N

N

A Software-Defined Security Strategy for Supporting
Autonomic Security Enforcement in Distributed Cloud

Maxime Compastié, Rémi Badonnel, Olivier Festor, Ruan He, Mohamed
Kassi-Lahlou

» To cite this version:

Maxime Compastié, Rémi Badonnel, Olivier Festor, Ruan He, Mohamed Kassi-Lahlou. A Software-
Defined Security Strategy for Supporting Autonomic Security Enforcement in Distributed Cloud.
CloudCom 2016 - IEEE International Conference on Cloud Computing Technology and Science, Dec
2016, Luxembourg, Luxembourg. pp.4, 10.1109/CloudCom.2016.0079 . hal-01399458

HAL Id: hal-01399458
https://inria.hal.science/hal-01399458
Submitted on 3 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01399458
https://hal.archives-ouvertes.fr

A Software-Defined Security Strategy for
Supporting Autonomic Security Enforcement in
Distributed Cloud

Maxime Compastié*T, Rémi Badonnel*, Olivier Festor*, Ruan He' and Mohamed Kassi-Lahlou®
*MADYNES Research Team - LORIA/INRIA, France. {remi.badonnel,olivier.festor}@loria.fr
TOrange Labs France.{maxime.compastie, ruan.he, mohamed.kassilahlou}@orange.com

Abstract—We propose in this paper a software-defined se-
curity framework, for supporting the enforcement of security
policies in distributed cloud environments. These ones require
security mechanisms able to cope with their multi-tenancy and
multi-cloud properties. This framework relies on the autonomic
paradigm to dynamically configure and adjust these mechanisms
to distributed cloud constraints, and exploit the software-defined
logic to express and propagate security policies to the considered
cloud resources. The proposed framework is evaluated through a
set of validation scenarios corresponding to a realistic use cases
including cloud resource allocation/deallocation, cloud resource
state change, and dynamic access control.

Index Terms—computer security, network and service man-
agement, cloud computing, autonomic computing, policy based
management

I. INTRODUCTION

Cloud computing defines a new architectural model for
building ellaborated infrastructures and applications based
on multiple computing resources, such as virtual machines,
network devices, software components, provided as a service
that can be easily deployed through the Internet. According
to the NIST Institute [1], this model is mainly characterized
by the following features: on-demand self-service, broad net-
work access, resource pooling, rapid elasticity, and measured
service. It supports an as a service scheme that permits a
transparent access to resources and the outsourcing of part of
the management to the cloud provider. This separation enables
optimizing the resource allocation and usage, but may also
introduce management complexity due to its distributed nature.
In particular, the cloud infrastructure and its applications may
typically be divided into isolated sets of resources called ten-
ants, corresponding to different ownerships and requirements,
defining the multi-tenancy property. Another property comes
to the facts that the resources may be distributed among
several infrastructures, as each of them may be specialized
in a dedicated processing. Distributed cloud can be defined by
the conjuction of the multi-tenancy and multi-cloud properties.

In this context, security management has become a major
challenge. The dynamics of cloud infrastructures induced by
their on-demand self-service, rapid elasticity and distribu-
tion has outrun traditional security management, while the
ubiquity and high availability of cloud resources make them
attractive targets for attackers [2]. The paper introduces a
software-defined security strategy for supporting autonomic

security enforcement in distributed cloud. It investigates how
autonomics and programmability mechanisms could support
such a security management. Autonomic computing permits to
address the scalability issues generated by large and distributed
cloud infrastructure resources, by delegating part of the man-
agement tasks to the environment itself. In addition, network
programmability has already showed its benefit for software-
defined networking by separating the network infrastructure
into two separate planes, i.e. data-plane and control plane, and
contributing to its dynamic configuration and adaptation.

Similarly, there is an important need for supporting
software-defined security in distributed cloud. We propose in
that context a dedicated framework to specify security policies
at this scale, and permit their autonomic enforcement in a
multi-tenant multi-cloud environment. Security mechanisms
should be dynamically aligned and adjusted based on changes
that may occur in the distributed cloud. We detail the cor-
responding architecture and confront it to a set of validation
scenarios corresponding to a realistic use-case.

The following of this paper is organized as follow: an
overview of existing works and their limits is given in Section
II. The proposed architecture and its components are described
in Section III. They are evaluated through a set of validation
scenarios in Section IV. Finally, Section V concludes the paper
and points out future research efforts.

II. RELATED WORK

The security of cloud infrastructures has already been
largely explored in the literature. In particular [3] highlights
several challenges related to policy-based security manage-
ment, such as the specification of a cloud security policy,
the assurance of the security decisions, as well as the the
certification of security components in that context. In the
same manner, the TCloud framework [4] proposes to enforce a
security policy with a hardened cloud stack. This one provides
infrastructure-level and platform-level security components,
that might be compatible with multi-cloud environment, with
a hardened build of OpenStack environment. However, these
solutions do not specifically address self-configuration mech-
anisms, nor the management issues generated by multi-cloud
and multi-tenancy properties. The author of [5] proposes also a
cloud management framework able to deal with multi-tenancy,
but this one is limited to access control policies and cannot

support other security mechanisms. The proposed architecture
is independent from the available security mechanisms and
adresses their self-configuration in a distributed cloud.

In the area of programmability, software-defined networking
(SDN) permits to separate the control plane making decisions
about where the traffic should be sent from the data plane
forwarding of packets. This paradigm enables a dynamic and
adaptive policy enforcement. It may also serve as a support
for chaining security functions. For instance, the Flowtags
framework described in [6] enables the integration of middle-
boxes whose composition is supported by SDN controller. [7]
propose a framework for enforceing a network security policy
through a set of middleboxes. But, this solution only considers
middleboxs for instanciating security mechanisms. IETF is
also working on SDN-based security services using interface
to network security functions [8]. Such approaches the advan-
tages of SDN with respect to security policy enforcement. We
provide a software-defined framework, dedicated to security
management and not limited to the networks enforcement field.

The autonomic computing paradigm defines a lifecycle fea-
turing self-management and details the related architecture [9].
It includes self-configuration, self-optimization, self-protection
and self-healing activities. Although it does not bring a formal
distributed cloud support, it may introduce the negotiation
among independent components. This approach may deal with
exhaustive enforcement issues, as autonomic components can
continuously enforce the security policy and adapt to the
changes in their action perimeters. Even if the two previous
paradygms do not directly deal with distributed cloud issues,
they provide important building blocks for supporting secu-
rity policy enforcement and defining a security management
architecture in that context and in our framework.

With respect to security policies, the OASIS consortium
introduces two standardized languages: XACML (eXtensible
Access Control Markup Language) for representing and ex-
changing security policies [10] and SAML (Security Assertion
Markup Language) for specifying security statements [11].
However, they do not handle any modifications of cloud poli-
cies nor its evolution propagation to enforcers. This approach
remains relevant as the XACML defines modular components
for security enforcement. Besides, an architecture and use-
cases featuring XACML and SAML in distributed environment
have been detailled in [12]. The latter validates the usability of
XACML in distributed systems, underlining some limitations
such as the need for a high granularity of sub-policies and the
difficulty of maintaining an encoded security policy. The lan-
guages and formats introduced by SCAP protocol constitutes
also an interesting support, as they cover many complementary
specifications, such as vulnerability descriptions and scorings,
that are exploitable for automating security in distributed
cloud [13]. Those standards are usable in our architecture.

III. SOFTWARE-DEFINED SECURITY STRATEGY FOR
DISTRIBUTED CLOUD ENVIRONMENTS

Our approach introduces a software-defined security (SD-
Sec) strategy for supporting distributed cloud, and address-

_,

Global S Cloud

Security Y | @collaboration—»] Process
Orchestrator =

Policy Policy

s~ =
Enforcement = TFetch low-level security Policy
Feedback — —
eedbac —~— —

A N
Tenant-level
Security Policy

Cloud
Orchestrator

Orchestrators Level

Tenant-level
Security Policy

Tenant-level
Security Policy

Security Control Plane

PDP Tenant #1

PDP Tenant #2 PDP Tenant #3

Security Decision Level

r
|

A

L

¥
Tﬁ——

I a
- s € |
H I
3
® e |
El H
el !
& gl
£ z!

3|

| g

| Infrastructure #1 Infrastructure #2 |

I I T |

| [Inter-Infrastructures Communication Bus]

> Security Di ry Protocol PDP Feedback
------- B Security Statement Protocol — . = Security Decision Requesting Protocol

Figure 1. Proposed architecture for SDSec in distributed cloud

ing its multi-tenant and multi-cloud properties. It relies on
software-defined scheme to provide a global security pol-
icy specification interface and exploit autonomic mechanisms
within distributed cloud infrastructures to enable cloud re-
sources to be dynamically and exhaustively protected accord-
ing to this policy. More precisely, first consists in a global
security policy (GSP) which formaly defines at a business
level the security objectives of cloud resources and is then
translated into several tenant-level security policies (TLSP),
providing security statements that must be verified by specified
resources at the tenant level within the distributed cloud.

These security statements are then enforced on cloud re-
sources, i.e. virtualized infrastructures and software products.
They aim at altering the behavior of these components and
protecting them based on countermeasures available with
distributed cloud. This application can be active if its ap-
plication requires negotiation with a decisional instance. The
enforcement should be performed dynamically, more precisely
in an adaptive (it adapts to any change in the enforced
resource state or in the infrastructure), automatic (no operator
interventions are needed for it), and self-configured manner
(policy decisions for it are automatically made according to
several criteria including the security requirements).

The different components parts of this SDSec architecture
for distributed cloud are as follows:

o The security orchestrator hosts a GSP specified by
the system administrator, exposes TLSP, and receives
enforcement feedbacks from PDP to adapt them. It is re-
active as exposed TLSP are modulated by such feedbacks
and the cloud orchestrator interactions.

o The policy decision point parses its local TLSP to
address security statements to the security enforcement
stack and responds its security decisional requests. Its
decisions can be influenced by third party components
providing external security attributes.

o The security discovery protocol enables the PDP to

identify the security orchestrator and to fetch its corre-
sponding TLSP. It works on the top of a middleware
joining PDP and security orchestrator.

o The policy enforcement point is a component executing
the security statements. It is dedicated to the enforcement
on one type of cloud resources. It executes PDP security
statements and exposes hooks for security decisions.

o The enforcement discovery protocol allows the PDP to
identify and locate the PEPs in its security perimeter and
identify their capabilities. It works between the PDP and
the corresponding PEPs.

+ The statement protocol sends the security statement
from the PDP to the PEP, and returns the feedback. It
is asynchrone, and is based on existing standards for
security statements encoding.

« The decision requesting protocol enables the PEP to ask
the PDP a security decision for a reactive enforcement in
a synchronous manner.

Consequently, this architecture brings several benefits with
respect to cloud security:

a) Distributed cloud protection enablement: this archi-
tecture is compliant with the distributed cloud constraint as
it matches the multi-tenancy and multi-cloud properties. This
compatibility is promoted by the GSP which is localy trans-
lated into a TLSP and adapted to a local resource enforcement.
Moreover, the multi-cloud-aware discovery and communica-
tion protocols assist the multi-cloud security enforcement.

b) Software-defined management: this architecture im-
plements the software-defined paradigm to configure the secu-
rity mechanisms. This approach is inspired from the software-
defined networking (SDN) but applied to the security field.
Actually, in SDN, the control-plane corresponds to the SDN
controllers and the data-plane matches the administrated net-
work components. In our architecture, the control-plane is
composed by the security orchestrator and all instanciated
PDPs while all the instanciated PEPs and enforced cloud
resources constitute the data-plane. The proposed architecture
covers several areas of security policy enforcement. Also, this
paradigm allows autonomic reaction to security state changes.

c) Self-configuration: this architecture relies on the au-
tonomic computing concepts which propose a lifecycle for
handling a dynamic and local management. Besides, this
management is highly adapted to specified components. This
property is mainly brought by the PEPs, as they configure and
monitor the components they apply the security policy on.
Moreover, they are specifically conceived for the components
they are in charge of. Another interesting aspect of this
self-configuration is the lower coupling with respect to the
orchestration. Instead of the traditional orchestration model
addressing a request and expecting a feedback, the security
orchestrator adopts a passive approach by exposing security
requirements, and refines the security requirement for different
PDPs in different contexts.

Cloud
Orchestrator,
uid

SecurityiOrchestrator
i)

el d] o]

PDP tenant Gustomer #1 PDP tenant Customer #2 PDP tenant Gustomer #3
il | iyt g N gy Sk gy | mp—

(23

|

|

| | iserver server
| Instance Instance
| P
|

|

Security Control Plane

N
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

~

i tenantc custom

Europe Infrastructure:

Security Data Plane

Figure 2. Use-case for supporting the validation of our SDSec architecture

IV. ARCHITECTURE VALIDATION

In order to evaluate the proposed approach, we confronted
to several scenarios, based on the following use-case of a
distributed cloud: a Cloud Service Provider (CSP) offers a
Platform-as-a-Service (PaaS) solution to its customers, pro-
viding several infrastructures in different geographic areas.
To protect its information system from the client security
negligences (or deliberate malevolences), the CSP enforces a
security policy (GSP) on its own infrastructures, and gather
with each resource of its customers.

In this context, the multi-tenancy aspect of that use-case
is promoted by the exploitation of the same infrastructure
by several independent customers, and the multi-cloud aspect
is promoted by the need for each infrastructure of the CSP
to collaborate about the customers preferences, customers
resource intercommunication and billing.

We will focus on the case of the fenant customer #2
which regroups two virtual machines for hosting two web
applications: one for a European version of his application
and another one for the American version.

A. Resource allocation scenario

The CSP’s client wants to set up a back-up server in his ten-
ant for his web application. It must use SQL and FTP servers
in a dedicated VM stored in the European infrastructure. The
client requests the cloud orchestrator to create a VM instance
from an image provided by the CSP and to deploy SQL and
FTP servers. Each instanciated resource embeds a dedicated
PEP. This deployment is notified to the security orchestrator.

Using the security discovery protocol, the PDP fetches the
newly available TLSP from the security orchestrator. Then,
using the enforcement discovery protocol, it identifies the new
PEPs in its enforcement perimeter. As FTP and SQL services
are newly deployed in the tenant, the security orchestrator
assumes that the TLSP of the tenant’s PDP is no more adapted
and modifies the corresponding TLSP of this PDP. Those are
again fetched by the security discovery protocol. Employing
the security statement protocol, the PDP sends the new security
statements to the PEP to enforce the TLSP, and fetches the

feedback. Finally, the PDP transmits a positive enforcement
feedback to the security orchestrator.

B. Resource evolution scenario

The VM hosting the European instance of the web appli-
cation is targeted by a distributed denial of service (DDoS)
attack: its memory and CPU consumption indicators increase
and exceed the alert threshold of the PEP, which was specified
by the PDP. The PEP uses the security statement protocol to
alert the PDP of the failing enforcement on the web server
resources consumption. The PDP uses the security statement
protocol to order the infrastructure PEP to increase temporarily
the VM resource, and informs the security orchestrator of the
non-enforcement of the GSP.

Then, the security orchestrator asks the network security
enforcement to block attackers’ IP addresses, and order the
tenant’s PDP to switch the affected VM into a fail-safe mode.
Once the network security enforcement has blocked the DDoS
attack, the security orchestrator reverts back the TLSP exposed
to the fenant customer #2 in order to restore the VM.

C. Access request scenario

The GSP imposes the credentials used for inter-cloud re-
source interactions to have an expiration delay. The verification
of the validity is committed by the PDP using a tierce
module. As the client has set-up back-up processes between
the backup server hosted in the European infrastructure and
the production server located in the american infrastructure,
the related resources have to meet these requirements: when
the production server connects to the back-up server, the
connection is blocked and the related PEPs make decision
requests to the PDP, providing hashes of the used credentials.

As the TLSP imposes the verification of the lifetime of
the credentials as well, the PDP uses its third party module
to check it. As this module has no precedent records of the
hashes, it concludes that the transmitted credentials are newly
created ones and are allowed to be used. The PDP responses to
both security decision requests are positive. Thus, they are sent
back to the two PEPs, allowing the two incoming connections.

D. Resource removal scenario

The client wants to update the VM supporting the American
web application by proceeding to a fresh installation. To meet
this objective, the client wants to completely remove it and
reconfigure a new VM. He uses the cloud orchestrator to
remove this VM, which is notified to the security orchestrator.

The security orchestrator updates its GSP to take into
account the removal of the cloud resource and checks its
consequences on the enforcement: the TLSP is updated. The
PDP of tenant customer #2 fetches the new TLSP, and stores it.
The security orchestrator starts deallocating resources to the
American VM and the PEP addresses a security decisional
request to its PDP for allowing the removal. According to its
TLSP, the PDP grants the request. The PEP lets the cloud
orchestrator to complete the resource removal.

V. CONCLUSIONS

This paper proposes a software-defined security strategy
for distributed cloud environments. It relies on the pro-
grammability of software-defined security, and exploits the
autonomic paradigm for addressing the constraints induced
by multi-tenancy and multi-cloud properties. The underlying
architecture is composed of a security orchestrator, policy
decision points (PDP) and policy enforcement point (PEP)
interacting according to a dedicated set of protocols. Based on
the specification of a security policy, it supports the dynamic
configuration of security mechanisms to adjust to contextual
changes, based on available resources and countermeasures.
The proposed approach has been evaluated through a set of
validation scenarios corresponding to a realistic use case, in-
cluding cloud resource allocation/deallocation, cloud resource
change, and dynamic access control.

The proposed architecture has raised several challenges with
respect to the design of the considered components, and the
specification of security policies in a multi-cloud and multi-
tenant context. The PEPs will apply model-driven scheme
to facilitate the inter-operability of heterogeneous enforce-
ments. In the longer term, the security policy specification
of distributed cloud, and the dedicated access mode will be
investigated to complement the security orchestration.

REFERENCES

[1] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing.
2011.

[2] Cloud Security Alliance. Top Threats to Cloud Computing v1. 0. White

Paper, 2010.

Adrian Waller, Ian Sandy, Eamonn Power, Efthimia Aivaloglou, Char-

alampos Skianis, Antonio Muifioz, and Antonio Mafa. Policy Based

Management for Security in Cloud Computing. In FTRA International

Conference on Secure and Trust Computing, Data Management, and

Application, pages 130-137. Springer, 2011.

Alysson Bessani, Leucio A Cutillo, Gianluca Ramunno, Norbert

Schirmer, and Paolo Smiraglia. The TClouds Platform: From the

Concept to the Implementation of Benchmark Scenarios. ACM SIGOPS

Operating Systems Review, 48(2):13-22, 2014.

[5] Olubisi Atinuke Runsewe. A Policy-Based Management Frame-

work for Cloud Computing Security. Master’s thesis, Université

d’Ottawa/University of Ottawa, 2014.

Seyed Kaveh Fayazbakhsh, Vyas Sekar, Minlan Yu, and Jeffrey C

Mogul. Flowtags: Enforcing Network-Wide Policies in the Presence

of Dynamic Middlebox Actions. In Proceedings of the Second ACM

SIGCOMM Workshop on Hot Topics in Software Defined Networking,

pages 19-24. ACM, 2013.

[7] Tommy Koorevaar. Dynamic Enforcement of Security Policies in
Multi-Tenant Cloud Networks. Master’s thesis, Ecole Polytechnique
de Montréal, 2012.

[8] J. Park J. Jeong, H. Kim. Software-Defined Networking Based Security

Services using Interface to Network Security Functions. Technical

report, October 2015. draft-jeong-i2nsf-sdn-security-services-03.

Jeffrey O Kephart and David M Chess. The Vision of Autonomic

Computing. Computer, 36(1):41-50, 2003.

Simon Godik, Tim Moses, A Anderson, B Parducci, C Adams, D Flinn,

G Brose, H Lockhart, K Beznosov, M Kudo, et al. EXtensible Access

Control Markup Language (XACML) version 1.0. 2003.

Eve Maler et al. Assertions and Protocols for the OASIS Security

Assertion Markup Language (SAML). OASIS, September, 2003.

[12] Jennifer Golbeck. Trust on the World Wide Web: a Survey. Foundations

and Trends in Web Science, 1(2):131-197, 2006.

David Waltermire, Stephen Quinn, Karen Scarfone, and Adam Hal-

bardier. The Technical Specification for the Security Content Automa-

tion Protocol (SCAP): SCAP version 1.2. NIST Special Publication,

800:126, 2011.

3

—

[4

[inar)

[6

[t}

[9

—

[10]

[11]

[13]

