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Abstract

Datacenters[§Cs) are deployed in a large scale to support the ever inciga@mand for data
processing to support various applications. The energguwoption of DCs becomes a critical issue.
Powering DCs with renewable energy can effectively rediieelirown energy consumption and thus
alleviates the energy consumption problem. Owing to ggugcal deployments of DCs, the renewable
energy generation and the data processing demands usaajlyinv different DCs. Migrating virtual
machines {YMs) among DCs according to the availability of renewable gnéelps match the energy
demands and the renewable energy generation in DCs, andnimimizes the utilization of renewable
energy. Since migrating VMs incurs additional traffic in tietwork, the VM migration is constrained by
the network capacity. The inter-datacenfatdr-DC) VM migration with network capacity constraints is
an NP-hard problem. In this paper, we propose two heurigm#hms that approximate the optimal VM
migration solution. Through extensive simulations, wevsltioat the proposed algorithms, by migrating

VM among DCs, can reduce up 8% of brown energy consumption.
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I. INTRODUCTION

Cloud infrastructures are widely deployed to support v&iemerging applications such as:
Google App Engine, Microsoft Window Live Service, IBM BludoDd, and Apple Mobile Me
[1]. Large-scale data center®s), which are the fundamental engines for data processirg, a
the essential elements in cloud computing [2], [3]. Infotima and Communication Technology
(ICT) is estimated to be responsible for abduf, of the worldwide energy consumption by
2020 [4]. The energy consumption of DCs accounts for neabp 2f the total ICT energy
consumption[[4]. Hence, the energy consumption of DCs besoam imperative problem.

Renewable energy, which includes solar energy and wind pgweducesl2.7% domestic
electricity of the United States in 2011/ [5]. Renewable gpewill be widely adopted to reduce
the brown energy consumption of ICT][6]. For example, Pdras@ solar-powered DC_[7].
In Parasol, GreenSwitch, a management system, is designedrage the work loads and the
power supplies[]7]. The availability of renewable energyies in different areas and changes
over time. The work loads of DCs also vary in different aread at different time. As a result,
the renewable energy availability and energy demands ini3Qally mismatch with each other.
This mismatch leads to inefficient renewable energy usageGs. To solve this problem, it
is desirable to balance the work loads among DCs accordinigeio green energy availability.
Although the current cloud computing solutions such asdaloursting [8], VMware and F5 [9]
support inter-datacententer-DC) virtual machine YM) migration, it is not clear how to migrate
VM among renewable energy powered DCs to minimize their brewergy consumption.

Elastic Optical NetworksEONS9, by employing orthogonal frequency division multiplegin
(OFDM) techniques, not only provide a high network capacity bsb @&nhance the spectrum ef-
ficiency because of the low spectrum granulafity [10]. Thengtarity in EONs can be 12.5 GHz
or even much smallef [11]. Therefore, EONs are one of the fsiagnetworking technologies
for inter-DC networks[[12].

Powering DCs with renewable energy can effectively redbeebrown energy consumption,
and thus alleviate green house gas emissions. DCs are yusadlbcated with the renewable
energy generation facilities such as solar and wind fafn®. [$ince transmitting renewable
energy via the power grid may introduce a significant powss,at is desirable to maximize

the utilization of renewable energy in the DC rather thamgnraitting the energy back to the



power grid. In this paper, we investigate thenewableenergyaware inter-DC VM migration
(RE-AIM) problem that optimizes the renewable energy utilizatignntigrating VMs among
DCs. Fig[1 shows the architecture of an inter-DC networke Vartices in the graph stand for
the optical switches in EONs. DCs are connected to the dmwiéches via IP routers. These
DCs are powered by hybrid energy including brown energyarsehergy, and wind energy. In
migrating VMs among DCs, the background traffic from otheplegations are also considered
in the network. For example, assume that D@cks renewable energy while DZand DC3
have superfluous renewable energy. Some VMs can be migratedf @C 1 in order to save
brown energy. Because of the background traffic and thedunitetwork resource, migrating
VMs using different paths (Path or Path2) has different impacts on the network in terms of
the probability of congesting the network. It is desiraldeselect a migration path with minimal

impact on the network.

Solar panels

Wind turbines

Fig. 1. Inter-DC architecture.

The rest of this paper is organized as follows. Sediibn lcdbss the related work. Section

In this paper, we focus on the EONSs. The design and optinoizaif the IP networks are beyond the scope of this paper.



[T formulates the RE-AIM problem. Sectidn ]V briefly anabz the property of the RE-AIM
problem and proposes two heuristic algorithms to solve ttoblpm. Sectiori V demonstrates
the viability of the proposed algorithms via extensive dation results. Section VI concludes

the paper.

Il. RELATED WORK

Owing to the energy demands of DCs, many techniques andithiger have been proposed
to minimize the energy consumption of DCs[14].

Fanget al.[15] presented a novel power management strategy for the &@stheir target was
to minimize the energy consumption of switches in a DC. Caedtal Alagoz [[16] surveyed the
energy consumption of server and network devices of inftad@tworks, and showed that both
computing resources and network elements should be dekigitle energy proportionality. In
other words, it is better if the computing and networkingides can be designed with multiple
sleeping states. A few green metrics are also provided ls/ ghivey, such as Power Usage
Effectiveness (PUE) and Carbon Usage Effectiveness (CUE).

Denget al. presented five aspects of applying renewable enerdyaDCs: the renewable
energy generation model, the renewable energy predictiodeinthe planning of green DCs
(i.e., various renewable options, avalabity of energy sesirdifferent energy storage devices),
the intra-DC work loads scheduling, and the inter-DC loath@ng. They also discussed the
research challenges of powering DCs with renewable en&@bgmkhari and Mohsenian-Rad
[14] developed a mathematical model to capture the tratibaifveen the energy consumption
of a data center and its revenue of offering Internet sesvidéey proposed an algorithm to
maximize the revenue of a DC by adapting the number of acveess according to the traffic
profile. Gattulliet al. [18] proposed algorithms to reduceO, emissions in DCs by balancing
the loads according to the renewable energy generatiorseTakgorithms optimize renewable
energy utilization while maintaining a relatively low blang probability.

Mandalet al. [5] studied green energy aware VM migration techniques thuce the energy
consumption of DCs. They proposed an algorithm to enhaneegtben energy utilization by
migrating VMs according to the available green energy in Did@wever, they did not consider
the network constraints while migrating VMs among DCs. le tptical networks, the available

spectrum is limited. The large amount of traffic generatedhi® VM migration may congest



the optical networks and increase the blocking rate of theveorl. Therefore, it is important
to consider the network constraints in migrating VMs. Irstpaper, we propose algorithms to

solve the green energy aware inter-DC VM migration probleitth wetwork constraints.

[Il. PROBLEM FORMULATION
In this section, we present the network model, the energyetaahd the formulation of the

RE-AIM problem. The key notations are summarized in Table |.

TABLE |

THE IMPORTANT NOTATIONS

Symbol | Definiton

Ce The capacity of a linke € E in terms of spectrum
slots.

Cs The capacity of a spectrum slot.

Cm The maximum number of servers in theth DC.

S The maximum number of VMs can be supported
in a server.

D, The amount of renewable energy in theh DC.

Om The number of VMs in thenth DC.

Qm, Per unit energy cost for theith DC.

G,k The required bandwidth for migrating tii¢h VM
in the mth DC.

R The set of the migration requests.

9, The set of VMs migrated in theth migration.

K The migration granularity.

wy ™ The used spectrum slot ratio of théh path in the
rth migration from themth DC.

wp The maximum network congestion ratio.

Ds The maximum energy consumption of a server,

n The power usage efficiency.

A. Network Model

We model the inter-DC network by a graph\V, E, B). Here,V, E and B are the node set,
the link set and the spectrum slot set, respectively. Thes&IC nodes is denoted a3. We

assume that all DCs are powered by hybrid energy. We dénotes the set of DCs that does not



have sufficient renewable energy to support their work leau$D,; as the set of DCs that has
surplus renewable energy. During the migrati®n,and D, correspond to the two sets of DCs
acting as the sources and destinations, respectively. \leede as the migration granularity,

which determines the maximum routing resource that can bd usone migration to each DC.

B. Energy Model

We assume that there arg servers in thenth DC and each server can support ug téMs.
The energy consumption of a servempiswhen it is active. A server is active as long as it hosts
at least one active VM; otherwise, the server is in the idigestHere, we assume that an idling
server will be turned off and its energy consumption is zdieen, [©,,/<] is the number of
active servers required in theth DC [5]. We denote; as the power usage effectiveness, which
is defined as the ratio of a DC’s total energy consumption ¢whncludes the facility energy
consumption for cooling, lighting, etc. [19]) to that of tkervers in the DC. Given, a DC’s
total energy consumption ig- p, - ©,,/s. We denotel;,, as the brown energy consumption in
the mth DC. Then,

Y = max(0,7 - ps - [On/s] — D) (1)

C. Problem Formulation

In the problem formulationng}’“ Is a binary variabIeX;ff = 1 indicates that théth VM in
themth DC is migrated using the path with thefth spectrum slot as the starting spectrum slot.
The objective of the RE-AIM problem is to minimize the totabtyn energy cost in all DCs with



the VM service constraints and the network resource cansttal he problem is formulated as:
iy Do T @
s.t.:

V' M service constraints :

ZZZprf —Z@ 3)
ZZZX < ¢, ¥m € Dy (4)
>, ZZZX

m EDs

(5)
Y Yt < e,
E p f
Network resource constraints :
w;’mjtz—”fgwg, VYm € D,,r € R (6)
f(pr)+b(pr)<Ce (7)
FOO) + 0000 = FO ) <o (8)
f@) +0(0) — f(5) <26 —y(3, )] ©
Fmaam \v/,L % ]
fG)+0() = f@) <[+ 65—y, )]
(10)
Fmaam \v/,L % ]

Here, Eqs.[(3)E(5) are the VM service constraints. Ef. (3)stmins that all the VMs should be
hosted in the DCs, while Eqd.l(4)}5) constrain that thel totamber of VMs in a DC should
not exceed the DCs’ capacity. The network resource conssrare shown in Eqs(6)-(110).
Eq.(8) constrains the network congestion ratio to be leas thg, which is the maximum
network congestion ratio allowed for routing in the netwolrk Eq. [B),w;’m is the spectrum
slot ratio of thepth path in therth migration from themth DC, which is defined as the ratio
of the number of occupied spectrum slots in il path to the total number of spectrum slots

of this path.F;”}” is defined as the number of spectrum slots used inpthepath for therth



migration from themth DC. Eq.(T) is a link capacity constraint of the networkgdinstrains the
bandwidth used in migrating VMs not to exceed the capacitthefnetwork resource. Herég)

is the bandwidth requirement in terms of spectrum slots, Apgis the index of the starting
spectrum slot of a path. For examp[égng}k) represents the starting spectrum slot index of
the path, which is used bx;’?f. Eq.[8) is the spectrum non-overlapping constraint of & pat
used by two different VMs in one migration. This constrainishbe met for each VM in every
migration; if two VMs use the same spectrum slot in one migratthe total bandwidth allocated
to the two VMs should not exceed the capacity of a spectrui aglberwise, each VM must use
a unique spectrum slot. In the migration, the VMs are sontedsicending order based on their
bandwidth requirement. We assume the VMs are migrated dicgpto an ascending order; for
example, thgk + 1)th VM is moved after theith VM is migrated.

Eqgs. [9)410) are the spectrum non-overlapping and theiraght constraints [[20]. This
spectrum non-overlapping constraint is used for diffeneaths. In these constraints,and j
represent two different paths used in the migration. Héjg,, is the upper bound of the total
bandwidth requirement in terms of spectrum slofs. (Vi # j) is a Boolean variable defined in
Eq. (11), which equal$ if the starting spectrum slot index of thith path is smaller than that of
the jth path; otherwise, it i8. We definey(:, j) (Vi # j) as a Boolean indicator, which equals
if the sth path and thath path in the migration have at least one common link; otiswt is0.
We give an example to illustrate these equationg(dfj) = 1 and¢, ; = 1, Eq. (9) becomes Eq.
(@2), which ensures the bandwidth non-overlapping cométraq. (10) is automatically satisfied

in this case.

5, = Lo f@) < f0) (1)

0, f(@)=r()
f(@) +0(i) < f(5) (12)

When we provision spectrum slots for requests in the EONs ptith continuity constraint,
spectrum continuity constraint and non-overlapping aanst must be considered. For the path
continuity constraint, a lightpath must use the same suigcarin the whole path for a request.
For the spectrum continuity constraint, the used subaarnrist be continuous if a request needs

more than one subcarriers. For the non-overlapping consttavo different lightpaths must be



assigned with different subcarriers if they have one or ncoramon links. Since we use a path
based method to formulate the RE-AIM problem, the path owitly constraint of the network
is already taken into account.

The main contribution of this paper is considering the nekwofluence on the migration when
we minimize the brown energy consumption of the DCs. In otherds, we want to impose a

controllable effect on the network in the migration thatdedo less network congestion.

IV. PROBLEM ANALYSIS AND HEURISTIC ALGORITHMS
A. Problem Analysis

To solve the RE-AIM problem, both the energy costs in DCs &edietwork resource required
for the migration should be considered. For example, wherCacBnsumes brown energy, it is
desirable to migrate some VMs to other DCs. The VM migratiothintroduce additional traffic
to the network. To avoid congesting the network, we have tonmope the number of VMs that
will be migrated and select the routing path for the migmati@herefore, it is challenging to
solve the RE-AIM, which is proven to be NP-hard.

Lemma 1. The RE-AIM problem is NP-hard

Proof: We prove that the RE-AIM problem is NP-hard by reducing anstance of the
multi-processor scheduling probleiPS into the RE-AIM problem. [ |
In the RE-AIM problem, without considering the network ctasts, the optimal number of
VMs hosted in the DCs can be derived according to the avéthalof the renewable energy.
However, with the consideration of the network constra@tsl the background traffic, it is
difficult and impossible to solve the RE-AIM problem onlirfeor the RE-AIM problem, many
VMs are migrated from a set of DCs (source DCs) to another 8&GCs (destination DCs).
Therefore, we can model the VM migration problem as a manywablem. Since the RE-AIM
problem is NP-hard, we propose heuristic algorithms toesdhis problem. These algorithms
determine which VM should be migrated to which DC and seleptaper routing path in the
network to avoid congesting the network. We consider twovogt scenarios. The first one is a
network with light traffic load. Under this network scenanwee design Manycast with Shortest

Path Routing Manycast-SPRalgorithm for VM migrations. The second network scenasa@i
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network with heavy traffic load. In this case, we propose Masy Least-Weight Path Routing
(Manycast-LPR for migrating VMs among DCs.

B. Heuristic Algorithms For Light Work Loads

When the network load is light, there are more available tspetslots. It is easy to find a path
with available spectrum slots for the migration requestsenl, a lower computing complexity
algorithm is preferred. Manycast-SPR only uses the shopi@th, and thus it is a very simple
algorithm. Hence, Manycast-SPR is expected to provisieninker-DC VM migration requests
in a network with light work loads.

The Manycast-SPR algorithm, as shown in Aly. 1, is to find thertest routing path that
satisfies the VM migration requirement and the network resmaonstraints. In the beginning, we
inputG(Vv, £, B), ©,, and®,,, and then calculate the optimal work loads distributiorteAfard,
we getD, D, and D,. Then, we collect the migration requedts Here, our algorithm splits
the manycast requests into many anycast requests:. Now, we start to find a source DE
and a destination D@ for the request. The migration will try to use the shortest paitfrom
s to d; the request is carried out if the network congestion constraint is $iatils otherwise,
the request is denied. Then, we updateand D, for the next request. After many rounds of
migration, if D, or D, is empty, or Eq.[(6) is not satisfied, the migration is congalet

Details of the Manycast-SPR algorithm is describedAigorithm[I. Here,p(-) is a func-
tion which targets to get the path for the migration. The claxipy of Manycast-SPR is
O(|B||E2|R||Q.||D|*cms). Here,O(|D[?e,ns) is the complexity to determine the optimal work
loads,O(|B|) is the complexity to determing, andO(|R||Q.|) is the complexity in building the
VM set for the migrationO(|E|?) is the complexity of determining the patifor Manycast-SPR.

C. Heuristic Algorithms For Heavy Work Loads

When the work load of the network is heavy, the number of atél spectrum slots in the
network is limited. Since Manycast-SPR only uses the shbpath (one path) for routing, it is
impossible for Manycast-SPR to find an available path andtgp® slots in this scenario. Then,
Manycast-SPR may block the migration request, and leadgjtoldrown energy consumption of
DCs. Hence, we propose another algorithm Manycast-LPRHh@ae better routing performance,

that results in low brown energy consumption. Manycast-LéPlecks K -shortest paths from
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the source node to the destination node, and picks up thetighkth to serve the requests.
The requests will be provisioned with a higher probability Manycast-LPR as compared to
Manycast-SPR. In summary, Manycast-LPR is expected togovvthe inter-DC VM migration
requests under a heavy work load. It targets to find a path mithe available spectrum slots
at the expense of a higher complexity.

Manycast-LPR, as shown in Alg] 2, is to find the least weighitirg path that satisfies the
VM migration requirement and the network resource constsaiThe main difference between
Manycast-LPR and Manycast-SPR is using different ways to &éinpath. For Manycast-SPR,
it first determines the source node and the destination nddaycast-LPR, however, finds the
path first, then uses the path to find the source node and thi@ates node. The other steps
are almost the same. Since Manycast-LPR should calculater¢ights for all node pairs to find
a path, it increases the complexity.

Details of the Manycast-LPR algorithms is describedAilgorithm[2. The complexity for
Manycast-LPR isD(K|B||E|*|R||Q.||D)*cms). Here,p(-) is a function which targets to get the
path for the migrationO(|D|*¢,.<) is the complexity to determine the optimal work loa6|B|)
is the complexity to determing¢, andO(|R||Q.|) is the complexity in building the VM set for
the migrationO(K|E|?*|D|) is the complexity of determining the paghfor Manycast-LPR. The

most complex part is to determine the set of VMs for the migrat

V. PERFORMANCE EVALUATIONS

We evaluate the proposed algorithms for the RE-AIM problenthis section. In order to
make the RE-AIM problem simple, we assume migratory VMs carcbmpleted in one time
slot. The NSFNET topology, shown in Figl 2, is used for theuation. There are 14 nodes,
and the DCs are located &= {3, 5, 8,10, 12} [21], [22]. The DCs are assumed to be equipped
with wind turbines and solar panels, which provide the DCEwenewable energy, as shown
in Fig[2. The constant is randomly generated froifi.6, 3.2] and represents the varying price
of the electric grid. The capacity of a spectrum glas set to 12.5Gps. The maximum number
of slotsc, is set to 300; 300 spectrum slots are available when the metiwempty. Assume
¢ equals to 10; 10 VMs can be run in one servgris set to 3, i.e., the maximum number of
shortest paths that can be used in Manycast-LPR is 3. Witlhsuig generality, the average

energy consumption of a VM is assumed to be 1 unit, implyirag th equals to 10 units. The
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Algorithm 1: Manycast with Shortest Path Routing

10

11

12

13

14

15

16

17

Input : G(V,E,B), ©,, and®,,;

Output: D, Q,, p(Q,), f(Q,) and I, r € R;

Build D, D, andD, by the the optimal work loads allocation;
Collect manycast requests,

while D, and D, are not emptydo

calculate the network congestion ratio for alland getwg;
for all nodess € D, do

L find s with the max migratory VMs as the source node;

for all nodesd € D, do

L find d with the max available renewable energy as the destinatoie;n

get the shortest path(Q,) from s to d for the rth migration;

build Q, for the rth migration according t@(Q,) and Eqgs.[(9)ET0);
if Eq. () is satisfiedhen

pathp(Q,) is used to migrate;

find the start spectrum slot inde Q,) in B ;

get the allocated bandwidth] , ;

updateD, and Dy;

else

return;

VM bandwidth requiremeng,,, . is randomly selected frorfl, 14|, which is convenient for the

simulation. The migration requests are generated by thienaptvork loads distribution which

is calculated based of1,, and®,,. The background traffic is randomly generated between node

pairs in the network. The background traffic load is countecha average oﬁ, where \ is

an average arrival rate of the requests %n'd; the holding period of each request|21]. Here,

the background traffic arriving process is a poisson procass the holding time is a negative

exponential distribution. Parameters which are used ferethaluation are summarized in Table
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Algorithm 2: Manycast with Least-weight Path Routing

10

11

12

13

14

15

16

17

Input

:G(V,E, B), O, and ®,,;

Output: D, Q,, p(Q,), f(Q,) and I, r € R;
Build D, D, andD, by the the optimal work loads allocation;

Collect manycast requests,

while D, and D, are not emptydo

calculate the network congestion ratio for alland getwg;
for all nodess € D, do

for all nodesd € D, do
build K-shortest path sep;
for pathp € P do
L get pathp(Q,) with the lowest congestion ratio for theh migration;

build Q, for the rth migration according t@(Q,) and Eqgs.[(9)E(T0);
if Eq. (8) is satisfiedhen

pathp(Q,) is used to migrate;

find the start spectrum slot inde Q,) in B;
get the allocated bandwidthy ,;

updateD, and Dg;

else

return;

M

We run the simulation for 150 times, and exclude the scemneittoempty VM requests traffic

load (D, # @ & Dy # 9). Fig.[3 shows the total cost of brown energy consumption

of the strategy without using renewable energy, Manyc&R®-& = 2) and Manycast-LPR

(k = 2). Apparently, Manycast-SPR and Manycast-LPR can save beawvengy substantially.

Manycast-SPR saves abolii% cost of brown energy as compared with the strategy without

migration. Manycast-LPR reduces up3t cost of brown energy as compared with the strategy
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Fig. 2. NSFNET topology with renewable energy DCs.

without migration. Manycast-LPR has better performanceabse Manycast-LPR employs the
least weight patlp of all node pairs for routing, while Manycast-LPR engagely dhe short
pathp of one node pair.

In order to obtain a better analysis, the running time of Masy-SPR x = 2) and Manycast-
LPR (x = 2) are shown in Fid.J4. Manycast-SPR spends less time than Maty®R, implying
that Manycast-SPR has a lower complexity and Manycast-LB& &hhigher computing com-
plexity. It also illustrates that the time and the final coatue is a trade-off in the evaluation.
Manycast-LPR is more complex and hence incurs a lower bravengg cost.

The results of Manycast-SPR for variowsare described in Fid.]5. The cost of brown energy
consumption keeps increasing when the background traffieases, because high background

traffic tends to congest the network links and leads to mormgration failures. Apparently, a



TABLE Il

SIMULATION PARAMETERS

Network topology NSFNET
D {3, 5, 8, 10, 12
S 10 VMs

Cm

1000 servers

a={ai,a2,...,am}

{2.1,2.5,1.9,2.8,2}

[0, 8000]

15

b, [1000, 9000]

Ps 10 units, 1 unit for 1 VM in average
Cm,k [1,14] Gbls

Ce 300 spectrum slots

Cs 12.5 Gbps

K {2,4,8,16} spectrum slots

% {40, 80, 120, 160, 200, 240, 280, 320}

small x brings more benefits than a bigin reducing the energy cost.

Fig.[8 shows the results of Manycast-LPR for varieysalmost the same results as shown in
Fig.[3, but the cost of the brown energy consumption is mushk tean that in Fid.]5, because
Manycast-LPR can easily find a path which has available battdvior migration. Obviously,
Manycast-LPR withx = 2 achieves the best result with the lowest cost of consumedrbro
energy. All these results illustrate that a smalleads to a lower cost of the brown energy
consumption and a big induces a higher cost of the brown energy consumption. Tis i
because it is difficult to find a path with enough bandwidth ddbig ~, when the network has
background traffic. A smallex achieves a lower energy cost at the cost of higher complexity

Figs.[7 andB show the running time of Manycast-SPR and theiiamfycast-LPR with different
k, respectively. We can observe that the computing time isedsed when the traffic load
increases. For the samewith a given background traffic load, Manycast-SPR consumese
time than Manycast-LPR does. For either of the two algorthunder a specific background
traffic load, we can see that the running time is nearly halieenx is doubled. Hence, a smaller
k brings a better performance but takes longer time, and adarpas worse performance with

a shorter running time.
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Fig. 3. Total brown energy cost comparison.

VI. CONCLUSION

Datacenters are widely deployed for the increasing demanhadfata processing and cloud
computing. The energy consumption of DCs will take23; of the total ICT energy consump-
tion by 2020. Powering DCs with renewable energy can hele aown energy. However, the
availability of renewable energy varies by locations andnges over time, and DCs’ work loads
demands also vary by locations and time, thus leading to tisenaich between the renewable
energy supplies and the work loads demands in DCs. Inter-IMCmigration brings additional
traffic to the network, and the VM mitigation is constrainegdthe network capacity, rendering
inter-DC VM migration a great challenge.

This paper addresses the emerging renewable energy-aveardiC VM migration problem.
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The main contribution of this paper is to reduce the netwofluence on the migration while
minimizing the brown energy consumption of the DCs. The REtAroblem is formulated and
proven to be NP-hard. Two heuristic algorithms, Manycd®R%nd Manycast-LPR, have been
proposed to solve the RE-AIM problem. Our results show thahitast-SPR saves abaduit)o
cost of brown energy as compared with the strategy withogfraion, while Manycast-LPR
saves abouB1% cost of brown energy as compared with the strategy withogfrattion. The
computing time of Manycast-LPR is longer than that of Marsg¢aPR because the complexity of

Manycast-LPR is higher than Manycast-SPR. In conclusianhave demonstrated the viability
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Fig. 5. Total brown energy cost of Manycast-SPR.

of the proposed algorithms in minimizing brown energy cangtion in inter-DC migration

without congesting the network.
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