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Abstract—The knowledge of service performance of cloud
providers is essential for cloud service users to choose the cloud
services that meet their requirements. Instantaneous performance
readings are accessible, but prolonged observations provide more
reliable information. However, due to technical complexities
and costs of monitoring services, it may not be possible to
access the service performance of cloud provider for longer
time durations. The extended observation periods are also a
necessity for prediction of future behavior of services. These
predictions have very high value for decision making both for
private and corporate cloud users, as the uncertainty about the
future performance of purchased cloud services is an important
risk factor. Predictions can be used by specialized entities, such
as cloud service brokers (CSBs) to optimally recommend cloud
services to the cloud users. In this paper, we address the challenge
of prediction. To achieve this, the current service performance
patterns of cloud providers are analyzed and future performance
of cloud providers are predicted using to the observed service
performance data. It is done using two automatic predicting
approaches: ARIMA and ETS. Error measures of entire service
performance prediction of cloud providers are evaluated against
the actual performance of the cloud providers computed over
a period of one month. Results obtained in the performance
prediction show that the methodology is applicable for both short-
term and long-term performance prediction.

Index Terms—Cloud providers; Pattern Analysis; Performance
Prediction; Data Analytics

I. INTRODUCTION

The wide range of similar cloud services offered by the
growing number of cloud service providers (CSPs) creates the
challenging decision making problem of selection of cloud
services. Cloud service users (CSUs) have access to the doc-
umented service level agreement (SLA) commitments in their
SLA agreements, but they often are more concerned about the
actual performance delivery of cloud service providers (CSPs).
Cloud providers may fail to provide actual services, as stated
in SLA commitments [1]. Service performance patterns of
CSPs help cloud users to select appropriate cloud services
from multi-cloud architecture according to their quality of
service (QoS) requirements. Detailed information (historical,
current and future performance) of cloud providers adds
confidence to cloud users in decision-making. Due to the
dynamic nature of service performance in cloud computing,

there are considerable fluctuations in the QoS, which results
in problems of predicting performance of cloud providers.
In cloud service selection, historical performance and future
performance predictions may be more important than the
current, instantaneous performance of cloud providers. Thus,
capturing all the performance variability in different perfor-
mance metrics is important to select the right one among the
multiple alternatives of cloud services [2],[3].

Usually, cloud users expect to receive a certain level of
service performance as specified in an SLA document. In
order to provide the long-range performance information
about cloud providers, service performance of cloud providers
should be continuously monitored. Due to technical limitations
and high cost of monitoring, many cloud users may not be
able to continuously monitor service performance of their
cloud providers. The comprehensive solutions are to provide
users the observed data together with forecasts of future
performance of cloud providers.

In this paper, performance of commercially available cloud
providers is measured for a month on a daily basis using cloud-
monitoring tool. Performance metrics Uptime, Downtime, Out-
age Frequency, Latency, Response Time and Throughput are
considered to observe the performance of the cloud providers.
These time series data do not follow the specific trend pat-
tern and is unique for each cloud provider. In such case
automatic forecasting method can create appropriate time
series models [4]. We applied ETS and ARIMA prediction
methods as automatic prediction methods, which gave very
convincing cloud performance predictions according to the
performance data collected from cloud providers. Comparison
of error measures in both methods reveals that both techniques
are appropriate for future performance prediction of cloud
providers. In overall performance prediction, ARIMA method
produced better result than ETS for our dataset collected from
multiple cloud providers during one-month period.

The remainder of the paper is organized as follows: Sec-
tion II provides the related works of our contribution. Predic-
tion methods and accuracy calculation approaches are briefly
described in section III. Few deviation patterns and actual
patterns of service performance measured from multiple cloud



providers in selected service metrics are shown in section IV.
Service performance predictions based on measured perfor-
mance from cloud providers with possible error calculations
are presented in section V and section VI respectively. Sec-
tion VII concludes the paper with potential future works.

II. RELATED WORKS

Increasing number of cloud providers with similar service
offer, SLA commitments, and similar service price make
complicated to the cloud user to choose the appropriate cloud
providers according to their requirements. To differentiate
cloud providers according to their service performance, Wagle
et al. [1], [S] have proposed service evaluation techniques
to evaluate the performance of cloud providers. Beside the
current performance behavior of the cloud provider, it is
also very important to know the historical and future service
behavior of cloud provider due to dynamic nature of cloud
computing environment.

Most of the current research works have addressed QoS
forecasting of web-based services. Li et al. [6] propose a
web service selection algorithm based on QoS prediction
mechanism. Their algorithm uses time series modeling based
on structural equations to fit QoS values of web services, and
dynamically predicts their future changes to support adaptive
services selection. Godse et al. [7] propose a method that
combines monitoring and extrapolation methodologies based
on ARIMA models to predict service performance. The pro-
posed method is used to support automating dynamic service
selection methodology, which is robust in the face of varying
QoS.

Other research works in web-based services predictions are
focused on QoS management. Nobile et al. [8] propose an
architecture that uses ARIMA models in order to predict
future traffic characteristics. Zhu et al. [9] present a Grid-
based framework that uses a time series prediction algorithm to
forecast the future performance of parallel/distributed discrete
event simulation (PDES). Zeng et al. [10] have investigated
that performance metrics which can be predicted based on
their historical data. Amin et al. [11] propose a forecasting
approach considering the high volatility of QoS measures and
have claimed that it improves the forecasting accuracy of QoS
attributes and violations.

Likewise, some research works have addressed workload
predictions in cloud computing. Zhang et al. [12], [13] have
proposed prediction approach for user’s cloud component QoS
usage experiences. It forecast the QoS experience of users
based on past user’s experience. Panneerselvam et. al [14]
have analyzed the workload demand of users to reduce the
excess resource consumptions of cloud providers. A. Biswas
et al. [15], [16] proposes an auto-scaling framework to control
enterprises resources coming in to cloud but it does not con-
sider itself the prediction of performances of cloud providers.
Syu et al. [17] have applied Genetic Programming for time-
aware dynamic QoS prediction. Calheiros et al. [18] have
proposed workload prediction method using ARIMA method

and have analyzed impact of it in QoS prediction in cloud
computing.

To the best of our knowledge, service performance pattern
analysis including future performance prediction of cloud
providers using real monitoring data is missing in the current
research. Recent and future behavior of cloud provider helps in
decision making to select appropriate cloud services to cloud
users. These research works mentioned in this section show
that it is crucial research issue to aware the cloud users with
the current and future service performance pattern of cloud
providers to select appropriate cloud services by cloud users.
In this work, ETS and ARIMA forecasting methods have been
implemented to predict the future behaviour in the service
performance of the cloud providers.

ITII. PREDICTION METHODS AND PREDICTION ACCURACY

Prediction methods are broadly divided into qualitative and
quantitative. Qualitative forecasting techniques are subjective,
based on the opinion and judgment of consumers or experts.
They are appropriate when past data is not available. Quanti-
tative predictions are appropriate when past numerical data is
available and are in some reasonable patterns. Delphi method,
market research, and historical life-cycle analogy are some
example of qualitative forecasting method whereas time series
methods, and causal methods are some examples of quanti-
tative forecasting method. Due to many drawbacks in simple
and weighted moving average of quantitative prediction, expo-
nentially smoothing methods are widely used in forecasting.
The choice of prediction method is often constrained by data
availability and data pattern. The pattern in the data will
affect the type of forecasting method selected. The pattern
in the data will also determine whether a time-series method
will suffice or whether casuals model are needed. If the data
pattern is unstable over time, a qualitative method may be
selected. Thus the data pattern is one of the most important
factors affecting the selection of a forecasting method [19].
Data may not follow the specific pattern in all the cases.
In these circumstances, an automatic forecasting method is
essential, which determines an appropriate time series model,
estimate the parameters and compute the forecasts [4]. The
most popular automatic forecasting algorithms are based on
either exponential smoothing or ARIMA methods.

A. Exponential Smoothing

The exponential method involves the automatic weighting of
past data with weights that decrease exponentially with time,
i.e. the most current values receive a decreasing weighting.
For example in each increment in the past is decreased by
(1-a), where a € (0,1) is the smoothing parameter. Generally,
there are three exponential smoothing are in practice: Simple,
Double and Triple exponential smoothing. The triplet(E,T,S)
refers to the three components: error, trend and seasonality.
So the model ETS(A,A,N) has additive errors, additive trend
and no seasonality and so on. ETS can also be considered an
abbreviation of ExponenTial Smoothing [4].
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Fig. 1. Service Performance Deviation Pattern of CSPs

B. Autoregressive integrated moving average(ARIMA)

It is a generalization of an autoregressive moving average
(ARMA) model [20] where data show evidence of non-
stationary. ARIMA models are generally denoted ARIMA
(p, d, 9)(PD,Q),, where parameters p, d, and q are non-
negative integers, p is the order of the autoregressive model,
d is the degree of differencing, and q is the order of the
Moving-average model. Furthermore, m refers to the number
of periods in each season, and the uppercase P, D, Q refer to
the autoregressive, differencing, and moving average terms.

C. Prediction Accuracy

Let y; denotes the observation at time t and f; denote the
forecast of y;. Then, define the forecast error e; = y; — f;. The
forecasts may be computed from a common base time, and be
of varying forecast horizons [21]. Thus, we may compute out-
of-sample forecasts f,,+1, ..., fn+m based on data from times
t = 1,...,n. There are commonly used accuracy measures in
the forecasting:

1) Scale-dependent measures: These accuracy measures are
dependent with the scale of the data. These are useful when
comparing different methods applied to the same set of data,
but should not be used, for example, when comparing across
data sets that have different scales. The most commonly used
scale-dependent measures are based on the absolute error or
squared errors:

MeanSquaredError(MSE) = mean(e;?)
MeanAbsolute Error(M AE) = mean(|e:])

(D
2)

RootMeanSquareError(RMSE) = 1/ e? 3)

2) Measures based on percentage errors: The percentage
error is given by p; = 100e;/y;. Percentage errors have the
advantage of being scale independent, and so are frequently
used to compare forecast performance across different data
sets. The most commonly used measures are:

MeanPercentageError(MPE) = mean(pt)  (4)

MeanAbsolute Percentage Error(M APE) = mean(|p|)
4)
Measures based on percentage errors have the disadvantage of
being infinite or undefined if y; = 0 for any t in the period
of interest, and having an extremely skewed distribution when
any y; is close to zero.

3) Scaled errors: To make independent with the scale of
the data Hyndman et. al [21] proposed scale independent error
measure called Mean Absolute Scaled Error (MASE). It is
used to determine the success of a model selection procedure.

(6)

where ¢; = e,/((1/(n — 1) Y15 |yi — yi—1]). When MASE
< 1, it gives smaller errors than the one-step errors from other
scale dependent measures in the proposed method.

4) Information Criteria(IC): Information criteria are cho-
sen to choose the best predictive model selection. It is useful
in comparison to IC value for another model fitted to same
data set.

MASE = mean(|g|)



Akaike’s Information Criteria (AIC):
AIC = —2log(Likelihood) + 2p (7

The AIC [22] provides a method for selecting between the
additive and multiplicative error models. Point forecasts from
the two models are identical, so that standard forecast accuracy
measures such as the MSE or MAPE are unable to select
between the error types. The AIC is able to select between
the error types because it is based on likelihood rather than
one-step forecasts. Minimizing the AIC gives the best model
for prediction.

Schwarttz’s Bayesian IC(BIC):

BIC = AIC + p(log(n) — 2) (8)

The BIC[23] is used to overcome the inconsistency and over
fitted problem in AIC, BIC is used. It is also used in a similar
manner like AIC.

AICc= AIC +2(p+1)(p+2)/(n —p) 9)

where p is the number of estimated parameters in the model.
The AICc[24] is an asymptotically efficient information crite-
rion that does an approximate correction for this negative bias.
It is also used in a similar manner like AIC.

We have considered all the errors measures in this paper
to evaluate the prediction accuracy. ACF1(Autocorrelation of
errors at lag 1) is also considered for the error measurements.

IV. PERFORMANCE MEASUREMENT

To observe the performance of cloud providers, six major
service parameters/metrics are considered in the measurement
of the performance of the cloud providers: Uptime, Downtime,
Outage Frequency, Latency, Response Time and Throughput.
Performance of each cloud providers are obtained using cloud
monitoring tool! according to the selected service metrics. In
our observation, service performance of 20 cloud providers are
collected for 30 days: Amazon S3, GMO Cloud, City Cloud,
Google Cloud Storage, Gogrid Cloud, Rackspace Cloud,
Centurylink Cloud, UpCloud, Softlayer Cloud, IBM Cloud,
HP Cloud, Vault Network Cloud, Microsoft Azure Cloud,
Digital Cloud, Elastic Host Cloud, Exoscale Cloud, Sigma
Cloud, Cloud Central, Aruba Cloud and Baremetal Cloud.
The performance measurement is based on cloud storage
services. It is considered that all cloud service users are
located in Luxembourg. Service/availability regions of cloud
providers are divided in different regions according to data
center locations of the cloud providers. Collected service
performance data from cloud providers are merged values of
all service/availability regions of the cloud providers.

The analysis of performance of chosen cloud providers
on selected metrics shows that uptime, downtime, outagefre-
quency of most cloud providers shows less variance, while
latency, responsetime and throughput present more variance
and hard to predict performance patterns easily. Figure 1 shows
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the performance deviation of some cloud providers among our
list of observations (Gogrid Cloud, Microsoft Azure Cloud,
Centurylink Cloud, Digital Cloud, Exoscale Cloud and Cloud
Sigma. These are some representative patterns of both less
fluctuated values in performance parameters and highly fluc-
tuated values in service performance parameters. For example,
performance parameters: uptime, downtime, outagefrequency
are stable near in /00%, O second, O times in cloud provider
Gogrid Cloud and Microsoft Azure Cloud respectively but
these three service parameters were also fluctuating for cloud
providers: Centurylink Cloud, Digital Cloud, Exoscale Cloud
and Sigma Cloud together with other three service parameters:
latency, responsetime and throughput. Service performance
patterns in parameters: uptime, downtime and outage frequency
in most of the cloud providers are very close in most of the
time series and quite unpredictable in latency, responsetime
and throughput (See, for instance, in (a) of Figures 2 to 4 of
Exoscale Cloud and Figures 5 to 7 of Digital Cloud respec-
tively). Due to space limit performance of few cloud providers
on selected metrics are included in this paper, however, perfor-
mance prediction accuracy of all cloud providers are presented
in the Section VI. In the observation, performance parameters
latency, responsetime and throughput followed high time de-
pendent service variation than performance parameters uptime,
downtime and outagefrequecny. In the first column (a) of
Figures 2 to 7 give the daily performance values of Exoscale
Cloud and Digital Cloud.

V. SERVICE PERFORMANCE PREDICTION

The service patterns of all the selected cloud providers give
the clear picture of cloud service performance of the cloud
providers over a month. The performance of cloud providers
collected over the month from multiple cloud providers neither
followed specific pattern nor remained in stable seasonal pat-
terns for specific time periods. Information of service delivery
pattern of cloud providers of entire month (possibly delivery
pattern of longer time period e.g. 3 months, 6 months, 1 year or
more) gives the tentative impression of cloud service providers
to choose appropriate cloud services for the cloud users. From
monitoring cost, technical complexities and accessibility to the
cloud providers through out the period, it is very challenging
to collect the service pattern of cloud provider over the longer
time period. Highly efficient prediction of data solves this
problem to receive the service performance information for
longer terms. To achieve the maximum accuracy in cloud ser-
vice performance prediction, we applied automatic forecasting
method to determine the appropriate time series prediction,
particularly; ETS and ARIMA method for the cloud providers
performance prediction.

The examples of predicted performance patterns of cloud
providers using ETS and ARIMA methods are shown in (b)
and (c) of Figures 2 to 7 of Exoscale Cloud and Digital Cloud
respectively. We chose predicted patterns of Exoscale Cloud
and Digital Cloud because their prediction patterns represented
almost all the scenarios of predictions (best predictions and
worst predictions). Red line gives the actual patterns of the
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service performance, dark blue line gives the average predicted
performance (point of forecast) and dotted black line gives the
fitted patterns of actual performance measured of 20 days. The
forecast intervals are at 80% to 95%. Lower forecast range at
80%(Low80) to high forecast range at 80%(High80) is shown
in light blue background and 95% forecast interval (Low95
(lower forecast range at 95%) to High95 (high forecast range at
95%)) is shown in light black background give the minimum to
maximum range of prediction of cloud provider performance.
To evaluate the accuracy of the prediction of the CSPs’ service
performance, we trained the system by 20 days performance
data collected from different cloud providers.

For instance, actual performance pattern of latency of
Exoscale Cloud follows the lower range (Low80) to higher
range(High95) of prediction in ETS prediction method (See
in (b) of Figure 2) whereas observed performance pattern
followed with average predicted pattern in ARIMA method
(See in (c) of Figure 2). Observed performance pattern of
responsetime of Exoscale Cloud follows in between Low80
to High95 in both prediction techniques (See in (b) and (c)
of Figure 3). Likewise, in (b) and (c) of Figure 4, throughput
of Exoscale Cloud, average predicted line (dark blue) exactly
followed the fitted pattern (black dotted line) of observed data
of 20 days in continuously increasing manner in ETS method
but observed patterns followed the Low85 range of predicted
pattern in ARIMA method.

In the analysis of performance prediction pattern of Digital
Cloud, predicted pattern of latency by ARIMA method is
more close to observed pattern than the predicted pattern
in ETS method (See in (b) and (c) of Figure 5). Observed
measurement of responsetime of Digital Cloud is out of
prediction range for around 2-3 days in ETS method whereas
observed performance pattern is within the range of Low80
in ARIMA method (See in (b) and (c) of Figure 6). See, for
instance, in (b) and (c) of Figure 7 observed measurement
pattern of throughput followed the almost same pattern as
average predicted pattern by ARIMA method but observed
measured value range is in between average predicted value
to Low80 value in ETS method.

As explained, both prediction methods showed convincing
predictions in each performance parameters. Service perfor-
mance data of 20 days are trained for the performance predic-
tion using ETS and ARIMA prediction method. Prediction of
all the selected performance parameters of 20 cloud providers
by both prediction methods produced the convincing results as
in Digital Cloud and Exoscale Cloud. To analyze the accuracy
of our prediction, different error measurements are calculated
(See for instance Table II and I for Exoscale Cloud and Digital
Cloud respectively).

VI. ERRORS MEASUREMENT AND PREDICTION
ACCURACY

To check the accuracy of prediction method, different error
parameters are considered. In the performance prediction, all
error parameters do not return the exact accuracy of the
prediction method because of different scale of the measured

data. So, scale dependent errors, percentage errors and scale
independent errors are considered to check the accuracy of
the prediction. Accuracy information correction parameters
(AIC, BIC, AICc) are used to compare the prediction meth-
ods. Smaller the numerical value of information parameters
signifies the better prediction method.

Error measures of all performance parameters of all 20-
cloud providers are calculated. Prediction results of uptime,
downtime and outage frequency are more stable in most of
the cloud providers than the rest of the parameters: latency,
responsetime and throughput. We chose Digital Cloud and Ex-
oscale Cloud, to cover all the parameters prediction analysis,
becasue they both have unstable service performance result in
all the selected parameters. MASE value of in all predictions
was less than or equal to 1 in both ETS and ARIMA prediction
technique (except in parameter throughput in ETS predictions
with slightly greater than 1) (See Tables I and II). It shows
that our selected prediction methods are correct. Information
correction parameters measured in ETS and ARIMA method
shows that ARIMA method is more suited than ETS method
(See for instance in Table II where all values of information
correction (IC) have less value in ARIMA method than ETS),
however, IC values in each prediction methods are very close
to each other.

To evaluate our prediction accuracy, we calculated all error
parameters as we have included in Table I and II for all
20 selected cloud providers in selected performance metrics.
Error patterns of RMSE, AIC, BIC and AICc follow the
similar pattern with minimum differences in error values in
ARIMA and ETS prediction method whereas error patterns are
significantly different in error measurement MASE and MAPE
(See Figure 8).

However, majority of error parameters, for instance, ME,
MAE are near to “zero”, we considered RMSE, MASE and
MAPE and information corrections parameters (AIC, BIC,
AlICc) to evaluate the accuracy of the prediction method
because scaled and percentage error may not always return
accurate information of prediction accuracy. We did not in-
clude full range of Y-axis in Figure 8 (to be fitted in the scale
limit of the figure) as it only gives density of error values.

Most of the error values are near to zero in most of the
prediction in RMSE (See in (a) of Figure 8). Overall infor-
mation corrections parameters (AIC, BIC, AICc) are lower in
ARIMA prediction method than ETS prediction method (See
in (d),(e) and (f) of Figure 8). Similarly, MASE and MAPE
have higher values in ETS method than ARIMA method (See
in (b) and (c) of Figure 8). Prediction patterns and related
errors calculated to evaluate the accuracy of prediction method
shows that both prediction methods (ARIMA and ETS) are
suitable to predict performance of cloud providers according
to our data patterns collected from multiple cloud providers.
However, in comparisons with ARIMA and ETS, ARIMA
prediction method gives more smooth prediction than ETS
method.

In both prediction methods, majority of MAPE values range
from 0.4 to 1.4 (in ETS) and -0.4 to 2.5 (in ARIMA), however,



in very few worst scenario it reached to very high value. MASE
values ranged in between -0.8 to 0.4 (in ARIMA) and -0.85
to 0.45 (in ETS).

VII. CONCLUSIONS AND FUTURE WORKS

The paper presents the service performance pattern analysis
and prediction of commercially available cloud providers. It
provides the forecasts of future service performance of cloud
service providers. The input for the method is the previously
observed performance. The method selected to produce the
predictions are ETS and ARIMA. For evaluation, the real
monitoring data was divided into training and test sets. Both
prediction method returned the convincing results of perfor-
mance prediction according to calculated errors in prediction;
however, ARIMA method gave better performance prediction
results than ETS method, as shown by the analysis of the
errors of the prediction methods. The method presented in this
paper summarizes the current and future service performance
of cloud providers for the selected performance metrics. It
helps cloud service users and brokers to choose cloud services
according to their requirements. Predicted service performance
results show that prediction is applicable for short duration
prediction as well as long-term duration. The future work
includes evaluation of service performance over longer time
periods and applying any other prediction methods such as
machine learning regression methods and/or neural networks.
It is also planned to include more commercial cloud provider
to analyze the service delivery patterns and their future service
performance behavior based on observed value from cloud
providers.
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