
StoreSim: Optimizing Information Leakage in
Multicloud Storage Services

Hao Zhuang∗, Rameez Rahman∗, Pan Hui†, Karl Aberer∗
∗ LSIR, École Polytechnique Fédérale de Lausanne (EPFL)
† Hong Kong University of Science and Technology

hao.zhuang@epfl.ch, rameez.rahman@epfl.ch, panhui@cse.ust.hk, karl.aberer@epfl.ch

Abstract—Many schemes have been recently advanced for
storing data on multiple clouds. Distributing data over different
cloud storage providers (CSPs) automatically provides users with
a certain degree of information leakage control, as no single point
of attack can leak all user’s information. However, unplanned
distribution of data chunks can lead to high information disclo-
sure even while using multiple clouds. In this paper, to address
this problem we present StoreSim, an information leakage aware
storage system in multicloud. StoreSim aims to store syntactically
similar data on the same cloud, thus minimizing the user’s infor-
mation leakage across multiple clouds. We design an approximate
algorithm to efficiently generate similarity-preserving signatures
for data chunks based on MinHash and Bloom filter, and also
design a function to compute the information leakage based
on these signatures. Next, we present an effective storage plan
generation algorithm based on clustering for distributing data
chunks with minimal information leakage across multiple clouds.
Finally, we evaluate our scheme using two real datasets from
Wikipedia and GitHub. We show that our scheme can reduce
the information leakage by up to 60% compared to unplanned
placement.

I. INTRODUCTION

With the increasingly rapid uptake of devices such as
laptops, cellphones and tablets, users require an ubiquitous
and massive network storage to handle their ever-growing
digital lives. To meet these demands, many cloud-based storage
and file sharing services such as Dropbox, Google Drive and
Amazon S3, have gained popularity due to their easy-to-use
interface and low storage cost. However, these centralized
cloud storage services are criticized for grabbing the control of
users’ data, which allows them to run analytics for marketing
and advertising [1]. Also, the information in users’ data can
be leaked e.g., by means of malicious insiders, backdoors [2],
bribes and coercion [3]. One possible solution to reduce the
risk of information leakage is to employ multicloud storage
systems [4, 5, 6, 7] in which no single point of attack can
leak all the information. A malicious entity, such as the one
revealed in recent attacks on privacy [3], would be required to
coerce all the different CSPs on which a user might place her
data, in order to get a complete picture of her data. Put simply,
as the saying goes, do not put all your eggs in one basket.

Yet, the situation is not so simple. CSPs such as Dropbox,
among many others, employ rsync-like protocols [8] to syn-
chronize the local file to remote file in their centralized clouds.
Every local file is partitioned into small chunks and these
chunks are hashed with fingerprinting algorithms such as SHA-
1, MD5 [9]. Thus, a file’s contents can be uniquely identified
by this list of hashes. For each update of local file, only

Fig. 1: The motivating example

chunks with changed hashes will be uploaded to the cloud.
This synchronization based on hashes is different from diff -
like protocols that are based on comparing two versions of the
same file line by line and can detect the exact updates and only
upload these updates in a patch style [8]. Instead, the hash-
based synchronization model needs to upload the whole chunks
with changed hashes to the cloud. Thus, in the multicloud
environment, two chunks differing only very slightly can be
distributed to two different clouds. The following motivating
example will show that if chunks of a user’s data are assigned
to different CSPs in an unplanned manner, the information
leaked to each CSP can be higher than expected. Suppose that
we have a storage service with three CSPs S1, S2, S3 and a
user’s dataset D. All the user’s data will be firstly chunked and
then uploaded to different clouds. The dataset D is represented
as a set of hashes generated by each data chunk. This scenario
is shown in Figure 1. In addition, we consider that the data
chunks are distributed to different clouds in a round robin
(RR) way. Apparently, RR is good for balancing the storage
load and each cloud thus obtains the same amount of data.
However, the same amount of data does not necessarily mean
the same amount of information. For example, if we find that
the set of chunks {C3, C6, C9} are almost same, it means
S3 actually obtains the information equivalent to that in only
one chunk. If all other chunks are different, S1 and S2 obtain
three times as much information as S3, even though all of
them obtain the same amount of data. The problem does not
exist in a single storage cloud such as Dropbox since users
have no other choice but to give all their information to only
one cloud. When the storage is in the multicloud, we have the
opportunity to minimize the total information that is leaked
to each CSP. The optimal case is that each CSP obtains the
same amount of information. In our example, data distribution
based on RR can achieve the optimal result only if all the
chunks are different. However this is not the case in cloud
storage service due to two reasons: 1) Frequent modifications
of files by users result in large amount of similar chunks1; and
2) Similar chunks across files, due to which existing CSPs use

1Most CSPs maintain revision history.



the data deduplication technique.

Determining identical chunks is relatively straightforward
but efficiently determining similarity between chunks is an
intricate task due to the lack of similarity preserving fin-
gerprints (or signatures). At the same time, similarity is
of paramount importance if one wants to limit information
disclosure. Put simply, two paragraphs of text with one word
different would lead to two different chunks. If one were to
only consider identity, the two chunks would be considered
different and placed separately; however both of them contain
almost entirely the same information, hence they should ideally
be placed together. We note here that the above problem is
relevant even with encryption because once the encryption
key is exposed (as in coercion of the CSP by some third
party such as the National Security Agency or due to the
maliciousness of the CSP itself), the entire data of the user
can be easily leaked. If encryption is performed after detecting
near duplicate chunks and placing them together, then the
information leakage can be reduced even if the encryption key
is exposed. Therefore, we need more sophisticated techniques
to detect the near-duplicate (or similar) data chunks to reduce
information leakage in the multicloud storage system.

Through the above example, we can see that storing the
data in a multicloud system without proper optimization on the
data distribution can lead to avoidable information leakage. In
this paper, we focus on reducing information leakage to each
individual CSP in a multicloud storage system and provide
mechanisms for distributing users data over multiple CSPs in
a leakage aware manner. Specifically, we make the following
contributions in this paper:
• We present StoreSim, an information leakage aware

multicloud storage system and formulate information
leakage optimization problem in multicloud (Section
II).

• We propose an approximate algorithm, BFSMinHash,
based on Minhash and Bloom filter to generate
similarity-preserving signatures for data chunks. We
also design a pairwise information leakage function
based on Jaccard similarity (Section III).

• Based on the information leakage measured by BFS-
MinHash, we develop an efficient storage plan gen-
eration algorithm, SPClustering, for distributing users
data to different clouds (Section IV).

• Finally, we use two datasets crawled from Wikipedia
and GitHub, containing files with multiple revisions,
to evaluate our framework. Through extensive exper-
iments, we show the effectiveness and efficiency of
our proposed scheme for reducing information leakage
across multiple clouds (Section V).

II. STORESIM

In this section, we firstly describe the architecture of
StoreSim. Then we introduce StoreSim in terms of metadata
and CSP models. Finally, we formulate the information leakage
optimization problem in the multicloud.

A. Architecture
The architecture of StoreSim is shown in Figure 2. It can be

observed that there is a trust boundary between the metadata
and storage servers. We assume that clients and metadata
servers, which are situated inside the trust boundary, are

Fig. 2: Architecture of StoreSim

trustable by users while remote servers outside the boundary
are untrustworthy. For example, the metadata can be stored in
private database servers while storage servers can be located
in public CSPs such as Amazon S3, Dropbox and Google
Drive. Storage servers can be accessed through standard APIs
(Application Programming Interfaces). As is shown in Figure
2, all control flows are inside the trust boundary while data
flows can cross the trust boundary. In order to optimize the
information leakage, we design two components in StoreSim.
The first component is the Leakage Measure layer (LMLayer)
that is used to evaluate the information leakage and further
to generate storage plan which maps data chunks to different
clouds. The other component is Cloud Manager layer (CM-
Layer) that provides cloud interoperability in a syntactic way.
B. Models

MetaData model. The data model we discuss in this
section is for the metadata that represents the file system of
StoreSim. We model users’ data as a labeled graph G =<
V, E ,Ω, π > where V is a set of vertices, E is a set of edges,
Ω is a set of labels, and π : V ∪ E → Ω is a function that
assigns labels to vertices and edges. Within the data graph,
the vertices V represent different objects in a file system such
as users, folders, files and data chunks. The edges E indicate a
variety of relationships among different objects which can be
distinguished by a set of labels Ω. The labels also facilitate the
process of path-oriented search, e.g., to find all data chunks
of one file, or to find all the files of one user. Furthermore,
we define N ⊆ V as the set of data nodes which store the
raw data in G. We aim to distribute data nodes N to different
CSPs in terms of the storage protocol defined in Section II-C.

CSP model. A cloud storage provider (CSP) s ∈ S is
parameterized by two factors < u, v > where u is a storage
load factor while v indicates the prior knowledge of a CSP.
The storage load, i.e., the ratio of the total size of data stored
on a cloud to the size of entire data of the user, can be assigned
either by StoreSim (the default) or by users in terms of their
preferences. The prior knowledge of a CSP is modeled as the
set of data nodes which have been stored on it. Thus, the
amount of prior knowledge of a CSP increases with the number
of data nodes stored on it. We assume that the knowledge is
unforgettable, i.e., the knowledge of a data node will not be
removed even when the data node is removed from the cloud2.
C. Storage Protocol

In essence, the storage protocol is a set of constraints
or cost functions to reduce the information leakage on data

2This is a necessary assumption since providers such as Dropbox also do
not actually delete user’s data immediately.



distribution across multiple clouds. The protocol in StoreSim
is to store similar chunks on the same cloud, thereby reducing
information leakage to each individual CSP. In the following,
we firstly define information leakage for a pair of data nodes.

Definition 1: (Pairwise Information Leakage). Given a set
of data nodes N in data graph G, we define Lp : N ×N →
R as the pairwise information leakage function. For any pair
of data nodes ni, nj ∈ N ,Lp(ni, nj) computes the pairwise
information leakage of two nodes.

Lp can measure the information leakage in terms of syntactic
or semantic way. In this paper, we only compute the informa-
tion leakage based on syntactic similarity. In this paper, we use
delta Jaccard similarity of two sets, as our information leakage
function (other appropriate similarity functions can also be
employed depending on the data structure and application
requirements).

Lp(ni, nj) = J∆(σ(ni), σ(nj)) = 1− |σ(ni) ∩ σ(nj)

σ(ni) ∪ σ(nj)
| (1)

where the function σ(·) will convert a data node into a set
(i.e., representing a data node as a set of words). It follows
immediately that if a CSP gets a new data node that is a
duplicate of an existing data node on that cloud (i.e., Jaccard
similarity between them is 1), there will be no leakage due to
lack of new information. In addition, we define the information
leakage of the first data node stored in a cloud as a constant
1. It can be interpreted that all the information in the first data
node at a CSP is leaked.

Furthermore, we also define a storage plan as a mapping
from data nodes to different CSPs, which is defined as:

Definition 2: (Storage Plan). Given a set of data nodes N
in the data graph G and a set of CSPs S, a storage plan M :
N → S is a mapping of each data node n ∈ N to a CSP
s ∈ S.

The storage plan can be generated in terms of users’ preference
and QoS factors. For example, the storage plan based on round
robin makes for a good balance of the storage load among
different CSPs. In our paper, we will evaluate the goodness
of storage plan with respect to the information leakage. The
goodness of storage plan is defined as:

Definition 3: (Goodness of Storage Plan). Given a set
of data nodes N in the data graph, a pairwise informa-
tion leakage function Lp and a storage plan M, we define
GM(N ,M,Lp) ∈ R as the goodness function of storage plan
M.

From the Definition 3, we can see that the goodness of stor-
age plan depends on the pairwise information leakage function
Lp and the storage plan M. Thus, an interesting question is
whether there exists an optimal storage plan with respect to
a given information leakage measure. We can formulate this
information leakage optimization problem as:

Definition 4: (Information Leakage Optimization Prob-
lem). Given a set of data nodes N in the data graph, a
pairwise information leakage function Lp and a storage plan
M, the information leakage optimization problem is to find
the optimal storage plan with minimal information leakage
M∗ = argmin

M
GM(N ,M,Lp)

In this paper, we provide an approximate algorithm for
addressing this problem. We first discuss how to efficiently
measure pairwise information leakage in Section III and then
in Section IV we propose a storage plan that places similar
chunks together in a multicloud environment.

III. EFFICIENT MEASUREMENT OF PAIRWISE
INFORMATION LEAKAGE

We define the pairwise information leakage as delta Jaccard
similarity, as is shown in Equation 1. For each pair of data
nodes (chunks), we convert the data nodes as sets of words and
compute the Jaccard similarity. However, the set operations for
measuring pairwise similarity can be quite expensive [10], even
assuming small-sized chunks, given that the number of pairs
increases quadratically as the number of chunks increases.
Thus, we need an efficient algorithm to compute the Jaccard
similarity with less computation and storage overhead. In
the following, we first introduce the background of MinHash
algorithm, which provides a fast way to compute Jaccard
similarity, and explain why we cannot apply the existing
approaches directly. Next we present BFSMinHash, a Bloom
filter sketch for MinHash in order to reduce storage overhead.
A. MinHash Background

MinHash [10, 11] uses hashing to quickly estimate the
Jaccard similarity of two sets which can be also interpreted
as “the probability that a random element from the union of
two sets is also in their intersection”, Prob[min(h(S1)) =

min(h(S2))] = |S1 ∩ S2

S1 ∪ S2
| = J(S1, S2) where h is the

independent hash function and min(h(S1)) gives the min-
imum value of h(x), x ∈ S1. Therefore, we can choose
a sequence of hash functions h1, h2, · · · , hk and compute
the minimum values of each hash function as MinHash
signatures, i.e., Sig(S) = {min(hi(S))|i = 1, · · · , k}. It
follows that Jaccard similarity of two sets is approximated
as |Sig(S1) ∩ Sig(S2)|/k. However, MinHash with many
hash functions needs to compute the results of multiple hash
functions for every member of every set, which is computation-
ally expensive. In our paper, we adopt a variant of Minhash
which avoids the heavy computation by using only a single
hash function. Instead of selecting only a single minimum
value per hash function, the signature of MinHash with single
hash function h will select the k smallest values from the
set h(S), which is denoted as Sig(S) = {mink(h(S))}.
Thus, a random sample of S1 ∪ S2 can be represented as
X = {mink(h(S1 ∪ S2))} = mink(Sig(S1) ∪ Sig(S2)). The
Jaccard similarity is estimated as |X ∩Sig(S1)∩Sig(S2)|/k.

For MinHash algorithm, to compute the similarity for a
pair of data nodes, we only need to store an array of MinHash
signatures rather than storing the whole data. Although it
reduces the storage cost greatly, it can still be heavy given the
huge number of data nodes. Suppose that each hash function
generates a signature of 64 bits and k is 64, the storage cost
of each data node is about 512 bytes. If we have about two
million chunks, the overhead of storing the signatures is 1
Gigabyte. Thus, we need a compact representation of these
MinHash signatures to reduce the storage overhead. Previous
work [12] proposed b-bit MinHash which only stores b lowest
bits of each signature computed by different hash functions
to reduce the storage space. However, this approach does not
work for the MinHash with a single hash function since all the



signatures are computed by the same hash function. Instead,
we design BFSMinHash, a Bloom-filter sketching scheme for
Minhash, which uses a single hash function. BFSMinHash ex-
ploits the space efficient feature of Bloom filter, thus reducing
the storage overhead.
B. Bloom-filter Sketch for MinHash

Similar to the fingerprints in data deduplication, we expect
an algorithm to generate the signature with a relatively small
and fixed size for each data node. Our proposed BFSMinHash
algorithm employs a Bloom-filter with a single hash function
to sketch MinHash signatures. There are three steps in BFS-
MinHash: shingling, fingerprinting and sketching.

Firstly, we convert each data chunk to a set of shingles
which are contiguous subsequences of tokens. The process of
shingling is to tokenize the byte stream into a set of shingles.
For example, if the input is “abcde” and the size of a shingle is
2, the set of shingles is {ab, bc, cd, de}. From this perspective,
we only consider the similarity in a syntactic way [13] rather
than in a semantic way. In other words, we do not consider
the difference between the fruit apple and the company Apple.
Then, for each shingle, we will compute its fingerprints by
MinHash. We use a maximum heap with the fixed-size of k
to save k smallest MinHash fingerprints for each data node.
It only takes O(1) to get the maximum value of all k values
in a maximum heap. Only when a new fingerprint is less than
the maximum value stored in the heap, it will be added to the
heap and the current maximum in the heap will be removed.
From the shingling and fingerprinting steps, we can see that
the time complexity of our algorithm is linear in the total
length of data chunks. Finally, sketching based on Bloom-
filter will convert the MinHash fingerprints into a fixed size
signature. The Bloom filter is a space efficient data structure
which can be used to test whether an element is in a set.
However, when we adopt Bloom filter, we have to tolerate its
effect of false positives. The rate of false positives is computed
as (1 − e−nk/s)n, where s is the size of Bloom filter, k is
expected number of elements that will be added in Bloom filter
and n is the number of hash functions [14]. For example, if
we implement a Bloom filter with size of 512 bits and k is
64, the optimal number of hash functions is 1 with a false
positive rate of 11.7%. In our case, we aim to keep the size
of Bloom filter as small as possible and therefore the Bloom
filter in our BFSMinHash algorithm always employs a single
hash function. The final output of BFSMinHash algorithm is
a signature with the same size as the Bloom filter. In this way,
computing similarity of two data nodes is converted to compute
the similarity of two bloom filters. Given two signatures x, y,
the Jaccard similarity is

J(x, y) =

∑
i(xi ∧ yi)∑
i(xi ∨ yi)

(2)

where xi, yi is the ith bit of x, y, and ∧, ∨ are bitwise and,
or operators respectively. Later we will evaluate approximate
errors of BFSMinHash, which are caused by both MinHash
and Bloom filter, in Section V.

IV. GENERATING MULTICLOUD STORAGE PLAN

Based on the pairwise information leakage measured by
BFSMinhash algorithm, the next step is to generate the storage
plan with the minimal information leakage. Before we present
our storage plan generation algorithm, we need to introduce a
goodness function to quantify the quality of a storage plan.

A. Goodness of Storage Plan
The goodness function of storage plan is evaluated based on

the pairwise information leakage, as it is defined in Definition
1. Recall from Equation 1, the pairwise information leakage
measures how much new information will be leaked when
a pair of data nodes are stored in the same cloud. Thus,
it is essential to find the pairs of data nodes with minimal
information leakage. In order to measure the goodness of
a storage plan, we introduce a metric called relative infor-
mation leakage (RIL), which is defined as the average of
minimal pairwise information leakage among all the data
nodes in a storage plan. For example, in our motivating
example in Section I, cloud S2 stores three data nodes for a

total of
(

3

2

)
pairs, {(C2, C5), (C5, C8), (C2, C8)}. Suppose

{Lp(C2, C5) = 0.25, Lp(C5, C8) = 0.15,Lp(C2, C8) =
0.1}, we have the information leakage of first data node C2
as constant 1 while the minimal pairwise information leakage
for C5, C8 is 0.15 and 0.1, respectively. Thus, the RIL of data
nodes stored in S2 is the average minimal pairwise information
leakage (1 + 0.15 + 0.1)/3 = 0.416. Formally, given an
individual CSP si = (ui, vi) ∈ S in a storage plan M, the
RIL of all data nodes stored in si is formulated as:

RILi =
1

|vi|
(1 +

|vi|∑
l=2

Lmin(nl, nk)), (3)

s.t. vi = {n ∈ N|M(n) = si}, (4)

l 6= k, nl, nk ∈ vi (5)
where 1 is the information leakage for the first data node
and Lmin(nl, nk) returns the minimal pairwise information
leakage, Lp(nl, nk), for nl by searching the node nk, l 6= k,
which is most similar to it. vi in Equation 4 represents prior
knowledge and is modeled as the set of data nodes stored in si.

Since we have Lp ∈ [0, 1], it follows that RILi ∈ [
1

|vi|
, 1]. In

the extreme case where all the data nodes stored in a CSP are
the same, the RIL is

1

|vi|
, which means the actual information

it has obtained equals to the information of one node. In other
words, a good storage plan, which can effectively detect the
similar chunks and distribute them to the same cloud, has a
low RIL value. Based on this, we can compute the RIL for
a storage plan M as the weighted average of the RILs of all
CSPs:

RILM =

|S|∑
i=1

ui ∗RILi (6)

where ui is the normalized storage loads of CSPs such that
|S|∑
i=1

ui = 1. In this way, the information leakage optimization

problem with respect to RIL is to find an optimal storage plan
with minimal relative information leakage to each CSP.
B. Clustering for Storage Plan Generation

In Equation 3, Lmin needs to find the pairs with the min-
imal information leakage. This search problem is challenging
when the number of pairs increases quadratically. Suppose we
have 100,000 data nodes, the number of pairs will be as high

as 5 billion
(

100, 000

2

)
. Thus, we need to design an efficient



search algorithm to find data pairs with minimal information
leakage.

Fig. 3: ClusterIndex for Centroids with b=4 Segments

Inspired by clustering problems [15], we propose a storage
plan generation algorithm, SPClustering, to group similar
data nodes. We define a data node as the centroid when no
existing data node has low pairwise information leakage with
it. In practice, we define a leakage threshold, according to
which a data node becomes a centroid if all its pairwise
information leakage with other nodes are greater than this
threshold. In other words, a centroid represents all data nodes
which are similar to it. Given any new data node, we only
compute its pairwise similarities with a set of centroids, which
largely reduces the number of pairs. Moreover, we build the
ClusterIndex among the centroids to further prune the search
space. A single index entry in ClusterIndex points to a set
of similar centroids, which is similar to the Bitmap index
in traditional databases [16]. Specifically, suppose the size of
signature generated by BFSMinHash algorithm is s bits, we
divide the signature into b segments with the length of each
segment as s/b. We will use each segment as the key in hash
function and therefore, all the signatures with the same key
will be hashed together. For example, as is shown in Figure
3, when the key is the value of first segment, c2 and c4 are
hashed to the same index entry for they share the same value
of first segment. Those signatures are more likely to be similar
to each other since they already share one same segment.
Recall from Section III-B, the number of elements sampled by
BFSMinHash is k, which means its signature based on Bloom
filter is at most with k bits set to one. If we cannot search
any similar node from the ClusterIndex with b segments for a
given node, that means there are at least b bits different from
the given node with all the centroids. Based on Equation 2,
it implies that there is no centroid that has Jaccard similarity
with the given node larger than (k− b)/(k+ b). For example,
if k is 64 and we divide the signature into 8 segments, the
ClusterIndex can efficiently search all the similar centroids
with similarity higher than 77.8%. Thus, in order to find
centroids with less or more similarity, we need to respectively
increase and decrease the value of b (the number of segments).

To further generate a storage plan, we firstly builds the
ClusterIndex for a set of centroids on the fly. We do not persist
the ClusterIndex to reduce the storage overhead. The cost of
building ClusterIndex is acceptable, which takes about 400
milliseconds for 100 thousand centroids. Then, for each new
data node, we will find the cloud with the minimal information
leakage based on the candidate set which is queried based on
ClusterIndex. Finally, if the minimal information leakage of
new node is still larger than the leakage threshold, we will
assign this node only based on the storage loads of CSPs.
Meanwhile, this node will be labeled as the centroid and be
indexed on the fly.

V. EXPERIMENTAL EVALUATION
In this section, we first introduce the implementation of

StoreSim and the two datasets used for evaluation. Then we

evaluate the performance of two algorithms, BFSMinHash and
SPClustering. Finally, we analyze the time cost introduced by
the leakage measure layer in StoreSim.
A. Implementation

We have implemented the StoreSim prototype using Java,
and it includes both basic components (such as chunking,
data deduplication, bundling and encryption/decryption), and
featured components including LMLayer and CMLayer. In
the LMLayer, we implement the algorithms described in
the previous sections, while the CMLayer enables StoreSim
to communicate with multiple CSPs. StoreSim employs the
common fixed-size chunking with a maximum chunk size of
512 KB. The chunk is identified by SHA-1 signature, which
is also used for data deduplication. The small chunks can be
bundled as a ZIP file to minimize the network transmission
overhead. Succinctly, before the chunk is synchronized, it
can be measured for leakage optimization, encrypted, and
bundled for better network transmissions. The synchronization
of StoreSim is based on the delta encoding [8], which only
synchronizes changed chunks (identified by SHA-1 signatures)
between two copies. All the metadata, which is organized
as data graph, are stored in a MySQL database. We have
implemented for three public storage clouds: Dropbox, Google
Drive, and Amazon S3. All the communications between
StoreSim and public CSPs occur using APIs supplied by those
CSPs. We also support the synchronization of files to the local
FTP servers. The metadata server is deployed on our local
server machine and the evaluation is conducted on a personal
client machine with Intel i7-2640M CPU and 4GB memory.
B. Dataset

For the evaluation, we aim to find such data which has
undergone several modifications, and thus results in many
similar chunks. This can serve as a model for the modifications
that users make in the cloud storage services. Wikipedia and
Github are two such data sources that contain web pages and
files which are reviewed and modified multiple times. Thus, we
crawled two datasets from Wikipedia and Github, respectively.
The Wikipedia dataset contains a total of 2197 web pages and
each web page has a maximum 49 revisions. For each web
page, the crawler only stores the text that is extracted from
HTML files. The total size of the dataset is 1.2 GB. The size
of each webpage is relatively small, which ranges from 29
Bytes to 118 KB with an average size of 11KB. The Github
dataset contains the United States code3 spanning 56 files. The
files in this dataset are much larger than those in the Wikipedia
dataset, in the range of 47.7KB to 50MB with an average size
of 5.3 MB. The files in this dataset have a maximum of 8
modifications and the total dataset size is 2.1 GB. Thus, we
observe that the data chunks generated by Wikipedia dataset
are small in size with maximum chunk size of 118 KB, but
great in number (91,929) while those generated by Github
dataset are bigger in size with maximum size of 512KB but
are less in number (4,274).
C. BFSMinHash

In this part, we will evaluate the performance of BF-
SMinHash algorithm in terms of approximation errors and
effectiveness.

Approximation Errors. We implement BFSMinHash
based on 64 bits Murmur hash function [17] and thus each

3https://github.com/divegeek/uscode



Github Wikipedia
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.20.2

A
p

p
ro

x
im

a
te

 E
rr

o
r 

(R
M

S
E

)

 

 

MinHash−10−64

BFSMinHash−10−64−512

BFSMinHash−10−64−256

BFSMinHash−8−64−256

Fig. 4: Approximate Errors
(MinHash-10-128 as baseline)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.02

0.04

0.06

0.08

0.1

0.12

(a) Pairwise Information Leakage

A
p
p
ro

x
im

a
te

 E
rr

o
r 

(R
M

S
E

)

 

 

MinHash

BFSMinHash

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b)Pairwise Information Leakage

A
p
p
ro

x
im

a
te

 E
rr

o
r 

(R
M

S
E

)

 

 

MinHash

BFSMinHash

Fig. 5: Approximate Errors by groups
for (a) Github and (b)Wikipedia

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Number of Modifications

R
IL

 

 

RR−Wikipedia

RR−Github

SPClustering−Wikipedia

SPClustering−Github

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.90.9

(b) Number of Modifications

In
fo

D

 

 

RR−Wikipedia

RR−Github

SPClustering−Wikipedia

SPClustering−Github

Fig. 6: Effect of modification numbers on
(a) RIL and (b) InfoD

MinHash signature is 64 bits. In BFSMinHash, we have to fur-
ther fix three parameters: the shingle size l, the sampling size
of MinHash k and the Bloom filter size s. We seek to determine
the suitable parameters for BFSMinHash for our subsequent
experiments, by first comparing the performance among five
settings of our algorithm: 1) MinHash-10-128; 2) MinHash-10-
64; 3) BFSMinHash-10-64-512; 4) BFSMinHash-10-64-256;
5) BFSMinHash-8-64-256, where the numbers in the name
correspond to the value of l, k and s (only for BFSMinHash).
Among different settings, MinHash-10-128 theoretically has
the best performance since it has the largest sampling and
shingle size and no sketch. Given our goal is to evaluate the
approximation error between our BFSMinHash and MinHash
algorithm, we select MinHash-10-128 as the baseline and
compare its performance with that of the other four algorithms.
From Figure 4, we can see that MinHash-10-64 without
sketching outperforms the other three for both datasets. The
sampling size of MinHash-10-64 is 64, i.e., it will select 64
smallest MinHash signatures. The storage cost for each chunk
is 64*64 bits = 512 Bytes. We can observe that BFSMinhash
algorithms with the shingle size of 10 are better than that
with the shingle size of 8. This is because a longer shingle
size decreases the probability of a given shingle appearing in
any document. In addition, we also observe that approximate
error is influenced by the ratio of the sampling size to the
Bloom filter size. As is shown in Figure 4, the performance
of BFSMinhash-10-64-512 is better than BFSMinHash-10-64-
256 by about 6%. However, the storage cost of BFSMinHash-
10-64-256 (32 Bytes per chunk) is only half of BFSMinHash-
10-64-512 (64 Bytes per chunk).

Considering the tradeoff between storage cost and approxi-
mate errors, in StoreSim we adopt the setting of BFSMinHash-
10-64-256. We observe that overall approximate errors of
BFSMinHash-10-64-256 are about 10.4% for Wikipedia and
12.2% for Github. Thus, an immediate question is that are these
approximation errors of BFSMinHash-10-64-256 tolerable to
find the pairs with the minimal information leakage? We will
answer this question in the next group of experiments. In the
following, we use BFSMinHash to refer to BFSMinHash-10-
64-256 while MinHash refers to MinHash-10-64.

Effectiveness of BFSMinhash. In the last experiment, we
evaluated approximate errors based on all the pairs. In fact, the
primary goal of our algorithm is to identify those pairs which
have minimal information leakage and put them in the same
cloud. Thus, we are more interested in approximate errors of
the pairs with the minimal information leakage. Put bluntly,
we are interested in those pairs of nodes whose information
leakage is low, say 0.3, rather than those whose information
leakage is very high, say 0.8, since these do not serve our
needs of placing similar nodes on the same CSPs.

Therefore, in this set of experiments, we divide pairs into
ten groups in terms of their pairwise information leakage,

where the first group is all the pairs with information leakage
less than 0.1 while the second group is set of pairs with
information leakage less than 0.2, and so on. The approxi-
mate errors of different groups are shown in Figure 5. It is
interesting to discover that the performance of BFSMinhash
is highly close to the MinHash algorithm for groups 1-7
of Github dataset and groups 1-9 of Wikipedia dataset. For
the Github dataset, the performance of BFSMinhash degraded
dramatically after the information leakage is larger than 0.7
while for the Wikipedia dataset, the performance of BFSMin-
hash remains stable till the information leakage is 0.9. The
dramatic increase in approximation errors of the pairs with
large information leakage means that our algorithm is not very
accurate for the pairs with low similarities. However, as stated
earlier, in practice, we are targeted to identify the pairs with
low information leakage (or high similarity). Therefore, we can
safely state that our BFSMinhash algorithm is effective enough
to meet our demands since it identifies pairs with information
leakage as high as 0.7 with low error. To conclude and to
answer the question raised by the last set of experiments,
the results clearly show that our BFSMinHash is almost as
effective as MinHash in identifying the pairs with the minimal
information leakage while it can reduce the storage cost to
1/16 of MinHash.
D. SPClustering

In this part, we will evaluate the performance of our storage
plan generation algorithm SPClustering. Besides the metric
of RIL as defined in Section IV-A, we further define a new
metric, information density (InfoD) from the perspective of
entire dataset. The InfoD of a CSP is defined as the ratio of the
information it has stored to the entire information in the whole
dataset. Given a CSP si = (ui, vi) ∈ S, we further denote the
set of data nodes which are also centroids stored in si as vci
and the InfoD of si is computed as InfoDi =

|vci |∑|S|
j=1 |vcj |

where
|S|∑
j=1

|vcj | denotes the total number of centroids in a

dataset. We approximate the total information in a dataset to
that information in its centroids since the centroid represents
all data nodes which are similar to it. Base on this, the InfoD
of a storage planM for a dataset is computed as the weighted

average InfoD of each CSP, InfoDM =

|S|∑
i=1

ui ∗ InfoDi.

For example, consider all CSPs with equal normalized storage

loads of
1

|S|
. Here the optimal case of storage plan ensures

that InfoD =
1

|S|
, with every cloud obtaining

1

|S|
of total

information, (i.e., InfoDM =
1

|S|
); while the worst case is



2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.90.9

(a) Number of Storage Clouds

R
IL

 

 

RR−Wikipedia

RR−Github

SPClustering−Wikipedia

SPClustering−Github

2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Number of Storage Clouds

In
fo

D

 

 

RR−Wikipedia

RR−Github

SPClustering−Wikipedia

SPClustering−Github

Optimal

Fig. 7: Effect of CSP numbers on
(a) RIL and (b) InfoD

0 1 2 3 4 5 6 7 8 9

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

# Chunks

#
 S

e
a

rc
h

e
d

 P
a

ir
s

 

 

Index without clustering

ClusterIndex

Fig. 8: Pruning efficiency by
ClusterIndex

1MB 10MB
0

1

2

3

4

5

6

7

T
im

e
 (

S
e
c
o
n
d
s
)

 

 

Normal

LMLayer

En/Decrypt

All

100MB 1GB
0

100

200

300

400

500

T
im

e
 (

S
e
c
o
n
d
s
)

 

 

Normal

LMLayer

En/Decrypt

All

Fig. 9: Time cost with different configurations by varying file
size

InfoDM = 1 with every cloud obtaining all the information
in dataset. Thus, we can see that the higher the InfoD is, the
more information are leaked to each SDC. In the following,
we will evaluate the goodness of storage plan generated by our
SPClustering to answer two questions: 1) What’s the impact
of user’s modifications of data on the information leakage? 2)
Is there any effect on the number of CSPs on which the users
distribute their data?

Number of modifications. In this set of experiments,
we have five CSPs with equal storage loads. After each
modification, the dataset will be synchronized to clouds using
delta encoding. The more modifications a dataset has under-
gone, the more resultant similar chunks. Figure 6 shows the
influence of number of modifications on information leakage
of storage plans generated by both SPClustering and Round
Robin (RR) algorithms. It clearly shows that SPClustering
outperforms RR greatly for both the Wikipedia and Github
datasets. From Figure 6 (a), we can observe that with the
increase in number of modifications, the RIL of SPClustering
decreases, by about 30% (from the first modification to the
last), much more quickly than RR, which decreases by only
about 16%. The decrease of RILs implies that modifications on
a dataset brings about more similar chunks. Our SPClustering
algorithm is much more effective than RR to place those
similar data chunks with the minimal information leakage in
the same cloud. In Figure 6 (b), we can observe that RR
without clustering the similar data nodes leaks the information
in the dataset quickly, for the infoDs of RR increase to about
80% and 40% for Wikipedia and Github, respectively. Recall
that the number of data chunks in Wikipedia dataset is much
larger than that in Github, which also brings about much more
similar data chunks. Thus, under RR without optimization on
data chunks distribution, we can observe that Wikipedia leaks
information much quicker than Github. On the other hand,
InfoDs of our approach almost remains stable (around 22%,
25% for Github and Wikipedia, respectively), which indicates
that our approach prevents the information leakage effectively.
The reader may recall that the files in Wikipedia dataset
have undergone a maximum of 49 modifications while that of
Github a maximum of 8 modifications. Thus, we only compare
the first 9 versions of Wikipedia dataset to that of whole Github
dataset in Figure 6. If we evaluate the whole Wikipedia dataset
with 49 modifications, the final RILs of Wikipedia decreases
to 9.7% while InfoDs of Wikipedia increase to 31%. Thus, we
can conclude that our approach greatly prevents information
leaked in the process of data synchronization.

Number of CSPs. In this set of experiments, we fix the
number of modifications to 8 and vary the number of CSPs
from 2 to 5. All CSPs in the experiments have the same storage
load. In Figure 7(a), we can see that the RILs of SPClustering
are almost stable for both datasets while those of RR increase

steadily. The stable RIL implies that SPClustering algorithm
is effective to prevent information leakage by putting the
pairs with the minimal information leakage together regardless
of the number of CSPs. As for RR, with the increase in
number of CSPs, the probability of putting data pairs with
minimal information leakage in the same cloud decreases,
thereby leading to increased RIL. In Figure 7(b), we can
observe that InfoDs of our approach decreases as the number of
CSPs increases. This is the benefit of multicloud environment
and the more CSPs there are, the less the data obtained by
each cloud. However, we can observe from Figure 7(b) that
a CSP under RR without considering information leakage can
obtain more than 70% of entire Wikipedia dataset and 40% of
Github dataset even with a total of 5 CSPs while SPClustering
can achieve near-optimal value with respect to InfoD. For all
cases, we observe that SPClustering improves the InfoD by
about 60% and 45% for Wikipedia and Github respectively,
compared to RR, which means SPClustering prevents about
60% of total information in Wikipedia from being leaked.

ClusterIndex. Finally, we evaluate the pruning efficiency
of ClusterIndex employed by SPClustering algorithm. We vary
the number of data nodes in ClusterIndex from 2000 to 90,000
in Wikipedia dataset and compare the performance with that
of indexing without considering clustering. We only evaluate
based on Wikipedia dataset since the number of data chunks
in Github is limited. As is shown in Figure 8(b), ClusterIndex
can reduce the number of searched pairs by 86% without much
tradeoff on the precision (about 2.6%, not shown in the figure).

E. Discussion
CPU overhead. It is clear that the client in our system per-

forms more additional work which introduces more computa-
tion. In StoreSim, there are four main components in the client:
deduplication based on SHA-1 signature, LMLayer based on
BFSMinhash and SPClustering, encryption/decryption based
on AES-256 (same with that employed by SpiderOak[18]) and
bundling based on ZIP. We evaluate the overhead introduced by
LMLayer in terms of four configurations: 1) Normal: dedupli-
cation and bundling; 2) LMLayer: deduplication, LMLayer and
bundling; 3) En/Decrypt: deduplication, encryption/decryption
and bundling; 4) All: all together. We compare the time cost
by varying the size of files from 1MB to 1GB and Figure 9
shows the results. The time cost starts from dividing input
files into small chunks and ends with assembling chunks
to the original file. The En/Decrypt mode has an additional
overhead since it has to decrypt the chunks before assembling.
We discover that for small files of size less than 10MB,
the overhead introduced by LMLayer is almost the same as
the En/Decrypt mode. Especially in the case of 1MB, the
performance of LMLayer is better than that of En/Decrypt
mode. We conjecture this is because compared to En/Decrypt
mode which needs key setup, there is no initialization overhead



for measuring information leakage. For the large files (both
100MB and 1GB), the overhead of LMLayer is higher than
that of En/Decrypt. In all cases, we notice that even in the
All mode with all components running, the time cost is still
tolerable for cloud storage services.

Syntactic vs Semantic. In our paper, the information
leakage function is designed based on syntactic similarity
metric rather than semantic. Thus, our system is incapable
of detecting the private data such as financial documents and
compromising photos in a semantic manner. Distributing data
based on semantic privacy measures is an orthogonal task to
ours, since efficiently analyzing semantic similarity in users’
data involves data curation and machine learning techniques.

VI. RELATED WORK

Multicloud storage services. Our work is not alone in stor-
ing data with the adoption of multiple CSPs, e.g., SPANStore
[7], DepSky [4] and NCCloud[5]. However, these works focus
on different issues such as cost optimization [7], data con-
sistency and availability [4]. Unlike these works, our work
focuses on the information leakage optimization for storage
service in a multicloud environment by exploiting information
similarity caused by the synchronization of modified data.
Supplementary works invest efforts in overcoming vendor
lock-in. DepSky [4] aims to minimize the cost of data transfer
from one cloud to another by storing only a fraction of the total
amount of data in each cloud, while Scalia [6] employs data
replication to minimize transfer cost albeit at a higher storage
cost. Other studies [9, 19] have focused on measurement
analysis of cloud storage services. Their work provided us
with many insights on designing and implementing StoreSim.
However, they did not focus on the optimization aspects of
information leakages of the commercial CSPs they studied.

Cloud security. Many studies [20, 21, 22] focus on
security and privacy aspects which are major obstacles in cloud
adoption for both individuals and companies. Previous work
[21] proposed a semantic framework based on crowd-sourcing
to determine the sensitivity of items and diverse attitudes of
users towards privacy. Bohli et al. [20] provide a survey for
four different multicloud architectures with various security
and privacy-enhancing designs. The architecture of StoreSim is
one of them, which allows distributing fine-grained fragments
of the data to distinct clouds. Our work also implements the
StoreSim system with new information leakage measures.

Near-duplicate detection. Li et al. [23] proposed a privacy
loss measure based on the JS-divergence distance which is
a method of measuring the similarity between two proba-
bility distributions. Inspired by their work, we design our
information leakage function based on similarity. To compute
the information leakage, we need to compute the pairwise
similarities. MinHash [11, 12] and SimHash [11, 24] were
designed for detecting the near-duplicate web pages based
on Jaccard and Hamming distance, respectively. However,
their work cannot apply to our work directly due to heavy
computation and high storage overhead. To the best of our
knowledge, ours is the first work which applies near-duplicate
techniques for preventing information leakage in multicloud
storage services.

VII. CONCLUSION

Distributing data on multiple clouds provides users with
a certain degree of information leakage control in that no
single cloud provider is privy to all the user’s data. However,

unplanned distribution of data chunks can lead to avoidable
information leakage. In this paper, we presented StoreSim,
an information leakage aware storage system, to optimize the
information leakage in the multicloud environment. StoreSim
achieves this goal by using novel algorithms, BFSMinHash
and SPClustering, which place the data with minimal in-
formation leakage (based on similarity) on the same cloud.
Through an extensive evaluation based on two real datasets,
we demonstrate that StoreSim is both effective and efficient
(in terms of time and storage space) in minimizing information
leakage during the process of synchronization in a multicloud
environment.

ACKNOWLEDGMENT
This research is funded by the EU project CloudSpaces:

Open Service Platform for the Next Generation of Personal
clouds (FP7-317555). REFERENCES

[1] J. Crowcroft, “On the duality of resilience and privacy,” in Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, vol. 471,
p. 20140862, The Royal Society, 2015.

[2] “Prism surveillance program by nsa.” http://en.wikipedia.org/wiki/Edward
Snowden#Disclosure.

[3] G. Greenwald and E. MacAskill, “Nsa prism program taps in to user data of apple,
google and others,” The Guardian, 2013.

[4] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “Depsky: dependable
and secure storage in a cloud-of-clouds,” ACM Transactions on Storage (TOS),
vol. 9, no. 4, p. 12, 2013.

[5] H. Chen, Y. Hu, P. Lee, and Y. Tang, “Nccloud: A network-coding-based storage
system in a cloud-of-clouds,” 2013.

[6] T. G. Papaioannou, N. Bonvin, and K. Aberer, “Scalia: an adaptive scheme for
efficient multi-cloud storage,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, p. 20, IEEE
Computer Society Press, 2012.

[7] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Madhyastha,
“Spanstore: Cost-effective geo-replicated storage spanning multiple cloud services,”
in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pp. 292–308, ACM, 2013.

[8] T. Suel and N. Memon, “Algorithms for delta compression and remote file
synchronization,” 2002.

[9] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras, “Benchmarking personal
cloud storage,” in Proceedings of the 2013 conference on Internet measurement
conference, pp. 205–212, ACM, 2013.

[10] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,” in
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pp. 380–388, ACM, 2002.

[11] M. Henzinger, “Finding near-duplicate web pages: a large-scale evaluation of
algorithms,” in Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, pp. 284–291, ACM, 2006.

[12] P. Li and C. König, “b-bit minwise hashing,” in Proceedings of the 19th interna-
tional conference on World wide web, pp. 671–680, ACM, 2010.

[13] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic clustering
of the web,” Computer Networks and ISDN Systems, vol. 29, no. 8, pp. 1157–1166,
1997.

[14] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A survey,”
Internet mathematics, 2004.

[15] P. Berkhin, “A survey of clustering data mining techniques,” in Grouping multidi-
mensional data, pp. 25–71, Springer, 2006.

[16] C.-Y. Chan and Y. E. Ioannidis, “Bitmap index design and evaluation,” in ACM
SIGMOD Record, vol. 27, pp. 355–366, ACM, 1998.

[17] “Murmur hash function.” https://sites.google.com/site/murmurhash/.
[18] “Spideroak encryption specification.” https://spideroak.com/engineering matters#

encryption.
[19] Z. Ou, H. Zhuang, A. Lukyanenko, J. K. Nurminen, P. Hui, V. Mazalov, and A. Yla-

Jaaski, “Is the same instance type created equal? exploiting heterogeneity of public
clouds,” Cloud Computing, IEEE Transactions on, vol. 1, no. 2, pp. 201–214, 2013.

[20] J.-M. Bohli, N. Gruschka, M. Jensen, L. L. Iacono, and N. Marnau, “Security and
privacy-enhancing multicloud architectures,” Dependable and Secure Computing,
IEEE Transactions on, vol. 10, no. 4, pp. 212–224, 2013.

[21] H. Harkous, R. Rahman, and K. Aberer, “C3p: Context-aware crowdsourced cloud
privacy,” in 14th Privacy Enhancing Technologies Symposium (PETS 2014), 2014.

[22] I. Ion, N. Sachdeva, P. Kumaraguru, and S. Čapkun, “Home is safer than the cloud!:
privacy concerns for consumer cloud storage,” in Proceedings of the 7th Symposium
on Usable Privacy and Security, ACM, 2011.

[23] T. Li and N. Li, “On the tradeoff between privacy and utility in data publishing,”
in Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, 2009.

[24] G. S. Manku, A. Jain, and A. Das Sarma, “Detecting near-duplicates for web
crawling,” in Proceedings of the 16th international conference on World Wide Web,
pp. 141–150, ACM, 2007.


