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Abstract—The Internet of Things (IoT) paradigm makes
the Internet more pervasive. IoT devices are objects equipped
with computing, storage and sensing capabilities and they are
interconnected with communication technologies. Smart cities
exploit the most advanced information technologies to improve
public services. For being effective, smart cities require a
massive amount of data, typically gathered from sensors. The
application of the IoT paradigm to smart cities is an excellent
solution to build sustainable Information and Communication
Technology (ICT) platforms and to produce a large amount of
data following Sensing as a Service (S2aaS) business models.
Having citizens involved in the process through mobile crowd-
sensing (MCS) techniques unleashes potential benefits as MCS
augments the capabilities of existing sensing platforms. To this
date, it remains an open challenge to quantify the costs the
users sustain to contribute data with IoT devices such as the
energy from the batteries and the amount of data generated
at city-level. In this paper, we analyze existing solutions, we
provide guidelines to design a large-scale urban level simulator
and we present preliminary results from a prototype.
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I. INTRODUCTION

In IoT, everyday life objects are “smart”, i.e, they can
communicate one with each other and with users to enable
pervasive and ubiquitous computing [1]. IoT devices are
objects uniquely identifiable and are equipped with com-
munication, computing, storage and sensing capabilities.
Applying the IoT paradigm to urban scenarios is of special
interest to support the smart cities vision [2], [3]. Smart
cities aim at using ICT solutions to improve the quality
of life of citizens by provisioning innovative solutions for
public services such as healthcare, public safety and smart
transportation among others [2], [4]. The IoT paradigm is
the candidate building block to develop sustainable ICT
platforms for smart cities. Including citizens in the loop with
crowdsensing techniques augments capabilities of existing
infrastructures without additional costs and is proved to be a
win-win strategy for urban applications [5].

MCS is an appealing paradigm for sensing and has gained
a growing attention in the last years. Fig. 1 illustrates the
main elements of a MCS system. Source of data of MCS
systems are IoT devices, smartphones, tablets and wearable
devices that are becoming widespread and popular [6]. All
these devices are equipped with sensing capabilities and
utilized by large number of users, the crowd. Unlike fixed
sensor networks, MCS systems enable virtually unlimited
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Figure 1. Cloud-based MCS system

sensing possibilities. First, the devices have several types
of sensors and are periodically recharged by users. Second,
intelligence of human participants and mobility augment
context-awareness and coverage. Companies have a growing
interests in MCS. Google, for example, uses crowd-sourced
information of smartphones’ locations to offer real-time view
of congested traffic roads and has recently released a new
application, called Science Journal, which allows to gather
and visualize data from smartphones’ sensors [7]. Pokemon
Go is a extremely popular MCS framework for collecting
data like user location and movements. In the US, 10 M
users downloaded the application in two weeks.

Sensing as a Service (S2aaS) makes available to the public
data collected from sensors. Consequently, companies have
no longer the need to acquire an infrastructure to perform
a sensing campaign. IoT and MCS are key enablers in
the S2aaS model, which in turn is envisioned to play are
indispensable role in smart cities. Efficiency of S2aaS models
is defined in terms of the revenues obtained selling data and
the costs. In S2aaS, the organizer of a sensing campaign, such
as a government agency, an academic institution or business
corporation, sustains costs to recruit and compensate users
for their involvement [8]. Also the users sustain costs while
contributing data. These costs are the energy spent from the
batteries for sensing and reporting data and, eventually, the
data subscription plan if cellular connectivity is used for
reporting.

As for proper operation MCS systems require the contri-
bution from a large number of participants, the development
of real testbeds is not feasible. Therefore, simulations are
the candidate tool to assess the costs and understand the
performance of MCS systems. In this paper, we illustrate



the key principles for the design of a MCS simulator, the
fundamental key performance indicators (KPIs) to be assessed
and we present results obtained from a prototype. The most
important features considered in the design are: i) realistic
urban environment, ii) large scale scenarios, i.e., a large
number of participants and prolonged time duration to mimic
realistic sensing campaigns.

II. BACKGROUND

This section reviews existing works in the field of perfor-
mance evaluation of MCS systems through simulations.

Tanas et al. propose to exploit Network Simulator 3 (NS-
3) for crowdsensing simulations [9]. The objective is to
assess the performance of a crowdsensing network taking
into account the mobility properties of the nodes together with
the wireless interface in ad-hoc network mode. Furthermore,
the authors present a case study about how participants
could report incidents in the public rail transport. NS-3
provides highly accurate estimations of network properties.
However, having detailed information on communication
properties comes with the cost of losing scalability. First,
it is not possible to simulate tens of thousands of users
contributing data. Second, the granularity of the duration
of NS-3 simulations is typically in the order of minutes.
Indeed, the objective is to capture specific behaviors such as
the changes of the TCP congestion window. However, the
duration of real sensing campaigns is typically in the order
of hours or days.

In [10], Farkas and Lendák present a simulation environ-
ment developed to investigate performance of crowdsens-
ing applications in an urban parking scenario. Although
the application domain is only parking-based, the authors
claim that the proposed solution can be applied to other
crowdsensing scenarios. However, the scenario considers
only drivers as type of users and users travel from one
parking spot to another one. The authors consider humans
as sensors that trigger parking events. However, to be widely
applicable, a crowdsensing simulator has to take into account
data generated from mobile and IoT devices’ sensors carried
by human individuals.

Mehdi et al. propose CupCarbon [11], which is a discrete-
event wireless sensor network (WSN) simulator for IoT and
smart cities. One of the major strengths is the possibility to
model and simulate WSN on realistic urban environments
through OpenStreetMap. To set up the simulation, the users
have to deploy on the map the various sensors and the nodes
such as mobile users, gas and media sensors and base stations.
The approach is not intended for crowdsensing scenarios with
thousands of users.

III. DESIGN PRINCIPLES AND KPI FOR MOBILE
CROWDSENSING SIMULATORS

The objective of this section is to outline the design
principles and the main key performance indicators MCS
simulators should include.

A. Design Principles

To design a novel MCS simulator, the main aspects to
consider are the scalability, the implementation in a realistic
urban environment, the user mobility and the communication
technologies.

Scalability: For proper operation, MCS systems require a
large number of participants. Hence MCS simulators should
be designed to host in the order of tens of thousands
participants moving in a wide geographical space. Each user
can potentially own several IoT and mobile devices, each
of them is a potential data contributor. Time dimension is
also important. The duration of a sensing campaign ranges
from hours to days and a simulator should address this
challenge efficiently. For instance, let us consider 10 000 users
producing data with an average of only 30 minutes per day.
Each user delivers 12 bits long samples of the accelerometer
working at 50 Hz frequency. The total amount of generated
data is 1.35 GB. Considering prolonged duration of user
contribution and additional sensors would considerably
augment the figure.

Realistic urban environment: Similarly to CupCarbon,
MCS simulators should rely on realistic urban environments
for several reasons. First, exploiting realistic layouts of
urban environments makes the simulator flexible and easy
to be adopted in any city. Second, it allows to perform
analysis providing meaningful insights to the municipality to
understand the feasibility and the potentiality of the proposed
MCS solution. Simulations over a grid or a square area as
abstraction levels lower the complexity, but do not allow to
take into account important features such as movements in
real streets and physical obstacles like buildings.

User mobility: Human mobility is defined as sequences of
spatiotemporal user movements. Understanding human mobil-
ity urban environments is crucial to design mobility patterns
that meet social behaviors and scale to the requirements of
modern smart cities [12].

Communication technologies: IoT and mobile devices are
equipped with several communication technologies, including
3G/LTE, WiFi and Bluetooth. Each communication technol-
ogy drains battery of the devices differently and can have
associated costs (e.g., users have a limited monthly plan).

B. Types of KPI

This subsection details important types of KPI that MCS
simulators should assess, including data generation and cost
evaluation.

Data Generation: Sensors work with different sampling
frequency and sample size. After data collection, mobile
devices deliver samples to a central collector using different
communication technologies. In S2aaS models, revenues are
proportional to the amount of generated data. Therefore, it is



Table I
SENSOR AND COMMUNICATION EQUIPMENT PARAMETERS USED FOR PERFORMANCE EVALUATION

SENSOR PARAMETER VALUE UNIT

Accelerometer Sample rate 50 Hz
Sample size 12 Bits
Current 35 µA

Temperature Sample rate 182 Hz
Sample size 16 Bits
Current 182 µA

Pressure Sample rate 157 Hz
Sample size 16 Bits
Current 423.9 µA

(a) Sensor Equipment

SYMBOL VALUE UNIT DESCRIPTION

ρid 3.68 W Energy in idle mode
ρtx 0.37 W Transmission power
ρrx 0.31 W Reception power
λg 1000 fps Rate of generation of packets
γxg 0.11 · 10−3 J Energy cost to elaborate a generated packet

(b) Communication Equipment

important to assess data generation KPI such as the amount
of data generated in a given time window, or per area.

Cost evaluation: Nowadays energy consumption is one of
the most important and challenging issues worldwide. In
MCS, energy is consumed to perform sensing and reporting.
The energy spent per sensing is typically proportional to
the sampling frequency of the sensor. The energy spent for
communications depends on the technology used. Rapid
battery drain due to MCS-related applications can lower user
participation.

IV. PRELIMINARY RESULTS

Following the design principles illustrated in Section III,
this section presents a prototype for a MCS simulator
and illustrates preliminary results. The experiments aim
at assessing the amount of data gathered and the energy
consumption of the devices for sensing and reporting.

A. Simulation scenario

The developed prototype is a discrete-event simulator
supporting pedestrian mobility. Users move in the city center
of Luxembourg, which covers an area of 1.11 km2. To obtain
information about the streets of the city, the simulator exploits
a crowdsourced application providing free access to street-
level maps1 in form of a set of coordinates C containing
<latitude, longitude, altitude>. The original locations of the
users randomly assigned form the set of coordinates C. The
number of participants is set to 20 000, which corresponds
to approximately 20% of the population of Luxembourg
(115 200 inhabitants as of end 2015). The start time of the
walk is uniformly distributed between 8:00 AM and 1:30
PM. Each participant has only one mobile device and walks
for a period of time that is uniformly distributed between
10 and 30 minutes. Users move with an average velocity
speed uniformly distributed between 1 and 1.5 m/s. The
participants collect data and deliver it to the collector while
walking. Once the period of walking ends, they stop moving
and contributing. Consequently, users generate information
for a little period of time along the day, which allows to
study the system performance under a worst case scenario.

1DigiPoint: http://www.zonums.com/gmaps/digipoint.php

Data generation takes into account sensors commonly
available in current IoT and mobile devices. Table I presents
detailed information on sensors and communication param-
eters. Specifically, the sensing equipment consists of the
FXOS8700CQ 3-axis linear accelerometer from Freescale
Semiconductor [13] and the BMP280 from Bosch [14], which
is a digital pressure and temperature sensor. Data delivery
occurs using WiFi with the precise location of WiFi hotspots
in form of <latitude, longitude> 2. Without loss of generality,
considering only WiFi communication technology simplifies
the understanding of data collection and energy consumption.

The energy E spent during the transmission time τtx is
defined as:

E =

∫ τtx

0

Ptx dt, (1)

where Ptx is the power consumed for transmissions of WiFi
packets generated at rate λg [15]:

Ptx = ρid + ρtx · τtx + γxg · λg. (2)

B. Simulation results

The Section illustrates preliminary results aiming at
assessing the cost the users sustain in terms of energy
consumption.

Fig. 2 shows the distribution of user energy consumption
due to sensing and reporting. Currently the battery capacity
of mobile devices is quantified in terms of current drain
(mAh), therefore in the evaluation we assess the current
drain of the three sensors per user. As data is immediately
delivered to the collector with WiFi after being produced,
the amount of collected data impacts proportionally on
sensing and communication costs. The profile follows a
normal distribution as the users that are moving for prolonged
time periods contribute more data than users walking for
short periods. On average, each user spends for sensing
374.617 µAh (see Fig. 2(a)). The few top contributors expe-
rience a consumption that is approximately double compared
to the average. Considering that in current smartphones
the battery capacity is approximately 2000 mAh, we can
conclude that the energy spent for sensing is negligible
when compared to the energy spent for communications

2Online: https://www.hotcity.lu/en/laptop/www/About/Wi-Fi-coverage
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Figure 2. Energy spent for sensing and communication

(see Fig. 2(b)). To reduce energy spent for communications,
one possibility is to defer data transmission and not transmit
samples continuously.

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This paper proposes design principles and KPI for the
development of simulators and performance evaluation of
MCS systems. We first analyze existing simulators in the field
and we pose the basis to develop a novel simulator illustrating
a prototype. The objective is to provide a simulation envi-
ronment to evaluate and assess MCS systems for different
applications and services in any real urban environments.
According to the design principles presented, the prototype
we propose takes into account realistic urban scenarios,
different communication technologies, sensors commonly
available in mobile devices and supports pedestrian mobility.
For performance evaluation, we present preliminary results
aiming to assess the energy cost the users sustain to collect
and report sensing data.

For future work we plan to further develop the prototype
in order to assess and compare the performance of MCS
systems in any real city. The simulator is projected to include
different types of citizen mobility (e.g., pedestrian, by car or
public transports) and the most widespread communication
technologies like cellular and Bluetooth in addition to WiFi.
Furthermore, the prototype will include a graphic and user-
friendly interface.
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