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Abstract

Datacenters (DCs) are deployed in a large scale to support the ever increasing demand for data

processing to support various applications. The energy consumption of DCs becomes a critical issue.

Powering DCs with renewable energy can effectively reduce the brown energy consumption and thus

alleviates the energy consumption problem. Owing to geographical deployments of DCs, the renewable

energy generation and the data processing demands usually vary in different DCs. Migrating virtual

machines (VMs) among DCs according to the availability of renewable energy helps match the energy

demands and the renewable energy generation in DCs, and thusmaximizes the utilization of renewable

energy. Since migrating VMs incurs additional traffic in thenetwork, the VM migration is constrained by

the network capacity. The inter-datacenter (inter-DC) VM migration with network capacity constraints is

an NP-hard problem. In this paper, we propose two heuristic algorithms that approximate the optimal VM

migration solution. Through extensive simulations, we show that the proposed algorithms, by migrating

VM among DCs, can reduce up to31% of brown energy consumption.
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I. INTRODUCTION

Cloud infrastructures are widely deployed to support various emerging applications such as:

Google App Engine, Microsoft Window Live Service, IBM Blue Cloud, and Apple Mobile Me

[1]. Large-scale data centers (DCs), which are the fundamental engines for data processing, are

the essential elements in cloud computing [2], [3]. Information and Communication Technology

(ICT) is estimated to be responsible for about14% of the worldwide energy consumption by

2020 [4]. The energy consumption of DCs accounts for nearly 25% of the total ICT energy

consumption [4]. Hence, the energy consumption of DCs becomes an imperative problem.

Renewable energy, which includes solar energy and wind power, produces12.7% domestic

electricity of the United States in 2011 [5]. Renewable energy will be widely adopted to reduce

the brown energy consumption of ICT [6]. For example, Parasol is a solar-powered DC [7].

In Parasol, GreenSwitch, a management system, is designed to manage the work loads and the

power supplies [7]. The availability of renewable energy varies in different areas and changes

over time. The work loads of DCs also vary in different areas and at different time. As a result,

the renewable energy availability and energy demands in DCsusually mismatch with each other.

This mismatch leads to inefficient renewable energy usage inDCs. To solve this problem, it

is desirable to balance the work loads among DCs according totheir green energy availability.

Although the current cloud computing solutions such as cloud bursting [8], VMware and F5 [9]

support inter-datacenter (inter-DC) virtual machine (VM) migration, it is not clear how to migrate

VM among renewable energy powered DCs to minimize their brown energy consumption.

Elastic Optical Networks (EONs), by employing orthogonal frequency division multiplexing

(OFDM) techniques, not only provide a high network capacity but also enhance the spectrum ef-

ficiency because of the low spectrum granularity [10]. The granularity in EONs can be 12.5 GHz

or even much smaller [11]. Therefore, EONs are one of the promising networking technologies

for inter-DC networks [12].

Powering DCs with renewable energy can effectively reduce the brown energy consumption,

and thus alleviate green house gas emissions. DCs are usually co-located with the renewable

energy generation facilities such as solar and wind farms [13]. Since transmitting renewable

energy via the power grid may introduce a significant power loss, it is desirable to maximize

the utilization of renewable energy in the DC rather than transmitting the energy back to the
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power grid. In this paper, we investigate therenewableenergy-aware inter-DC VM migration

(RE-AIM) problem that optimizes the renewable energy utilization by migrating VMs among

DCs. Fig. 1 shows the architecture of an inter-DC network. The vertices in the graph stand for

the optical switches in EONs. DCs are connected to the optical switches via IP routers1. These

DCs are powered by hybrid energy including brown energy, solar energy, and wind energy. In

migrating VMs among DCs, the background traffic from other applications are also considered

in the network. For example, assume that DC1 lacks renewable energy while DC2 and DC3

have superfluous renewable energy. Some VMs can be migrated out of DC 1 in order to save

brown energy. Because of the background traffic and the limited network resource, migrating

VMs using different paths (Path1 or Path2) has different impacts on the network in terms of

the probability of congesting the network. It is desirable to select a migration path with minimal

impact on the network.

Fig. 1. Inter-DC architecture.

The rest of this paper is organized as follows. Section II describes the related work. Section

1In this paper, we focus on the EONs. The design and optimization of the IP networks are beyond the scope of this paper.
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III formulates the RE-AIM problem. Section IV briefly analyzes the property of the RE-AIM

problem and proposes two heuristic algorithms to solve the problem. Section V demonstrates

the viability of the proposed algorithms via extensive simulation results. Section VI concludes

the paper.

II. RELATED WORK

Owing to the energy demands of DCs, many techniques and algorithms have been proposed

to minimize the energy consumption of DCs [14].

Fanget al. [15] presented a novel power management strategy for the DCs, and their target was

to minimize the energy consumption of switches in a DC. Cavdar and Alagoz [16] surveyed the

energy consumption of server and network devices of intra-DC networks, and showed that both

computing resources and network elements should be designed with energy proportionality. In

other words, it is better if the computing and networking devices can be designed with multiple

sleeping states. A few green metrics are also provided by this survey, such as Power Usage

Effectiveness (PUE) and Carbon Usage Effectiveness (CUE).

Denget al. [17] presented five aspects of applying renewable energy in the DCs: the renewable

energy generation model, the renewable energy prediction model, the planning of green DCs

(i.e., various renewable options, avalabity of energy sources, different energy storage devices),

the intra-DC work loads scheduling, and the inter-DC load balancing. They also discussed the

research challenges of powering DCs with renewable energy.Ghamkhari and Mohsenian-Rad

[14] developed a mathematical model to capture the trade-off between the energy consumption

of a data center and its revenue of offering Internet services. They proposed an algorithm to

maximize the revenue of a DC by adapting the number of active servers according to the traffic

profile. Gattulli et al. [18] proposed algorithms to reduceCO2 emissions in DCs by balancing

the loads according to the renewable energy generation. These algorithms optimize renewable

energy utilization while maintaining a relatively low blocking probability.

Mandalet al. [5] studied green energy aware VM migration techniques to reduce the energy

consumption of DCs. They proposed an algorithm to enhance the green energy utilization by

migrating VMs according to the available green energy in DCs. However, they did not consider

the network constraints while migrating VMs among DCs. In the optical networks, the available

spectrum is limited. The large amount of traffic generated bythe VM migration may congest
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the optical networks and increase the blocking rate of the network. Therefore, it is important

to consider the network constraints in migrating VMs. In this paper, we propose algorithms to

solve the green energy aware inter-DC VM migration problem with network constraints.

III. PROBLEM FORMULATION

In this section, we present the network model, the energy model, and the formulation of the

RE-AIM problem. The key notations are summarized in Table I.

TABLE I

THE IMPORTANT NOTATIONS

Symbol Definiton

ce The capacity of a linke ∈ E in terms of spectrum

slots.

cs The capacity of a spectrum slot.

cm The maximum number of servers in themth DC.

ς The maximum number of VMs can be supported

in a server.

Φm The amount of renewable energy in themth DC.

Θm The number of VMs in themth DC.

αm Per unit energy cost for themth DC.

ζm,k The required bandwidth for migrating thekth VM

in themth DC.

R The set of the migration requests.

Qr The set of VMs migrated in therth migration.

κ The migration granularity.

wr,m
p The used spectrum slot ratio of thepth path in the

rth migration from themth DC.

wB The maximum network congestion ratio.

ps The maximum energy consumption of a server.

η The power usage efficiency.

A. Network Model

We model the inter-DC network by a graph,G(V,E,B). Here,V , E andB are the node set,

the link set and the spectrum slot set, respectively. The setof DC nodes is denoted asD. We

assume that all DCs are powered by hybrid energy. We denoteDs as the set of DCs that does not
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have sufficient renewable energy to support their work loadsandDd as the set of DCs that has

surplus renewable energy. During the migration,Ds andDd correspond to the two sets of DCs

acting as the sources and destinations, respectively. We define κ as the migration granularity,

which determines the maximum routing resource that can be used in one migration to each DC.

B. Energy Model

We assume that there arecm servers in themth DC and each server can support up toς VMs.

The energy consumption of a server isps when it is active. A server is active as long as it hosts

at least one active VM; otherwise, the server is in the idle state. Here, we assume that an idling

server will be turned off and its energy consumption is zero.Then, ⌈Θm/ς⌉ is the number of

active servers required in themth DC [5]. We denoteη as the power usage effectiveness, which

is defined as the ratio of a DC’s total energy consumption (which includes the facility energy

consumption for cooling, lighting, etc. [19]) to that of theservers in the DC. Givenη, a DC’s

total energy consumption isη · ps · Θm/ς. We denoteΥm as the brown energy consumption in

themth DC. Then,

Υm = max(0, η · ps · ⌈Θm/ς⌉ − Φm) (1)

C. Problem Formulation

In the problem formulation,χm,k
p,f is a binary variable.χm,k

p,f = 1 indicates that thekth VM in

themth DC is migrated using thep path with thef th spectrum slot as the starting spectrum slot.

The objective of the RE-AIM problem is to minimize the total brown energy cost in all DCs with



7

the VM service constraints and the network resource constraints. The problem is formulated as:

min
χ
m,k
p,f

∑

m

αm · Υm (2)

s.t. :

VM service constraints :
∑

m

∑

k

∑

p

∑

f

χm,k
p,f =

∑

m

Θm (3)

∑

k

∑

p

∑

f

χm,k
p,f ≤ cm, ∀m ∈ Ds (4)

∑

m′∈Ds

∑

k

∑

p

∑

f

χm′,k
p,f +

∑

k

∑

p

∑

f

χm,k
p,f ≤ cm, ∀m ∈ Dd

(5)

Network resource constraints :

wr,m
p +

Γ r,m
p,f

ce
≤ wB, ∀m ∈ Ds, r ∈ R (6)

f(χm,k
p,f ) + b(χm,k

p,f ) ≤ ce (7)

f(χm,k
p,f ) + b(χm,k

p,f )− f(χm,k+1

p,f ) ≤ 0 (8)

f(i) + b(i)− f(j) ≤ [2− δi,j − y(i, j)]·

Fmax, ∀i 6= j
(9)

f(j) + b(j)− f(i) ≤ [1 + δi,j − y(i, j)]·

Fmax, ∀i 6= j
(10)

Here, Eqs. (3)-(5) are the VM service constraints. Eq. (3) constrains that all the VMs should be

hosted in the DCs, while Eqs. (4)-(5) constrain that the total number of VMs in a DC should

not exceed the DCs’ capacity. The network resource constraints are shown in Eqs. (6)-(10).

Eq.(6) constrains the network congestion ratio to be less than wB, which is the maximum

network congestion ratio allowed for routing in the network. In Eq. (6),wr,m
p is the spectrum

slot ratio of thepth path in therth migration from themth DC, which is defined as the ratio

of the number of occupied spectrum slots in thepth path to the total number of spectrum slots

of this path.Γ r,m
p,f is defined as the number of spectrum slots used in thepth path for therth
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migration from themth DC. Eq.(7) is a link capacity constraint of the network; itconstrains the

bandwidth used in migrating VMs not to exceed the capacity ofthe network resource. Here,b(·)

is the bandwidth requirement in terms of spectrum slots, andf(·) is the index of the starting

spectrum slot of a path. For example,f(χm,k
p,f ) represents the starting spectrum slot index of

the path, which is used byχm,k
p,f . Eq.(8) is the spectrum non-overlapping constraint of a path

used by two different VMs in one migration. This constraint must be met for each VM in every

migration; if two VMs use the same spectrum slot in one migration, the total bandwidth allocated

to the two VMs should not exceed the capacity of a spectrum slot; otherwise, each VM must use

a unique spectrum slot. In the migration, the VMs are sorted in ascending order based on their

bandwidth requirement. We assume the VMs are migrated according to an ascending order; for

example, the(k + 1)th VM is moved after thekth VM is migrated.

Eqs. (9)-(10) are the spectrum non-overlapping and the continuity constraints [20]. This

spectrum non-overlapping constraint is used for differentpaths. In these constraints,i and j

represent two different paths used in the migration. Here,Fmax is the upper bound of the total

bandwidth requirement in terms of spectrum slots.δi,j (∀i 6= j) is a Boolean variable defined in

Eq. (11), which equals1 if the starting spectrum slot index of theith path is smaller than that of

thejth path; otherwise, it is0. We definey(i, j) (∀i 6= j) as a Boolean indicator, which equals1

if the ith path and thejth path in the migration have at least one common link; otherwise, it is0.

We give an example to illustrate these equations. Ify(i, j) = 1 andδi,j = 1, Eq. (9) becomes Eq.

(12), which ensures the bandwidth non-overlapping constraint. Eq. (10) is automatically satisfied

in this case.

δi,j =











1, f(i) < f(j)

0, f(i) ≥ f(j)
(11)

f(i) + b(i) ≤ f(j) (12)

When we provision spectrum slots for requests in the EONs, the path continuity constraint,

spectrum continuity constraint and non-overlapping constraint must be considered. For the path

continuity constraint, a lightpath must use the same subcarriers in the whole path for a request.

For the spectrum continuity constraint, the used subcarriers must be continuous if a request needs

more than one subcarriers. For the non-overlapping constraint, two different lightpaths must be
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assigned with different subcarriers if they have one or morecommon links. Since we use a path

based method to formulate the RE-AIM problem, the path continuity constraint of the network

is already taken into account.

The main contribution of this paper is considering the network influence on the migration when

we minimize the brown energy consumption of the DCs. In otherwords, we want to impose a

controllable effect on the network in the migration that leads to less network congestion.

IV. PROBLEM ANALYSIS AND HEURISTIC ALGORITHMS

A. Problem Analysis

To solve the RE-AIM problem, both the energy costs in DCs and the network resource required

for the migration should be considered. For example, when a DC consumes brown energy, it is

desirable to migrate some VMs to other DCs. The VM migration will introduce additional traffic

to the network. To avoid congesting the network, we have to optimize the number of VMs that

will be migrated and select the routing path for the migration. Therefore, it is challenging to

solve the RE-AIM, which is proven to be NP-hard.

Lemma 1. The RE-AIM problem is NP-hard

Proof: We prove that the RE-AIM problem is NP-hard by reducing any instance of the

multi-processor scheduling problem (MPS) into the RE-AIM problem.

In the RE-AIM problem, without considering the network constraints, the optimal number of

VMs hosted in the DCs can be derived according to the availability of the renewable energy.

However, with the consideration of the network constraintsand the background traffic, it is

difficult and impossible to solve the RE-AIM problem online.For the RE-AIM problem, many

VMs are migrated from a set of DCs (source DCs) to another set of DCs (destination DCs).

Therefore, we can model the VM migration problem as a manycast problem. Since the RE-AIM

problem is NP-hard, we propose heuristic algorithms to solve this problem. These algorithms

determine which VM should be migrated to which DC and select aproper routing path in the

network to avoid congesting the network. We consider two network scenarios. The first one is a

network with light traffic load. Under this network scenario, we design Manycast with Shortest

Path Routing (Manycast-SPR) algorithm for VM migrations. The second network scenario is a
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network with heavy traffic load. In this case, we propose Manycast Least-Weight Path Routing

(Manycast-LPR) for migrating VMs among DCs.

B. Heuristic Algorithms For Light Work Loads

When the network load is light, there are more available spectrum slots. It is easy to find a path

with available spectrum slots for the migration requests. Then, a lower computing complexity

algorithm is preferred. Manycast-SPR only uses the shortest path, and thus it is a very simple

algorithm. Hence, Manycast-SPR is expected to provision the inter-DC VM migration requests

in a network with light work loads.

The Manycast-SPR algorithm, as shown in Alg. 1, is to find the shortest routing path that

satisfies the VM migration requirement and the network resource constraints. In the beginning, we

inputG(V,E,B), Θm andΦm, and then calculate the optimal work loads distribution. Afterward,

we getD, Ds and Dd. Then, we collect the migration requestsR. Here, our algorithm splits

the manycast requests into many anycast requestsr ∈ R. Now, we start to find a source DCs

and a destination DCd for the requestr. The migration will try to use the shortest pathp from

s to d; the requestr is carried out if the network congestion constraint is satisfied; otherwise,

the request is denied. Then, we updateDs andDd for the next request. After many rounds of

migration, if Ds or Dd is empty, or Eq. (6) is not satisfied, the migration is completed.

Details of the Manycast-SPR algorithm is described inAlgorithm 1. Here,p(·) is a func-

tion which targets to get the path for the migration. The complexity of Manycast-SPR is

O(|B||E|2|R||Qr||D|2cmς). Here,O(|D|2cmς) is the complexity to determine the optimal work

loads,O(|B|) is the complexity to determinef , andO(|R||Qr|) is the complexity in building the

VM set for the migration.O(|E|2) is the complexity of determining the pathp for Manycast-SPR.

C. Heuristic Algorithms For Heavy Work Loads

When the work load of the network is heavy, the number of available spectrum slots in the

network is limited. Since Manycast-SPR only uses the shortest path (one path) for routing, it is

impossible for Manycast-SPR to find an available path and spectrum slots in this scenario. Then,

Manycast-SPR may block the migration request, and leads to high brown energy consumption of

DCs. Hence, we propose another algorithm Manycast-LPR to achieve better routing performance,

that results in low brown energy consumption. Manycast-LPRchecksK-shortest paths from
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the source node to the destination node, and picks up the idlest path to serve the requests.

The requests will be provisioned with a higher probability by Manycast-LPR as compared to

Manycast-SPR. In summary, Manycast-LPR is expected to provision the inter-DC VM migration

requests under a heavy work load. It targets to find a path withmore available spectrum slots

at the expense of a higher complexity.

Manycast-LPR, as shown in Alg. 2, is to find the least weight routing path that satisfies the

VM migration requirement and the network resource constraints. The main difference between

Manycast-LPR and Manycast-SPR is using different ways to find a path. For Manycast-SPR,

it first determines the source node and the destination node.Manycast-LPR, however, finds the

path first, then uses the path to find the source node and the destination node. The other steps

are almost the same. Since Manycast-LPR should calculate the weights for all node pairs to find

a path, it increases the complexity.

Details of the Manycast-LPR algorithms is described inAlgorithm 2. The complexity for

Manycast-LPR isO(K|B||E|2|R||Qr||D|3cmς). Here,p(·) is a function which targets to get the

path for the migration.O(|D|2cmς) is the complexity to determine the optimal work loads,O(|B|)

is the complexity to determinef , andO(|R||Qr|) is the complexity in building the VM set for

the migration.O(K|E|2|D|) is the complexity of determining the pathp for Manycast-LPR. The

most complex part is to determine the set of VMs for the migration.

V. PERFORMANCE EVALUATIONS

We evaluate the proposed algorithms for the RE-AIM problem in this section. In order to

make the RE-AIM problem simple, we assume migratory VMs can be completed in one time

slot. The NSFNET topology, shown in Fig. 2, is used for the simulation. There are 14 nodes,

and the DCs are located atD = {3, 5, 8, 10, 12} [21], [22]. The DCs are assumed to be equipped

with wind turbines and solar panels, which provide the DCs with renewable energy, as shown

in Fig 2. The constantα is randomly generated from[1.6, 3.2] and represents the varying price

of the electric grid. The capacity of a spectrum slotb is set to 12.5Gps. The maximum number

of slots ce is set to 300; 300 spectrum slots are available when the network is empty. Assume

ς equals to 10; 10 VMs can be run in one server.K is set to 3, i.e., the maximum number of

shortest paths that can be used in Manycast-LPR is 3. Withoutlosing generality, the average

energy consumption of a VM is assumed to be 1 unit, implying that ps equals to 10 units. The
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Algorithm 1: Manycast with Shortest Path Routing

Input : G(V,E,B), Θm andΦm;

Output : D, Qr, p(Qr), f(Qr) andΓ r
p,f , r ∈ R;

1 Build D, Ds andDd by the the optimal work loads allocation;

2 Collect manycast requestsR;

3 while Ds andDd are not emptydo

4 calculate the network congestion ratio for allp, and getwB;

5 for all nodess ∈ Ds do

6 find s with the max migratory VMs as the source node;

7 for all nodesd ∈ Dd do

8 find d with the max available renewable energy as the destination node;

9 get the shortest pathp(Qr) from s to d for the rth migration;

10 build Qr for the rth migration according top(Qr) and Eqs. (9)-(10);

11 if Eq. (6) is satisfiedthen

12 pathp(Qr) is used to migrate;

13 find the start spectrum slot indexf(Qr) in B ;

14 get the allocated bandwidthΓ r
p,f ;

15 updateDs andDd;

16 else

17 return;

VM bandwidth requirementζm,k is randomly selected from[1, 14], which is convenient for the

simulation. The migration requests are generated by the optimal work loads distribution which

is calculated based onΘm andΦm. The background traffic is randomly generated between node

pairs in the network. The background traffic load is counted as an average ofλ
µ
, whereλ is

an average arrival rate of the requests and1

µ
is the holding period of each request [21]. Here,

the background traffic arriving process is a poisson process, and the holding time is a negative

exponential distribution. Parameters which are used for the evaluation are summarized in Table
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Algorithm 2: Manycast with Least-weight Path Routing

Input : G(V,E,B), Θm andΦm;

Output : D, Qr, p(Qr), f(Qr) andΓ r
p,f , r ∈ R;

1 Build D, Ds andDd by the the optimal work loads allocation;

2 Collect manycast requestsR;

3 while Ds andDd are not emptydo

4 calculate the network congestion ratio for allp, and getwB;

5 for all nodess ∈ Ds do

6 for all nodesd ∈ Dd do

7 build K-shortest path setP;

8 for path p ∈ P do

9 get pathp(Qr) with the lowest congestion ratio for therth migration;

10 build Qr for the rth migration according top(Qr) and Eqs. (9)-(10);

11 if Eq. (6) is satisfiedthen

12 pathp(Qr) is used to migrate;

13 find the start spectrum slot indexf(Qr) in B;

14 get the allocated bandwidthΓ r
p,f ;

15 updateDs andDd;

16 else

17 return;

II.

We run the simulation for 150 times, and exclude the scenariowith empty VM requests traffic

load (Ds 6= ∅ & Dd 6= ∅). Fig. 3 shows the total cost of brown energy consumption

of the strategy without using renewable energy, Manycast-SPR (κ = 2) and Manycast-LPR

(κ = 2). Apparently, Manycast-SPR and Manycast-LPR can save brownenergy substantially.

Manycast-SPR saves about15% cost of brown energy as compared with the strategy without

migration. Manycast-LPR reduces up to31% cost of brown energy as compared with the strategy
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Fig. 2. NSFNET topology with renewable energy DCs.

without migration. Manycast-LPR has better performance because Manycast-LPR employs the

least weight pathp of all node pairs for routing, while Manycast-LPR engages only the short

pathp of one node pair.

In order to obtain a better analysis, the running time of Manycast-SPR(κ = 2) and Manycast-

LPR (κ = 2) are shown in Fig. 4. Manycast-SPR spends less time than Manycast-LPR, implying

that Manycast-SPR has a lower complexity and Manycast-LPR has a higher computing com-

plexity. It also illustrates that the time and the final cost value is a trade-off in the evaluation.

Manycast-LPR is more complex and hence incurs a lower brown energy cost.

The results of Manycast-SPR for variousκ are described in Fig. 5. The cost of brown energy

consumption keeps increasing when the background traffic increases, because high background

traffic tends to congest the network links and leads to more migration failures. Apparently, a
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TABLE II

SIMULATION PARAMETERS

Network topology NSFNET

D {3, 5, 8, 10, 12}

ς 10 VMs

cm 1000 servers

α = {α1, α2, ..., αm} {2.1, 2.5, 1.9, 2.8, 2}

Θm [0, 8000]

Φm [1000, 9000]

ps 10 units, 1 unit for 1 VM in average

ζm,k [1, 14] Gb/s

ce 300 spectrum slots

cs 12.5 Gbps

κ {2, 4, 8, 16} spectrum slots
λ
µ

{40, 80, 120, 160, 200, 240, 280, 320}

small κ brings more benefits than a bigκ in reducing the energy cost.

Fig. 6 shows the results of Manycast-LPR for variousκ, almost the same results as shown in

Fig. 5, but the cost of the brown energy consumption is much less than that in Fig. 5, because

Manycast-LPR can easily find a path which has available bandwidth for migration. Obviously,

Manycast-LPR withκ = 2 achieves the best result with the lowest cost of consumed brown

energy. All these results illustrate that a smallκ leads to a lower cost of the brown energy

consumption and a bigκ induces a higher cost of the brown energy consumption. This is

because it is difficult to find a path with enough bandwidth fora big κ, when the network has

background traffic. A smallerκ achieves a lower energy cost at the cost of higher complexity.

Figs. 7 and 8 show the running time of Manycast-SPR and that ofManycast-LPR with different

κ, respectively. We can observe that the computing time is decreased when the traffic load

increases. For the sameκ with a given background traffic load, Manycast-SPR consumesmore

time than Manycast-LPR does. For either of the two algorithms under a specific background

traffic load, we can see that the running time is nearly halvedwhenκ is doubled. Hence, a smaller

κ brings a better performance but takes longer time, and a larger κ has worse performance with

a shorter running time.
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Fig. 3. Total brown energy cost comparison.

VI. CONCLUSION

Datacenters are widely deployed for the increasing demandsof data processing and cloud

computing. The energy consumption of DCs will take up25% of the total ICT energy consump-

tion by 2020. Powering DCs with renewable energy can help save brown energy. However, the

availability of renewable energy varies by locations and changes over time, and DCs’ work loads

demands also vary by locations and time, thus leading to the mismatch between the renewable

energy supplies and the work loads demands in DCs. Inter-DC VM migration brings additional

traffic to the network, and the VM mitigation is constrained by the network capacity, rendering

inter-DC VM migration a great challenge.

This paper addresses the emerging renewable energy-aware inter-DC VM migration problem.
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The main contribution of this paper is to reduce the network influence on the migration while

minimizing the brown energy consumption of the DCs. The RE-AIM problem is formulated and

proven to be NP-hard. Two heuristic algorithms, Manycast-SPR and Manycast-LPR, have been

proposed to solve the RE-AIM problem. Our results show that Manycast-SPR saves about15%

cost of brown energy as compared with the strategy without migration, while Manycast-LPR

saves about31% cost of brown energy as compared with the strategy without migration. The

computing time of Manycast-LPR is longer than that of Manycast-SPR because the complexity of

Manycast-LPR is higher than Manycast-SPR. In conclusion, we have demonstrated the viability
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Fig. 5. Total brown energy cost of Manycast-SPR.

of the proposed algorithms in minimizing brown energy consumption in inter-DC migration

without congesting the network.
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