essential element for evaluation; (iii)

associations, an element used to describe relationships between

different groups in the scope of the evaluated target; and (iv)

individual components.

Component Dependency (CD) is a correlation between two

individual components of the evaluated system (i.e where CDij

{〈COEi , COEj〉, i, j ∈N}), that arises when a component is not

self-sufficient and relies upon the presence of another

component, e.g. when referring to Figure 1 CDCG={COEC,

COEG}. Association is a set of two individual components that

are in a direct parent-child relationship with a defined

dependency, for which it is valid: ∀ ASi i ∈ N ≡ !∃ CDij {

〈COEi , COEj〉, i, j ∈N} ⟹ COEi parent of COEj. An

individual parent object can be associated with N distinct child

objects, which we formally refer to as Associated Component

Set (ACS), for which the following statements are valid: ACSK

≔ ACS (COEK) = {COEi, i ∈ N}, ∀ COEi ⟹ !∃ Parent =

COEK and ∄ CDij {〈COEi , COEj〉, i, j ∈ N}.

Last but not least, the Assurance profile (AP), an essential

element in our method used to define policy related with

security properties that are mapped to the Assurance classes

(AC) of a particular CoE or GoE. These security properties

will at the end define the level of assurance for an individual

component, group or even a whole system. We emphasize two

types of Assurance profiles setup: Uniform Assurance Profile

(APU), which is always the same regardless of class, evaluated

object, group or target; and Custom Assurance Profile (APP),

which can be customised depending on the object of appliance.

In Table 1 we illustrated the APU for a particular assurance

class. Furthermore, we can also assign a custom Assurance

Profile to a particular CoE, GoE or ToE.

B. Assurance Levels

 Assurance levels (AL) outline the scale of measurement

for evaluating predefined ToE, GoE or CoE. Every individual

CoE or GoE contributes directly to the assurance level of the

ToE by meeting a set of SPs (i.e. a certain set of security

criteria). Moreover, the SPs derive the AL per individual AC

by also taking into consideration the dependencies of the

evaluated object, e.g. component, group or target of evaluation

if such are present. However, each AC may contain k of SP (k

number of SPs) as shown in equations (5) and (6). Due to the

binary decision making concept applied in our approach there

can be 2
k
 combinations of distinct SP states where 2

k
 > N, and

N is the cardinality of AL, in terms of security properties (AL=

Figure 1: Hierarchical illustration of services via the general tree model
structure. The service or application is defined as a Target of Evaluation (ToE)

depicted with the individual Components of Evaluation (CoE), whereby each

individual CoE can be associated with N distinct CoEs, referred as Associated
Component Set (ACS). The correlation between two individual CoEs is

referred to as a Component Dependency, which is a formal compound of

Association. Moreover, CoEs are grouped in order to establish assurance of

components with respect to specifc security classes, these groups are then

formally defined as Groups of Evaluation (GoE).

{1, 2, 3, 4 … N}). Thus, each individual combinations of SPs

{SP1, SP 2, SP3, SP4 … SPN}, associated with a particular AC,

are formally referred to as Security Property Vector (SPV)

(equations (3, (4, (5, (6). Security Property Vector defines the

current state of an object by identifying particular set of

security properties. Each SPV, is associated with a particular

assurance class, whereby each class can comprise multiple

SPVs. Thus, in order to scale 2
k
 states over N assurance levels,

we encode ranges in hexadecimal vectors that cluster a

potential set of states that correspond to a particular SPV, as

shown in Table 1. Hence, each individual AL is assigned with

multiple SPVs, which are formally referred as Vector Set (VS),

(equation (2)).

Table 1 presents an example of Assurance profile for a

particular Assurance class. More specifically, it illustrates a set

of relevant SPs clustered per individual ACK represented with

a hexadecimal vector. The left hand side of the table shows the

SPVs, sorted by relevance, and all potential combinations for a

particular security vector SPV = [SP4, SP3, SP2, SP1]. The right

hand side shows a binary vector for ALi (i ∈ {1, 2, 3 … 7}),

which associates particular set of SV vectors. At the bottom of

the table the Hexadecimal representation of each particular

binary AL vector is illustrated.
Table 1 Assurance level association for a particular assurance class. Set of

relevant SPVs clustered per individual ACK represented with a hexadecimal

vector. The left hand side of the table shows the SPVs, sorted per relevance,

and all potential appearance combinations for a particular vector SPV = [SP4,

SP3, SP2, SP1]. The right hand side shows a binary vector for ALi, i ∈ {1, …

7}, which associates particular set of SV vectors. At the bottom of the table the
Hexadecimal representation of each particular binary AL vector is illustrated.

Security

Property Vector

(SPV)

Assurance level association

SP4 SP3 SP2 SP1 AL AL1 AL2 AL3 AL4 AL5 AL6 AL7

0 0 0 0 - 0 0 0 0 0 0 0

0 0 0 1 AL1 1 0 0 0 0 0 0

0 0 1 0 AL2 0 1 0 0 0 0 0

0 0 1 1 AL2 0 1 0 0 0 0 0

0 1 0 0 AL3 0 0 1 0 0 0 0

0 1 0 1 AL3 0 0 1 0 0 0 0

0 1 1 0 AL4 0 0 0 1 0 0 0

0 1 1 1 AL4 0 0 0 1 0 0 0

1 0 0 0 AL5 0 0 0 0 1 0 0

1 0 0 1 AL5 0 0 0 0 1 0 0

1 0 1 0 AL6 0 0 0 0 0 1 0

1 0 1 1 AL6 0 0 0 0 0 1 0

1 1 0 0 AL7 0 0 0 0 0 0 1

1 1 0 1 AL7 0 0 0 0 0 0 1

1 1 1 0 AL7 0 0 0 0 0 0 1

1 1 1 1 AL7 0 0 0 0 0 0 1

Hexadecimal AL vector 0002 000C 0030 00C0 0300 0C00 7000

For each individual AC that is associated with a set of

SPVs particular SP (part of SPV) may vary. Nevertheless,

every individual AC, regardless of the SPs, always has to have

the same cardinality k (equation (5)). In order to efficiently

aggregate the assurance across the variety of architectural

layers, ACs first has to fulfil the equations (5) and (6), stating

that regardless of the AC, none of the SPs can be associated

with more than one AC (equation (7)).

 Although, we abstract ALs over N levels, for the purpose

of our empirical evaluation we will conduct the assessment

over 7 ALs, therefore having minimum 3 SP per AC to be able

to map all assurance levels with SPVs. Depending on the

property set that a particular entity (i.e. class component, group

or even a whole target of evaluation) is assigned with and due

to the dynamic behaviour of the Cloud the AL will also be

dynamic and vary. Hence, it is crucial to efficiently assess the

assurance in a continuous manner without impacting on the

performance of the evaluated service or collocated services.

C. Assurance Aggregation

As mentioned above, we propose a concept for the

assurance aggregation through a recursive process, which

aggregates the individual assurance levels of the underlying

associated objects (i.e. it calculates the overall assurance of the

components that are associated with the root component). The

overall assurance can be derived by applying the method

depicted in Figure 1. Further, by conducting the proposed

algorithm described in Figure 4 we can then derive the overall

assurance. Therefore by referring to Figure 1, we state the

CoEA as the ToE. Since, the CoEA is associated with two

additional components, CoEB and CoEC, which represent the

associated components set (ACSA) of the CoEA and are

additionally connected with other components. The overall

assurance in this case has to be recursively aggregated from the

leafs of the tree (i.e. by aggregating all ACS (ACSB, ACSC and

ACSF). Therefore we will use tree traversal post order method

to iteratively walk through the tree. For the first use case, we

just refer to the concept of the tree traversal post order method

as a tool for our concept. This method is slightly extended by

integrating our Assurance Level Calculation Procedure

(ALCP) from Figure 3 using recursively aggregate assurance.

The assurance level of the referenced ACS (ACSF, ACSB

and ACSC, respectively), by applying the ALCP aligned with

the equation (8). The procedure sequentially conducts bitwise

conjunction of individual SPs for each CoE across each ACS.

Depending on the result of conjunction (1 or 0) it is decided if

all SPVs are discarded with the bit that matches the result of

the conjunction. For example, by discarding certain SPVs we

are indirectly discarding those ALs that are not fulfilling the

∀ALK ∈ ACX: !∃ VS, (1)

VS = {SPV1, SPV2 … SPVN}, (2)

SPVi= [SP1, SP2, SP3, SP4], SPi = {0,1} (3)

∀VS ∈ ALK : ∃ SPVi, i ∈ℕ (4)

∀ SPVi ∈ ACX: |SPVi| = k (5)

ACX= {SPV1, SPV2, SPV3, … SPVn} (6)

⋂

(7)

ACSAL = ⍝ACX (SPVi) , ACX ∈ CoEM, i ∈ {1…N} (8)

ACSAL(i) ⊢ DALVS(i) (9)

ALVS ⊆ DALVS (10)

 (DALVS(i) ∧ ALVS(i)) ⇒ AL(ACX)=i, ACX ∈ CoEM (11)

!∃ ALi ⊧ ∀Min(CALj) i∈ {1…7}, j∈ {1…N} (12)

current set of SPs for particular ACS. The next step is to map

the suitable ACSAL, according to the Table 2, towards the

appropriate DALVS. The DALVS is not only used for mapping

the calculated ACSAL, but also to customize the underlying

security properties of a particular AL. Finally, we calculate the

AL of the root CoE for a particular ACS, equation (9),

depending on the SPs that the CoE corresponds to the AL of

the ACS whereby the equations (10) and have to be fulfilled.

However, in case of multiple ACs per CoE we have to consider

equation (12) where we consider the AL of individual ACs to

determine consolidated ALs for a CoE.
Table 2: Assurance Level per distinct Assurance classes depicted with

Hexadecimal vectors. We define minimal assurance level requirements

(DALVS) of the objects that are in direct relationship with the parent object. It
also defines the assurance level requirements per level of the parent object

itself, ALVS. Additionally we define the minimum requirement for each AC in

terms of AL, i.e. we define at which assurance level individual AC has to
satisfy to define the overall assurance of the object. In case when we have

multiple AC to consider in order to derive the overall AL we use the

Consolidated Assurance Level (CAL).

ASSURANCE LEVEL I II III IV V VI VII N

AC1
ALVS 0002 0008 0010 0080 0C00 7000 8000 8000

DALVS 0002 0004 0030 00C0 0D00 3000 C000 8000

CAL - AL1 AL2 AL3 AL5 AL6 AL7 ALN

AC2
ALVS 0002 0008 0020 0040 0300 1800 4000 8000

DALVS 0004 0018 0020 00C0 0300 1C00 6000 8000

CAL - AL1 AL3 AL4 AL5 AL6 AL7 ALN

AC3
ALVS 0002 000C 0010 00C0 0200 0C00 4000 8000

DALVS 0006 0004 0030 01C0 0200 1C00 6000 8000

CAL AL1 AL2 AL3 AL4 AL5 AL5 AL6 ALN

ACN
ALVS 0006 000C 0030 00C0 0D00 1C00 7000 8000

DALVS 0006 000C 0030 00C0 0D00 1C00 7000 8000

CAL AL1 AL2 AL3 AL4 AL5 AL5 AL7 ALN

D. General Tree Model

A general tree G is a finite compound set of nodes such that

there is only one designated node R, referred as root of the tree

G, where each individual node has only one ancestor (Parent)

node, with exception of the root, and multiple successors

(Children). Each node of the tree is defined by two properties:

Depth and Degree. Depth of the node is the distance of the

node from the root node, and Degree of the node is the number

of successors for a particular node. Moreover, each general tree

can be partitioned in n > 0 disjoint subsets T0, T1, T2 … Tn-1,

where each is a tree whose roots R0, R1, R2 … Rn-1 are children

of the tree G. The subset Ti (0 ≤ i ≥ n) is a subset of the trees

of T.

Although we intent to depict our services through a general

based tree model, they can be also depicted via the binary tree

model, since the general tree model is easily transformed to A

binary tree. For demonstrational purpose of our algorithm

(Figure 3) we will use the general tree model. Since the model

can be easily transformed, our implementation can be adopted

to apply the algorithm on binary trees as well. However, we

will not address the assessment of binary trees as it exceeds the

scope of this work.

IV. EVALUATION

The introduced approach is evaluated and explained in

more details using two scenarios. As first step, the cyber-risks

that exist in the use case scenario have to be understood

alongside the security properties that need to be assessed and

certified.

Perceptions of risk in the context of Cloud computing have

to be well understood since they will inevitably influence

decisions about the adoption of Clouds or the security controls

that will be applied to them. Two important factors that must

be taken into consideration for a better understanding of cyber-

security risks are: (i) the threats and their likelihood to occur;

and (ii) the vulnerabilities and an indication of their severity. A

key challenge when understanding the risks associated with

Cloud computing is to determine those that are specific to the

use of Clouds.

Figure 2: Evaluation use cases derived with respect to the SECCRIT [4] case studies. The subfigure (a) illustrates the basic model of a general tree where the
depth of the tree is one and the degree is N. This is an initial model where the algorithm introduced in Figure 3calculates iteratively the conjunction of SPV bits

to determine the overall assurance of the leaves of ACS for CoEi, i ∈ {B,C,D…N} and aggregates towards root according the policies defined in Table 2 and

equations (8, (9, (10, (11, (12). Although this is straight forward, in subfigure (b), the same process is aligned with the post-order traversal method,
which at the end aggregates the Assurance towards the root COEA.

(a) (b)

Therefore, in order to comprehend the Cloud-specific risks

of our scenario we use the Cloud vulnerability catalogue the

SECCRIT project [4] has developed, in which we then mapped

the Notorious Nine Top threats from CSA [1]. Further, with

the help of the CUMULUS project’s security property

catalogue [2], we map these vulnerabilities to possible security

properties for their assessment. The basis of this catalogue is

the identification of a number of categories that enable us to

focus directly on Cloud-related issues. The core of these

categories is based on the NIST essential Cloud computing

characteristics [3].

Figure 3: Assurance level calculation procedure (ALCP) for associated objects

used in equation (8). The procedure does the bitwise conjunction of the most

significant bit and based on the result decides whether to discard the SPV that

have 0 or 1 assigned to a particular bit that is being analysed. Furthermore,
during each iteration, the procedure checks if the remaining vectors that define

a particular component are a subset of one of the vector sets associated to a

particular ALi, as shown in Table 1, for a particular ACk

A. Use Caseses

The aim of the evaluation is to illustrate a real world

scenario via the abstraction of a general tree model. This is

used to assure the public safety of critical infrastructure

services and assesses the assurance according to a set of

security classes/properties. We refer in particular to the case

studies from the SECCRIT project [4] in order to abstract our

approach and make a proof of concept assessment algorithm.

To demonstrate our algorithm we abstract a service via the

use case scenarios explained below. Moreover, we

implemented our assurance algorithm in Java so we can

randomly define properties of evaluation such as depth of a

tree, degree of a node, security property vector bit length.

Furthermore, our implementation method is founded on post-

order tree traversal model in order to efficiently evaluate the

assurance of service by traversing the tree to aggregate security

in respect to assurance policies.

For the first use case scenario, the Depth (D1) of the tree T1

is 1, meaning that we have only a root with a set of children,

Degree (D2) will be N, generated randomly, as shown in

(Figure 2 (a)). In the second use case both degree and depth

properties are predefined, e.g. D1=3 and D2=3 (Figure 2 (b)).

Within the second use case we want to demonstrate the

application of our algorithm in a more complex general tree,

which would illustrate the service more realistically.

B. Security Properties, Vulnerabilities and Threats

The SECCRIT case studies consider mainly risks related to

the authorisation of users, data storage and data leakage. In

Figure 4 we present the architecture of the system with

components in different levels, as well as their dependencies.

Moreover, some relevant security properties are mapped to

each component that needs to be certified in order to assure the

whole service.

Figure 4: Identified set of Security Properties across various architecture layers

of the Cloud environment, mapped towards the SECCRIT vulnerability

catalogue and CUMULUS property catalogue. Due to the fact that both
catalogues enumerate large number of properties we only illustrated most

representative ones for time being and will provide more detailed catalogue in

our further work.

Table 3 presents a number of security properties that are

relevant for the case study, their security property category, as

well as the vulnerabilities and threats that are related to each of

them. Moreover, the dependencies between these properties are

also provided according to Figure 4. From this list we have

selected four properties, e.g. SP_7, SP_4, SP_6 and SP_1 to

proceed to the evaluation of our approach, as a starting point of

our on-going research on multi-layer assurance dependencies

policies.

C. Scenario based assessment

To demonstrate the approach we distinguish two specific

use cases: the fundamental general tree model (illustrated in

Figure 2- a) and the advanced tree model (illustrated in Figure

2- b). Both models illustrate a service through a general tree

model, where each individual node represents a standalone

entity of the particular service that is being evaluated.

Furthermore, we use our set of identified security properties to

demonstrate our approach by distinguishing the four most

relevant properties SP_7, SP_4, SP_6 and SP_1 assigning them

as SP4, SP3, SP2 and SP1 respectively. We implemented a

begin procedure:
for i=k … i=1 do

if (∀ CoEC (SPV[i]) ∃! ALM, M ∈ {1,2,…,7}) {
AL = M;
end procedure

}

else if (∏ Co ([i])

) {

discard ∀ SPV where SPV[i] =1;
continue;

}

else (∏ Co ([i])

) {

discard ∀ SPV where SPV[i] =0;
continue;

}
end procedure

random bit vector generator that generates four bit sets,

regardless of the use case, and associates them with individual

SPV for a particular object.

For the evaluation of our first use case scenario we

illustrate a general tree model for each COEi, i ∈ {B, C,

D…N} generated SPV [SP4, SP3, SP2, SP1], as shown in Table

4 (a). We use the traversal post order method to recursively

assess the use case scenarios.

Table 3: Security Properties, Vulnerabilities & Threats

ID
Security

Property

Category Vulnerability Threats Depen

dencies

SP_1

User

Authenticatio

n and Identity
assurance

level

Identity

Assurance

Loss of human-
operated control point

to verify security and

privacy settings

Data Breaches
Data Loss

Shared Technology

Vulnerabilities

None
Insufficient

authentication security,

e.g., weak

authentication
mechanisms, on the

Cloud management

interface

Account or Service

Traffic Hijacking

Insecure Interfaces

and APIs
Malicious Insiders

SP_2

Data deletion
quality level

Data Disposal Data recovery
vulnerabilities, e.g.,

unauthorised access to

data in memory or on
disk from previous

users

Data Breaches
Account or Service

Traffic Hijacking

Insecure Interfaces
and APIs

Malicious Insiders

Insufficient Due
Diligence

None

SP_3

Storage

Freshness

Durability

SP_4

Data

alteration

prevention /
detection

Integrity Poor/ no integrity

checks of the billing

information

Data Breaches

Insecure Interfaces

and APIs
Insufficient Due

Diligence

SP_1,

SP_2,

SP_3

SP_5

Storage

Retrievability

Durability Poor/ no backup &

restore strategy is in

place to prevent the loss
of billing information,

e.g., in the case of a

system failure

Data Breaches

Insecure Interfaces

and APIs
Insufficient Due

Diligence

SP_4

SP_6

Data leakage

detection /

prevention

Data Leakage Poor/ no encryption of

the VM data through a

wide-area migration
process

Data Breaches

Malicious Insiders

Shared Technology
Vulnerabilities

SP_5

SP_7

Cryptographi

c module
protection

level

Key
Management

Unmonitored and

unencrypted network
traffic between VMs is

possible, e.g., for VMs

on the same node

through virtual network
Unencrypted physical

storage, which is the

underlying for allocated
virtual storage of the

VMs

Insufficient Due

Diligence
Shared Technology

Vulnerabilities

Data Breaches

Malicious Insiders None

SP_8
Percentage of
Up Time

Availability

Poor/ no implemented

QoS (Quality of
Service) services, e.g.,

to guarantee connection

bandwidth required by
the Cloud user.

Only one ISP

connection is

considered for
operation

Insufficient Due

Diligence
Shared Technology

Vulnerabilities

SP_6

Poor/ no failover

mechanism, e.g., in

case of losing one out
of two ISP connections

Missing redundant

power connection leads
to a higher risk of

losing power

Denial of Service

Due to the simplicity of the first use case scenario the traversal

post order method only determines the sequence of the

evaluated objects, which is {B, C, D … N} since we have a

one-level deep tree. Consolidating this with our procedural

algorithm from Figure 3 we conduct bitwise conjunction. In

particular we start by conducting the procedure illustrated in

equation (8) and implemented in our algorithm in Figure 3 on

the SP4. The result of this is 0. This indicates that according to

Table 1 we discard all potential combination that fulfil SP4

(upper eight combination 8-15) and reduce to 3-bit vector set

for further evaluation. Our next sequential step, applies the

same process on SP3 resulting also to 0, which also lead to the

same outcome, but reducing it into 2-bit vector. The next

iteration for the SP3 resulted to 1 that maps the remaining bit

vector sets towards the assurance level two, therefore making

the last bit irrelevant for the assurance since both potential

outcomes (0 and 1) would lead towards assurance level two.

Hence, the final vector, according to Table 1, associates the

underlying Associated component set (ACS) of the root node

with AL=2 is SPV = [001X]. This process is derived for each

AC until we derive the final SPVi for each ACi. The final

aggregation towards the root is defined with equation (8),

which leverages the policies of Table 2 to decide whether both

conditions of the DALVS and ALVS are satisfied to determine

the root assurance level (the equations (9, (10 and (11 have to

be fulfilled.), In this particular case this is CoEA(AL)=2.

However, in case of multiple ACs it has to be also checked

weather for each AC the minimum CAL is satisfied to fulfil a

particular AL, as stated in Table 2 and defined by equation

(12).

 Table 4: Randomly generated SPV per individual CoE for demonstrating our

algorithm Figure 3, via the use cases from Figure 2. Left table (a) is referring

to the first use case scenario, Figure 2 (a), and table (b) refers to the second use

case scenario Figure 2 (b).

 (a) (b)

To evaluate the second use case, i.e. the advanced tree

model (see Figure 2- b), we generate for each COEi, i ∈ {A, B,

C, D…N} SPVi Table 4 (b). Due to the fact that the first use

case tree is a subset of the tree in the second use case, we can

apply the whole process conducted in the first use case

scenario iteratively, until we aggregate the assurance towards

the root. Therefore, in order to avoid redundancy we will just

refer to the process explained in the first use case and extend it

accordingly. The traversal post order method in the second use

case, Figure 2 .b has the following sequence {D, F, L, M, N, G,

B, H, C, I, J, K, D, A}. Therefore we marked 5 steps in Figure

2 b that illustrate this procedure. The first step will aggregate

 SP4 SP3 SP2 SP1

CoEA 0 1 1 1

 CoEB 0 1 1 0

CoEC 0 0 1 0

CoED 0 0 1 1

CoEN 1 0 1 0

 SP4 SP3 SP2 SP1

CoEA 0 1 1 0

CoEB 1 0 0 0

CoEC 1 0 1 0

CoED 1 0 1 1

CoEE 0 1 0 1

CoEF 0 1 1 0

CoEG 1 0 0 1

CoEH 0 1 1 0

CoEI 1 0 0 0

CoEJ 1 0 0 0

CoEK 1 0 1 1

CoEL 0 1 0 0

CoEM 0 1 1 1

CoEN 0 1 0 1

the assurance for ACSG = (COEi, i ∈ {L, M, N}) with the

ALCP procedure which results in CoEG(AL) = [010X]. Then,

as second step, when the Assurance level of CoEG has been

reached we aggregate the assurance of ACSB = (COEi, i ∈ {E,

F, G}), e.g. CoEB(AL) = [0110]. The third step determines the

assurance level of CoEC directly according to one child node

CoEH, CoEH(AL)=[0110]. The fourth step aggregates the

assurance level of ACSD = (COEi, i ∈ {I, J, K}),

CoED(AL)=[1001]. Finally the last step of the assessment

process is to aggregate the assurance level of ToEAL = ACSA =

(COEi, i ∈ {B, C, D}), where CoED(AL)=[0110], by fulfilling

the equations (9, (10 and (11 leads to the overall assurance of

AL=4. However, just as in the first use case scenario, if dealt

with multiple assurance class we have to use equation (12 to

derive the final consolidated AL for a particular CoE.

V. CONCLUSION AND FUTURE WORK

In this paper we present an assurance methodology for

Cloud security properties. This will support Cloud users in

simplifying the assessment on whether a specific security level

(i.e. assurance level) of a service can be maintained despite

churn in the substitute components. The method supports

multi-tenant environments and multi-layer environments. The

scheme has been applied to two scenarios. This theoretic

evaluation method shows efficient application of the proposed

assurance assessment method over the use case where we

demonstrate how services can be assessed according to a set of

security properties with a defined set of policies.

Based on this work the next steps will provide a complete

assurance class and security property catalogue that

comprehensively covers the different aspects of Cloud

environments. Furthermore, we are planning to use real-world

applications from the SECCRIT and CUMULUS projects and

benchmark them using the introduced scheme. As far as the

model itself is concerned we will also further investigate the

use of a binary tree model instead of the currently used general

tree model, since we can easily transform a general tree to a

binary tree model in order to empirically evaluate the

performance of our algorithm.

ACKNOWLEDGMENT

The research presented in this paper has been funded by the

European Commission, in the context of two Seventh

Framework Programme (FP7) projects, the SECCRIT (Grant

No. 312758) and the CUMULUS (Grant No. 318580).

REFERENCES

[1] CSA, “The notorious nine: Cloud computing top threats in 2013”, v.1.0,
Cloud Security Alliance, February 2013, available from:
http://cloudsecurityalliance.org/research/top-threats/ [retrieved: April
2014]

[2] CUMULUS project, http://www.cumulus-project.eu/

[3] P. Mell and T. Grance: The NIST Definition of Cloud Computing.
Technical Report Special Publication 800-145, National Institute of
Standards and Technology (NIST), September 2011.

[4] SECCRIT project, https://seccrit.eu/

[5] CUMULUS Deliverable “D2.1 Security-aware SLA specification
language and cloud security dependency model v1.01”, September 2013.
Available from http://www.cumulus-project.eu/.

[6] Common Criteria (CC) for Information Technology Security Evaluation,

CCDB USB Working Group, 2012, part 1-3. [Online]. Available:

http://www.commoncriteriaportal.org.

[7] Scholler, M., Bless, R., Pallas, F., Horneber, J., & Smith, P. (2013,
December) “An Architectural Model for Deploying Critical
Infrastructure Services in the Cloud“, Cloud Computing Technology and
Science (CloudCom), 2013 IEEE 5th International Conference on (Vol.
1, pp. 458-466). IEEE.

[8] Florian, M., Paudel, S., & Tauber, M. (2013, December), “Trustworthy
evidence gathering mechanism for multilayer cloud compliance”,
Internet Technology and Secured Transactions (ICITST), 2013 8th
International Conference for (pp. 529-530). IEEE.

[9] S. Paudel, Tauber, M., and Brandic, I., “Towards Taxonomy based
Software Security Standard and Tool Selection for Critical Infrastructure
IT in the Cloud”, The 8th International Conference for Internet
Technology and Secured Transactions (ICITST-2013), 2013.

[10] A. Hudic, T. Hecht, M. Tauber, A. Mauthe and S. E. Cáceres, "Towards
Continuous Cloud Service Assurance for Critical Infrastructure IT", The
2nd International Conference on Future Internet of Things and Cloud
(FiCloud-2014), 2014

[11] M. Krotsiani, G. Spanoudakis, and K. Mahbub, “Incremental certification
of cloud services,” in SECURWARE 2013, The Seventh International
Conference on Emerging Security Information, Systems and
Technologies, 2013, p. 7280.

[12] Cloud Security Alliance, Cloud Controls Matrix, Available from:
https://cloudsecurityalliance.org/research/ccm/

[13] Payment Card Industry Data Security Standard (PCI DSS) Cloud
Computing Guidelines, Available from:
https://www.pcisecuritystandards.org/security_standards/documents.php?
document=dss_cloud_computing_guidelines

[14] COBIT, IT Assurance Guide: Using COBIT, Control Objectives for
Information and related Technology, 2007, information Systems Audit
and Control Association.

[15] IT Baseline Protection Catalogs, Available from:
http://www.bsi.de/gshb/index.htm

[16] National Institute of Standards and Technology, "Information Security
Handbook: A Guide for Managers," NIST Special Publication 800-100,
October 2006.

[17] ITAF, Information Technology Assurance Framework, 2nd ed.,
Information Systems Audit and Control Association, 2013.

[18] ENISA, Cloud Computing Information Assurance Framework, 1st ed.,
European Union Agency for Network and Information Security, 2009.
Available from:http://www.enisa.europa.eu/

[19] Top Threats Working Group. "The Notorious Nine: Cloud Computing
Top Threats in 2013." Cloud Security Alliance (2013).

[20] Jerry Busby, Lucie Langer, Marcus Schöller, Noor Shirazi and Paul
Smith Deliverable: 3.1: "Methodology for Risk Assessment and
Management", 2013, Available online:
https://www.seccrit.eu/upload/D3-1-Methodology-for-Risk-Assessment-
and-Management.pdf

[21] Patel, Pankesh, Ajith H. Ranabahu, and Amit P. Sheth. "Service level
agreement in cloud computing." (2009).

[22] Buyya, Rajkumar, Chee Shin Yeo, and Srikumar Venugopal. "Market-
oriented cloud computing: Vision, hype, and reality for delivering it
services as computing utilities." HPCC'08. 10th IEEE International
Conference on. Ieee, 2008.

[23] OpenStack, http://www.openstack.org/

[24] CloudStack, http://cloudstack.apache.org/

http://cloudsecurityalliance.org/research/top-threats/
http://www.cumulus-project.eu/
https://seccrit.eu/
http://www.cumulus-project.eu/
https://cloudsecurityalliance.org/research/ccm/
https://www.pcisecuritystandards.org/security_standards/documents.php?document=dss_cloud_computing_guidelines
https://www.pcisecuritystandards.org/security_standards/documents.php?document=dss_cloud_computing_guidelines
http://www.bsi.de/gshb/index.htm
https://www.seccrit.eu/upload/D3-1-Methodology-for-Risk-Assessment-and-Management.pdf
https://www.seccrit.eu/upload/D3-1-Methodology-for-Risk-Assessment-and-Management.pdf
http://www.openstack.org/

