
Cloud4IoT: a heterogeneous, distributed and
autonomic cloud platform for the IoT
Daniele Pizzolli, Giuseppe Cossu, Daniele Santoro, Luca Capra, Corentin Dupont,

Dukas Charalampos, Francesco De Pellegrini, Fabio Antonelli and Silvio Cretti
CREATE-NET, via alla Cascata 56/D, 38123 Trento, Italy.

Abstract—We introduce Cloud4IoT, a platform offering auto-
matic deployment, orchestration and dynamic configuration of
IoT support software components and data-intensive applica-
tions for data processing and analytics, thus enabling plug-and-
play integration of new sensor objects and dynamic workload
scalability. Cloud4IoT enables the concept of Infrastructure as
Code in the IoT context: it empowers IoT operations with the
flexibility and elasticity of Cloud services. Furthermore it shifts
traditionally centralized Cloud architectures towards a more
distributed and decentralized computation paradigm, as required
by IoT technologies, bridging the gap between Cloud Computing
and IoT ecosystems. Thus, Cloud4IoT is playing a role similar
to the one covered by solutions like Fog Computing, Cloudlets
or Mobile Edge Cloud.

The hierarchical architecture of Cloud4IoT hosts a central
Cloud platform and multiple remote edge Cloud modules sup-
porting dedicated devices, namely the IoT Gateways, through
which new sensor objects are made accessible to the platform.
Overall, the platform is designed in order to support systems
where IoT-based and data intensive applications may pose specific
requirements for low latency, restricted available bandwidth, or
data locality.

Cloud4IoT is built on several Open Source technologies for
containerisation and implementations of standards, protocols
and services for the IoT. We present the implementation of the
platform and demonstrate it in two different use cases.

Index Terms—PaaS, Orchestrator, Internet of Things, Open-
Stack, Fog Computing, Edge Cloud, Docker, Kubernetes

I. INTRODUCTION

We present the technical features and the lab deployment
of Cloud4IoT, a lightweight PaaS platform specialized for
edge cloud computing applications and natively designed for
the IoT domain. The general aim of the architecture is to
address some of the technical issues in order to support IoT-
based applications, like, e.g., device roaming, low latency,
bandwidth, and power consumption and quest for data locality.
The uptake of data-intensive IoT applications is apparent in
several sectors such as industrial manufacturing, oil and gas
provisioning, utilities, transportation, automotive, healthcare,
mining, highly remotely distributed contexts (rural, offshore,
logistics) and online games based on augmented reality.

Fog computing [1], [2] is expected to solve core technical
issues related to such scenarios. In fact, such approach is

The authors are with CREATE-NET, via Alla Cascata 56/D, 38123 Trento,
Italy; email: name.surname@create-net.org. This research received
funding from the European Union’s H2020 Research and Innovation Action
under grant agreement n. 688088 (project AGILE) and grant agreement n.
687607 (project WAZIUP).

meant to bridge between the IoT and Cloud domains. However,
IoT is a natively distributed paradigm whereas the latter is
traditionally a centralised one. Actually, the two approaches
can be integrated as long as two key mandatory challenges
are properly addressed, i.e., heterogeneity of the connected
“things” and cloud-awareness of the applications leveraging
sensed data.
Heterogeneity: IoT sensing devices and communication proto-
col are using a wide range of technologies, such as RFID,
ZigBee or LoRa. Those technologies are used in a large
spectrum of application domains, such as e-Health, transport
or precision agriculture. Thus, each application domain usually
implements its own data models, which further augment
heterogeneity issues. In the recent years, several initiatives
have been focusing on the development of standard support for
IoT based applications. Aiming at the integration of different
sensing technologies, the RIOT platform [3] has been proposed
in order to minimize the hardware dependent code and to
allow for the inclusion of new sensing boards abstracting from
the kernel itself. Cloud4IoT complements such an approach
by means of the IoT gateway, which is able to perform as
an interface adapter for multiple technologies, thus easing
the access to objects’ data from the Internet [4]. Hence, the
problem of accounting for heterogeneous sensor objects is
delegated to a specific hardware module. The IoT gateway
in fact can hosts multiple radio-access technologies and it is
empowered with dedicated network management modules.
Cloud-awareness: cloud-awareness is addressed by
Cloud4IoT along two main axes. Firstly, the platform
tackles requirements of scalability, fault tolerance and high
availability of computational resources. In fact, it is meant
to provide cloud-aware features close to data sources,
i.e., granting locality of computation with respect to data
generation. More precisely, moving computation to the cloud
edge is done by leveraging on cloud-native patterns in order to
match applications’ requirements and resources’ availability.
Secondly, Cloud4IoT manages available network resources
in order to process efficiently in case of large amounts of
sensed data and connected objects. Moreover, applications
performing data crunching may pose specific constraints
for the cycle of data consumption and processing and may
involve possibly actuation in the loop. In this context, in
order to fulfill the requirements of such applications and
optimize resources utilization both on the edge cloud and on
connected objects, it is crucial to manage the placement and9781-5090-1445-3/16$31.00 © 2016 IEEE (CloudCom’16)

ar
X

iv
:1

81
0.

01
83

9v
1

 [
cs

.D
C

]
 3

 O
ct

 2
01

8

scheduling of workload as a function of existing resources on
the edge and on the central cloud. In Cloud4IoT it is hence
possible to perform a scalable deployment of applications
reserving edge deployment for those applications in need
to be installed closer to the sensing devices. Moreover, the
platform will be able to migrate an application to the central
cloud (offloading) whenever required, for example, in case of
scarce edge resources.

By complementing the IoT domain with features like auto-
matic deployment and dynamic configuration, Cloud4IoT al-
lows the application of the Infrastructure as Code [5] paradigm
to the IoT domain itself. Managing the whole computing
infrastructure (the cloud, the edge and the gateway) as a
virtualized provision-able infrastructure, combined with the
capabilities to package and offer middleware and services
for the IoT according to a micro-service paradigm, allows
to address automatic deployment, dynamic configuration and
flexible re-provisioning of the whole enabling technology
stack. At the gateway, edge and cloud level, infrastructure and
IoT services become programmable elements to be combined
and orchestrated according to the specific IoT requirements.
While, for example, in the cloud it is possible to address
scalability and high availability requirements of an application,
at the edge level it is possible to address mission critical real
time computing requirements and at the IoT gateway level
it is possible to address configurable device protocol support
and provisioning, configurable data acquisition and filtering,
device-specific business logic delivery.

A short outline of this paper follows: in the next Sec. II we
describe the architecture of Cloud4IoT, in Sec. III we provide
technical insight into the platform and we detail the specifics of
our implementation. In Sec. IV we describe the use cases and
storyboard provided during the demo of the platform. Finally
in Sec V a recap of the activity carried out and an overview
of possible generalizations and enhancements are presented.

II. ARCHITECTURE

The logical Architecture of the Cloud4IoT platform is
represented in Fig. 1. The scheme reports on the three main
blocks: a central/traditional cloud platform, an edge-cloud
layer and a set of gateways.

Central cloud platform: this cloud hosts the central con-
troller functionality, which assigns distributed resources and
provides fleet management services, and offers additional
capacity in case of scalability needs. In particular, it performs
dynamic configuration of remote resources, e.g., the IoT Gate-
ways and deploys both IoT support applications, e.g. required
IoT modules, and/or data logic & processing applications. The
central controller essentially works like an orchestrator and
a scheduler for the workload running on the whole platform,
hence offering services similar to the ones provided by a PaaS.
In Cloud4IoT we have implemented this layer on a private
cloud platform, based on OpenStack [6].

Edge Cloud Modules: these components are designed to let
data-intensive applications run close to the IoT Gateways (i.e.
where the data are produced). They are small-sized servers

Fig. 1. The Cloud4IoT logical architecture: (top) central cloud, (middle)
edge modules, orchestrated by the central cloud, (bottom) IoT gateways for
seamless object’s integration. On the left: typical deployment of an IoT support
application. On the right, a sample deployment pattern for a Data logic &
processing application, to be installed on the edge or on the central cloud at
the need.

with computational power and memory storage capabilities.
The central cloud orchestrator employs edge cloud modules in
order to migrate applications at the need, so that the workload
can be offloaded from the edges to the central cloud and vice
versa at the need. Moreover Edge Cloud Modules complement
the IoT gateways making the system more resilient (e.g. to
network failures) and less dependent by the central cloud
thanks to their computational and storage capacity.

IoT Gateways: gateways represent the hardware interface
with objects and are able to handle the multitude of com-
munication technologies and protocol stacks found in the IoT
domain. They are hardware platforms ruling the acquisition
of the sensor objects’ data. They have limited memory and
computing capabilities and interface with the edge cloud
modules.

A. Supported applications

There are two main types of applications that are supported
by the Cloud4IoT platform and that play a role in the
demonstration described in Sec. IV: IoT support applications
and Data logic & processing applications.
IoT support applications: those are service applications spe-
cific to the IoT domain which support the deployment and the
maintenance of new objects/sensors in the field. In particular,
these applications are able to:

1) perform the discovery protocol for new objects attached
to the IoT Gateway;

2) retrieve the version of the firmware suitable with the
model and the OS of a new object at the need;

3) dispatch the data collected on the edge modules con-
nected to the IoT Gateway;

4) require the installation of new applications in order to
manage newly acquired and/or updated objects.

Fig. 2. The Cloud4IoT deployment architecture. On the top a view of services
is sketched. On the bottom some pictures of the physical components are
provided.

Data logic & processing applications: these applications are
deployed, scheduled and orchestrated from the central cloud
onto the edge modules according to the current platform
condition. Based on the users’ latency requirements and/or
the amount of data to be processed, such applications can be
deployed either to the central cloud or to the edge and then
migrated from one to the other. The orchestrator scheduler has
been equipped with a simple threshold-based algorithm in or-
der to perform workload management and match application-
related constraints; this simple implementation is meant to
demonstrate the flexibility of the platform in handling different
user’s and resources’ constraints. We have deferred the imple-
mentation of more advanced orchestration logic, e.g., Mesos-
like [7] schedulers, as part of further versions of Cloud4IoT.

B. Orchestration

Cloud4IoT leverages the containerization technology in
order to attain automatic deployment, dynamic configuration
and orchestration of both IoT support applications and Data
logic & processing applications. As detailed in the next
section, the platform adopts state of the art Open Source
frameworks (like Docker [8] and Kubernetes [9]): we have
opted for these frameworks because they can be ported onto
different hardware platforms. Hence, all layers depicted in
Fig. 1 are orchestrated in a flexible yet effective way and
their required functionalities can complement each other. In
the context of today’s IoT data-intensive applications, such
architectural choice offers a solution able to manage a complex
and distributed framework and yet retains and satisfies the
main cloud technology features like resilience, robustness,
high availability, scalability and elasticity.

III. IMPLEMENTATION

We detail hereafter the technical details for each of the
modules composing Cloud4IoT, with specific reference to the
technologies employed in our installation (see Fig. 2):

• Central Cloud. The Central Cloud runs on dedicated servers,
and offers IaaS service implemented using the Open Source
OpenStack platform. The OpenStack environment, configured
for High Availability (HA), is composed by 3 Controllers

nodes, 2 Compute nodes. The compute servers (HP ProLiant
DL380 Gen9) are equipped with 2xCPU Intel Xeon E5-2630
v3 2.4 GHz 8Cores/16Threads, 96GB RAM, 2x500 GB SATA
7.2K HDD. The controller servers (HP ProLiant DL360e
Gen8) are equipped with 1xCPU Intel Xeon E5-2407 v2 2.4
GHz 4Cores/4Threads, 32GB RAM, 2x1TB SATA 7.2K HDD.
The OpenStack Block Storage service (cinder) is integrated in
OpenStack by means of HP LeftHand iSCSI SAN and offering
11TB of storage capacity.

On top and aside OpenStack we’ve installed Kubernetes and
the Cloud4IoT control services that take care of the set-up
and configuration of the platform and the deployment of the
Kubernetes agents on the Edge Cloud.
• Edge Cloud. Some of the OpenStack IaaS services and
agents run on the Cloud Edge in order to seamlessly deploy
the application in the Cloud Edge Modules. Hence we have
extended the OpenStack platform and Kubernetes installing
compute and storage services and the required agents on the
Edge Cloud servers, along with the Cloud4IoT edge control
services. The main purpose of the Cloud4IoT control services
on the edge layer is to deploy the Kubernetes agents and to
provision the IoT Gateway using PXE with a custom image.

The units of the edge cloud installation are based on mini-
itx form factor motherboard. This allow to fit small space
requirements. In order to test different computing capabilities
and power consumption we have different CPUs for each unit
(from the most capable): Intel Xeon E3-1226, Intel Core i7-
4790S, Intel Avoton C2750. All of them are equipped with
multiple Ethernet network cards, 16GB RAM and 480GB
SSD. On our implementation each edge has one computing
unit, with a total of 3 cloud edge nodes.
• IoT Gateway. The IoT Gateway acts as the network provider
for non-IP IoT devices (e.g., wearables, home/office automa-
tion devices that communicate over Bluetooth Low Energy,
ZigBee, Z-Wave, etc.). It also hosts a containerised service
that provides the essential software components (e.g., drivers
and protocol implementations) for the connected IoT devices
and application logic (e.g., when and where data from devices
should be forwarded). It is an embedded device with limited
resources for data processing and handling. It consists of
a RaspberryPi version 3 device (1.2 GHz 64-bit quad-core
ARM Cortex-A53 CPU, 1GB RAM, 16GB SD card storage,
WiFi/BLE/Ethernet default connectivity) and an extension
shield able to host various wireless communication modules.

The Edge Cloud provisions the IoT Gateways by installing a
minimal image with Cloud4IoT control services able to deploy
and configure the Kubernetes agent.

IV. STORYBOARD AND USE CASES

In this section we provide the description of a demonstration
which has been prepared in order to showcase the two main
features offered by Cloud4IoT in its current implementation.
The first one is the IoT Roaming use case. It supports the
automatic configuration and re-configuration of IoT Gateways,
i.e., Cloud4IoT is able to react to devices roaming from one
IoT Gateway to another. The second feature is the Application

Scaling use case for an Data logic & processing application de-
ployed on the edge layer. Such application can be initially
deployed near the sources, scaled at the need within the edge
layer, and eventually re-deployed onto the central cloud.

Hereafter we provide the two use cases and the related
application of Cloud4IoT.

A. IoT Roaming: device discovery and automatic service
migration

In this use case we will demonstrate the feasibility of
scenarios where sensor objects are moving from one gateway
to another. It will show how the roaming can be handled
automatically by the platform giving continuity to the service
performing sensor data collection. An example of this sce-
nario can be a patient wearing a sensor (smart bracelet) for
monitoring life parameters at home. Once the patient leaves
his/her home and reaches the hospital, the wearable device is
automatically associated with a new gateway and monitoring
service is configured accordingly. It must be pointed out that
this use case doesn’t make any use of 3G/4G mobile networks
or of any smart device (e.g. smartphone) but just a sensor
object connected via low level protocols (e.g. bluetooth) with
the IoT Gateway; hence it is applicable everywhere roaming
of IoT sensors takes place.

The sample IoT roaming demonstration comprises the fol-
lowing steps:

1) A wearable device, i.e., a sensor object, is automatically
discovered and associated to the IoT Gateway;

2) Upon notification of the IoT Gateway, a dedicated IoT
support application, orchestrated by the central cloud con-
troller, is deployed in order to manage that object. Simple
business logic is provided containerized and customized based
on some user’s preferences;

3) The sensor object is managed directly by Cloud4IoT:
data collected by the newly added object is acquired by the
current IoT Gateway and moved to the edge cloud layer where
can be processed in an efficient way;

4) The sensor moves out of range of the current IoT
Gateway and associates to a new one;

5) The IoT support application follows the sensor’s roam-
ing: together with the current user status, it is automatically
deployed and configured onto the new IoT Gateway;

6) Data collected is sent to the edge cloud layer and
application status is centrally updated in the cloud.

B. Application Scaling: workload management

A typical scenario imposing scaling requirements for IoT
applications is the Smart City one, where thousands of sensors
may be deployed and terabytes of data are potentially collected
(e.g., weather, traffic and transportation data, images and
videos). Data must hence be processed locally: in fact, bulk
transfer to a central cloud is costly and indeed not suitable for
real-time usage. Thus, hen IoT objects generate huge amount
of data, computational capacity can be conveniently deployed
on the edge cloud layer to avoid bulk transfers.

The sample application scaling demonstration comprises the
following steps:

1) One or more data-intensive applications performing data
analytics are deployed on the edge cloud layer;

2) Data collected by sensors are moved to the edge cloud
layer in order to be elaborated and aggregated;

3) Applications get data and elaborate it providing aggre-
gated results (e.g., monitoring data with temporal vs spatial
aggregation, log file analysis, shape/object recognition);

4) Aggregated results are sent to the central cloud and
displayed: the data transfer rate is much lower than the one
expected in case of a bulk data transfer;

5) Much more data is collected and applications on the edge
cloud layer are scaled up in order to serve the new workload;

6) Resources on the edge cloud layer are going to be
exhausted. The customized scheduler of the orchestrator com-
ponent offloads the application to other edge cloud modules
or to the central cloud. Offloading is performed accounting
for the status of the resources in the edge cloud, the available
bandwidth, and the requested latency.

V. CONCLUSION

Cloud4IoT provides seamless integration of IoT and Cloud.
Architecture patterns typical of Cloud Computing (e.g., In-
frastructure as Code) are combined with patterns from IoT.
It covers features typical of both approaches and responds
to requirements of flexibility, scalability, fault tolerance, and
distribution of IoT and data-intensive applications.

The automatic deployment and orchestration of IoT sup-
port applications and Data logic & processing applications
is performed using containerization solutions based on Open
Source technologies. We have demonstrated the potential of
this integrated platform in two use cases: IoT Roaming and
Application Scaling.

We aim at enhancing Cloud4IoT trying to automate and ease
installation and operations, and to support different topologies
(e.g. generalizing relationships among Central Cloud, Edge
Layer and IoT Gateway) and/or to improve workload manage-
ment. Contribution to the relevant Open Source communities
could be also an option. Doing so, we plan to provide a
framework where developers can build new products which
fit aforementioned and even novel scenarios.

REFERENCES

[1] “Transformation to a next generation IoT service provider,” CISCO,
White Paper, February 3 2016.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proc. of MCC. New York, NY, USA:
ACM, 2012, pp. 13–16.

[3] O. Hahm, E. Baccelli, M. Gnes, M. Whlisch, and T. C. Schmidt,
“RIOT OS: Towards an os for the Internet of Things,” in Proc of IEEE
INFOCOM, Turin, April 2013.

[4] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
Things,” Ad Hoc Netw., vol. 10, no. 7, pp. 1497–1516, Sep. 2012.

[5] K. Morris, Infrastructure as Code, , Ed. O’Reilly Media, Inc., 2015.
[6] OpenStack. https://www.openstack.org/.
[7] Apache Mesos. http://mesos.apache.org/.
[8] Docker. https://www.docker.com/.
[9] Kubernetes. http://kubernetes.io/.

https://www.openstack.org/
http://mesos.apache.org/
https://www.docker.com/
http://kubernetes.io/

	I Introduction
	II Architecture
	II-A Supported applications
	II-B Orchestration

	III Implementation
	IV Storyboard and Use Cases
	IV-A IoT Roaming: device discovery and automatic service migration
	IV-B Application Scaling: workload management

	V Conclusion
	References

