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Abstract—Recently Edge Computing paradigm has gained
significant popularity both in industry and academia. With
its increased usage in real-life scenarios, security, privacy and
integrity of data in such environments have become critical.
Malicious deletion of mission-critical data due to ransomware,
trojans and viruses has been a huge menace and recovering such
lost data is an active field of research. As most of Edge computing
devices have compute and storage limitations, difficult constraints
arise in providing an optimal scheme for data protection. These
devices mostly use Linux/Unix based operating systems. Hence,
this work focuses on extending the Ext4 file system to APEX
(Adaptive Ext4): a file system based on novel on-the-fly learning
model that provides an Adaptive Recover-ability Aware file
allocation platform for efficient post-deletion data recovery and
therefore maintaining data integrity. Our recovery model and
its lightweight implementation allow significant improvement in
recover-ability of lost data with lower compute, space, time, and
cost overheads compared to other methods. We demonstrate
the effectiveness of APEX through a case study of overwriting
surveillance videos by CryPy malware on Raspberry-Pi based
Edge deployment and show 678% and 32% higher recovery than
Ext4 and current state-of-the-art File Systems. We also evaluate
the overhead characteristics and experimentally show that they
are lower than other related works.

Index Terms—Edge computing, Security, File System, Data
Recovery, Data Stealing Malware

I. INTRODUCTION

Internet of Things (IoT) paradigm enables integration of
different sensors, compute resources and actuators to perceive
external environment and act to provide utility in different
applications like healthcare, transportation, surveillance among
others [1]. The original idea of providing enhanced Quality
of Service (QoS), which is a measure of the performance
of such services, was to provide distributed computation and
computation on Cloud [2]. A new computing paradigm namely
‘Fog Computing’ leverages resources both at public cloud and
the edge of the network. It provides resource abundant ma-
chines available at multi-hop distance and resource constrained
machines close to the user. Several works have shown that Fog
computing can provide better and cheaper solutions compared
to only Cloud based approaches [3], [4]. Thus, many of
such IoT systems have recently been realized using Edge/Fog
computing frameworks [5]. Due to the increased usage of such
devices and frameworks, there has been increasing interest in
developing efficient techniques to provide improved QoS that
such systems provide [6].

Edge is considered as a nontrivial extension of the cloud,
therefore, it is inevitable that same security and privacy chal-
lenges will persist [7]. Many works in literature show that there
exist new security threats in Edge paradigm which provide
opportunities of developing more robust and better systems [8].
One of the most crucial security problems is the loss of critical
data due to malicious entities [8]. Some ways used by hackers
to corrupt, delete and steal such critical data include the usage
of data stealing malwares, ransomwares, trojans, deleting or
overwriting viruses. Most malware attacks have been based on
stealing crucial data from the system and requesting ransom
payments in return for the data. Unfortunately, according to
a recent survey [9], the number of novel ransomwares/trojans
has increased up to 50 times in the last decade amounting to
millions of dollars of illicit revenue.

Preventing such attacks has not been popular in IoT. This
is because it requires significant computation and space [10]
that drastically increases the cost of IoT deployment which is
unfavorable for users. Also, it has been shown that no matter
what protection mechanisms are put in place, edge paradigms
will be successfully attacked [11]. Thus, the detection and
recovery from such attacks seems a critical requirement for
Edge Computing domain. Due to increasing frequency of
novel attacks and their types, detection is quite challenging
[12]. Despite such challenges, there exist prior work that have
high accuracy of detecting such attacks [13], [14] but only
a few of them utilize the ability of policy based allocation
to recover from such attacks. The ones that utilize policy
based allocation schemes [14], [15] have significant overhead
of read/write latencies, computation time, space requirement
and limited recover-ability that are not feasible for Edge nodes.
We discuss more limitations of such strategies in Section II
and identify the scope of improvement in terms of proper
allocation with mechanisms allowing faster, portable and more
efficient recovery. Our work primarily focuses on recovery in
Hard Disk Drives (HDD), Flash Media and Solid State Devices
(SSD).

Most of the conventional file systems such as Ext, NTFS
and exFAT do not allow the users to specifically tag
blocks/clusters/sectors - deleted or unused independently [16]
where a block in hard-disk is a group of sectors that the
operating system can point to. Lack of such freedom limits
the kernel to overwrite the data on random locations reducing
recovery. Some optimizations exist but are proprietary and not
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customizable to user specific needs. This limits the currently
available kernels to utilize the full potential of file allocation
and tagging for efficient recovery. Even the file allocation
and mapping with virtual tables is restricted to specific fixed
algorithms. Allowing these algorithms to be recover-ability
aware in allocating blocks/clusters to files can improve the
amount of data that can be recovered from such file systems.
Making these algorithms adaptive and equipped with some
learning model can further lead to optimization absent in
current systems.

The proposed file system APEX (Adaptive Ext4), imple-
ments an adaptive file allocation policy that supports a wide
diversity of platforms due to its portable implementation. It
provides a significant improvement in recovery of files with
low overheads. It is designed to be lightweight and easy to
deploy in Edge/Fog computing frameworks, increasing their
reliability and data protection. Another advantage is that it
provides improved forensic based recovery for criminal inves-
tigations to expose evidence and hence catch hackers/invaders.
The main contributions of our work are as follows:

• We propose a lightweight, adaptive, portable and efficient
file allocation system optimized for higher post deletion
recovery which is flexible, robust and is independent of
storage architecture

• We provide a set of pre-optimized weights that need only
slight variation of hyper-parameters dependent on usage
and thus low adapting time for new scenarios

• We develop a prototype file system APEX and show
its efficacy on a real life scenario for malicious dele-
tion/overwriting of video surveillance footage.

The rest of the paper is organized as follows. In Section II, we
provide related works and compare them with ours. In Section
III we first provide a basic recover-ability aware allocation
mechanism and describe a heuristic based block ranking
method that can optimize post-deletion data recovery. We then
improve our heuristic measure by updating it dynamically to
prioritize files based on the user’s file access characteristics
in Section IV and also provide model level details of a Disk
Simulator for learning the weights (hyper-parameters) of the
block parameters, based on general-user file access characteris-
tics. In Section V, we extend our implementation discussion to
APEX file system using the FUSE (FileSystem in UserSpace)
framework [17]. In Section VI we provide a case study of
overwriting video surveillance data using CryPy malware [18]
and provide experimental results of the model and comparison
with other works both for recovery and overheads to show that
APEX outperforms them. Section VII concludes the paper and
provides future directions to improve APEX.

II. RELATED WORK

The goal of data recovery is to recover lost data from a
disk to maximum extent. This data might be ‘lost’ because
the disk has been corrupted or the files have been deleted. We
focus on the latter aspect of the problem that too from data
stealing/deleting malware. There has been significant work on
data recovery at different levels, including file system, file

allocation software, and recovery tools. However, there still
lacks a holistic system that focuses on this aspect on generic,
highly recoverable data storage by modifying the allocation
policy. Table I provides a brief summary for comparing APEX
with other systems.

There are two main directions in which the work on
data recovery has progressed. The first concerns how data
is recovered after deletion, and the second concerns with
allocating data such that recovery later is optimized. Signifi-
cant parameters for comparison include overheads, on demand
recover-ability, adaptivity to different application scenarios,
and custom policy employ-ability among others. There has
been work on dynamic file systems and allocation like by
Ulrich et al. [19], where the data is allocated between differ-
ent drives for optimum resource utilization and distribution.
Complex parity generation and comparison methods are used,
spanning multiple drives, for improved utilization and recovery
performance. However, it lacks priority based allocation and
replacement policies that are optimized for recovery and
access time. The popular Andrew File System (AFS) [15]
in distributed systems also provides a backup mechanism to
recover deleted or lost files for a limited period of time. This is
not suitable for Fog nodes due to limited disk space available
(there is high storage-to-compute cost ratio in Fog framework
deployment and other communication limitations across Fog
network). Many efforts have also been made in the directions
of hardware tweaking and optimizations. An example is by
Hanson [20].

Techniques that involve tagging of file blocks with some
identifiers have been used by Alhussein et al. in [22] and [24],
where frameworks like FUSE have been used for development
of forensic based file-systems. They provide forensic file
identifiers at cluster-level file allocation to provide information
needed for file types to be recovered after deletion. As they are
only limited to file cluster identification and the identification
of file types, the amount of recover-ability of data is limited
because they completely ignore the file usage characteristics
and temporal locality. Another adaptive approach by Stoica
et al. [13] uses weighted least squares Iterative Adaptive
Approach (IAA) to detect and recover missing data, but
this works mostly across streams of data signals and is not
scalable to actual file systems. We consider it because of
its unique adaptive approach to categorize cluster cells for
efficiently allocating them in buffers/disk. Other works like
by Continella et al. [14] or Baek et al. [25] provide a self-
healing ransomware-aware filesystem which is capable of both
detection and the recovery from ransomware attacks. It works
by analyzing the I/O data trace of various processes and uses a
classifier to detect if the process is maliciously deleting data. If
such a process is discovered, it uses a recovery approach used
by copy-on-write filesystems. This poses significant overheads
in terms of disk space and I/O bandwidth requirements and
hence is not optimum for Edge nodes. Another problem is that,
it has non-zero detection error in file destructive ransomwares
as it has been trained for those that are encryption based. We
tested it for Gandcrab and it was not able to identify it.



Work Recovery specific Low Overhead Selective files can Allows custom For Adaptive User Cross
allocation Computation Memory Disk File I/O be marked critical policies Edge/Fog/Cloud specific Platform

Ulrich et al. [19] X
AFS [15] X X X

Hanson [20] X X X X
Breeuwsma et al. [21] X X
Alhussein et al [22] X X X X X X

Stoica et al. [13] X X X
Huang et al. [23] X X X X X X X

Alhussein et al [24] X X X X
Baek et al. [25] X X X X
Lee et al. [26] X X X X X X

Continella et al. [14] X X X X X X
APEX [this work] X X X X X X X X X X X

Table I
A COMPARISON OF RELATED WORKS WITH OURS

Another technique by Huang et al. [23] has been proposed
for recovering encrypted data from flash drives. They provide
a ransomware tolerant SSD which has firmware-level recovery
systems, but the main drawback of their approach is that they
keep multiple copies of data and hence need significantly
more space than required. Another disadvantage is that their
approach is specific to SSDs and not for generic storage de-
vices. Lee et al. [26] propose ExtSFR, a scalable file recovery
framework for distributed filesystems in IoT domains. This
uses files’ metadata to identify and recover them, but ignore
file usage and access characteristics which limit recoverability.
In aforementioned works, file access characteristics, recovery
based allocation strategies, and cluster identifiers are exploited
from a narrow perspective and capabilities of adaptive priority
based allocation approaches have not been fully leveraged.
In addition, most systems overlook the constraints in edge
paradigm and hence are not cost and/or energy efficient for
such deployments. APEX ensures data security using adaptive
prioritization of blocks in storage media based on recovery
heuristics and provides efficient mechanisms that have minimal
compute, bandwidth and space overheads.

III. RECOVERABILITY AWARE FILE ALLOCATION

In the previous section, we described the flaws of exist-
ing systems and emphasized on how a recovery-aware file
allocation system can provide a more robust and efficient
mechanism for recovering deleted data. Here we provide the
details of implementing such system and later describe how
much improvement in terms of recovery it provides. For this
work, we have kept the threat model as a malicious entity
which directly attacks the system to sabotage critical files
while the attack surface is limited to the user application
wherein the kernel is secured.

A. Block Parameters and Priority Factor

The four proposed parameters that act as heuristics to
rank a block for its priority for allocation are History Factor
(HF ), Usage Factor (UF ), Spatial Factor (SF ) and Linking
Factor (LF ). The Priority Factor (PF ) of a block is a
linear combination of these parameters. The weights of theses
factors are kept as hyper-parameters which are dynamically
learned for improved recovery based on the user’s file usage
characteristics in the APEX model. This priority score is used
to sort the unused blocks in a priority queue which then is

used for finding fresh blocks to allocate to a new file. Now,
the Priority factor (PF ) is defined according to the equation:

PF = λ ·HF − σ · UF + ρ · SF + µ · LF

Priority Factor is periodically calculated for each unused
block of the disk. Here the hyper-parameters: λ, σ, ρ, µ which
are coefficients of the disk block parameters. They are dynam-
ically updated based on the user’s file access characteristics.
The different types of clusters/blocks are Used and Unused.
When a file is created, some unused blocks are allocated and
thus belong to the Used category. When a file is deleted,
the Used blocks that correspond to that file are converted
to Unused category. The different types of files in APEX
nomenclature are:

• Used: File exists in disk
• Deleted: File exists in disk but deleted and blocks can

be overwritten (only partial fragments of the file may be
present)

• Obsolete: No block of the file exists in the current state
of the disk

Different types of operations are read, write, delete, create
(new file). We now define the block parameters and reason
their importance:

1) History factor (HF ): The history factor accounts for
how old a particular file’s blocks are, in terms of “delete” or
“over-write” operations. Each time a file’s blocks are deleted
or over-written, the rest of the blocks’ HF increases by one.
At block level the history factor can be visualized as shown
in Figure 1(a). Here, the “file” of the block shown as “a”
represents the set of blocks that belong to the last file of which
block “a” was part of. For different cases of a block, we have:

• Unused: for every Delete/over-write operation, the HF is
raised by 1

• Unused to used transition: set HF to 1
• Used: no change
• Used to unused transition: set HF to 0

This parameter exists for each block in the disk. The reason
HF is important for recovery is: if blocks of the same file
are overwritten then the extent of recovery of other blocks
decreases. This is also mentioned in other works [15], [25],
[27] where they use similar notions to capture the history of
file. When HF increases, it makes the recovery of the cluster
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Delete/over-write/new file 
operation
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A block of the file

    
(last file i.e. set of blocks, to which this block belonged)

Blocks of a file

(a) History Factor
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UF++
A block of the file

Blocks of a file

(b) Usage Factor

Figure 1. Block heurisics

more difficult and hence PF should increase, which implies
that the positive scalar constant (λ) will be positive.

2) Usage Factor (UF ): The usage factor takes into account
the usage of a file (and thus its blocks). It is quantified by the
number of read/write operations on that particular file before
deletion/over-writing. The higher the usage of a particular file,
the more recovery sensitive (important to user) the file gets.
The change to the usage factor based on the file operation
is shown in Figure 1(b). The UF of all blocks in a disk are
initialized to 0.
For different cases of a blocks, we have:
• Used: For each read/write operation of any blocks of the

file, the UF of each file increases by 1
• Used to Unused transition: no change
• Unused: no change
• Unused to used transition: set UF to 1 when a new file

is created
Other works [25], [27] also use similar notions of file/block
prioritization based on usage of file. This is because frequently
used files are considered more important to the user. This
means that the PF (priority for overwriting it) should reduce
and hence the scalar constant (σ) has negative sign with it.

3) Spatial Factor (SF ): The spatial factor includes the
possibility of the recovery of blocks located especially in the
neighborhood of a particular block. Its importance has been
shown in other works as well [25], [28] because of its direct
effect on file access time. The spatial factor of a block is higher
if the overall priority factor of the neighboring blocks are high.
Thus, SF is kept as the average of blocks that are physically
spatially adjacent. ‘Spatial Adjacency’ depends on the physical
characteristics of the medium. For HDD we may consider the
blocks in the same sector as the neighboring ones. As the
blocks being allocated for a new file are the high priority
blocks, if the neighboring blocks have high PF, the spatial
locality would increase. Consequently, this block should also
get replaced and hence for high SF, the PF should be high.
This shows that the scalar constant (ρ) is positive. SFs of all
blocks are updated after each I/O operation. For different cases
for a block, we have:

• Used: Reset to 0
• Unused: Average PF of nearby blocks

This factor is initialized to 0. This would be very useful
in HDDs, and our algorithm can take into account on the
fly de-fragmentation in such storage devices. However, the
introduction of SF should not hamper with the wear leveling
algorithms employed by flash drives and thus this factor is

dropped in random access drives. For random access drives
and SSDs, optimizing spatial locality is not required.

4) Linking Factor (LF ): The linking factor depends on
the format of a particular file and captures the extent of
recovery possible for specific file formats. Some files like .jpg,
.mp3, .avi, can be partially recovered even if some blocks are
deleted/over-written. Such type of files should be distinguished
from other ELF (Executable and Linkable Format) types like
.exe which can not be recovered even when only one block has
been over-written [29]. Blocks that are unused but the last file
to which they belonged are present and the file belongs to the
non ELF class of formats, would have LF = 0. Others like
those which belonged to file with ELF formats would have
LF = 1. This factor is initialized to 1, as in the beginning
these files are not linked to anything. The scalar constant (µ)
should be positive in this case as well. The Priority Factor
(PF ) depicts the priority of a block to be overwritten by new
data. The higher PF blocks would be ready for over-writing
first. The blocks with low PF are more sensitive to recovery.

B. Functional Model Working

We use PF as a reasonable heuristic to rank blocks in
the decreasing priority of being allocated to new files. Block
allocation, whenever a new file is created, is thus based on the
priority factor. The blocks with the highest priority factors are
allocated to the new file, number equal to those required for
the new file. Whenever a file is deleted, its used blocks are
shifted to the unused blocks’ set and this set is again used for
allocation to new files with allocating those blocks first that
have the highest PF.

We now show how the ranking based on priority factor can
be improved further by tuning the hyperparameters: λ, σ, ρ, µ
dynamically. This tuning is based on the file access character-
istics of the user to allow more efficient allocation.

IV. HYPER-PARAMETER OPTIMIZATION: ADAPTIVE
ALLOCATION MODEL

In the previous section, we described how priority factor can
be used to rank blocks to improve post-deletion data recovery.
This heuristic measure is still an approximation and there
exists scope for further tuning the hyperparameters: λ, σ, ρ, µ
discussed before. This tuning can be dynamic based on user’s
file access characteristics which can make this heuristic more

User
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+ file type
+ file size

+ read
+ write
+ delete
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+ File tags
+ File size
+ Block size

Storage Media

Read/Write?
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Figure 2. Model description using UML (Unified Modeling Language)



precise and lead to better allocation. We next describe a
simulated environment close to real life scenario to determine
the optimum values of the hyperparameters.

A. Learning Model

We use Q-Learning, which is a reinforcement learning
model to optimize the set of hyper-parameters. Here, the state
of the Q-Learning Model is defined by the tuple of hyper-
parameters. An action is defined by the increment/decrement
of the hyper parameters. Converging to the optimal set of these
hyper parameters would be the goal of the model. The model
is divided into two parts, the first is the learning model which
optimizes these parameters. The other part is the allocation
system, which allocates blocks to new files based on the
current hyper-parameter set and corresponding PF s of the
learning model.

Considering each I/O operation as one iteration, the learning
model updates the coefficients at each iteration and gradually
converges to the best set of values. The coefficients are updated
frequently because of the dynamism of disk/file accesses. The
model would be trained on the basis of a Performance measure
(P ), which is a combination of the average recovery ratio of
files and the spatial locality (only recovery ratio for random
access drives). Each action would change this measure, and
by the learning algorithm the model would converge to a
optimum hyper-parameter set. In the building of the prototype
File System APEX, we have trained the Q learning model
based on some representative file access rates and distribution
of common file types.

Figure 2 shows a diagrammatic representation of the model
and how the learning model interacts with the File Allocation
Table (FAT), OS and the disk. As the state space needs to be
finite and the model should be able to converge to a definite
solution, the set of values on which the hyper-parameters vary
is kept as: 1,2,..,10. This range is based on empirical results
and convergence constraints. This gives a crude idea as to what
are the values required for the best recovery efficiency keeping
the least count of value measures to be 1.

B. Objective Function

The objective function, referred as performance P of the
learning model is implemented as a linear combination of
the weighted average Recovery Ratio (RR). RR is a standard
metric for comparing recovery of file systems [14], [22] and
is weighted by the usage frequency of the files. Moreover, a
measure to quantify average access time of files in the disk
[25], [28] is also common metric. We define for each file:

• Recovery Ratio (RR):
– For executable, objects and archived file types: 1 for

complete recovery, 0 for partial/no recovery.
– For files including text, word processor, multimedia,

.pdf etc.: Data recovered in bytes
Original file size in bytes if meta-data re-

covered else, 0. (Because file cannot be even partially
read without the meta-information)

• Approximate Access Time (AAT): Approximate measure
of access time of a file which is the time for last

read/write operation. When a file is created it is the file
creation time.

Now, Performance P is defined as a convex combination of
the above terms:

P = α
100 ·

∑
all deleted files RR·UF∑
all deleted files UF

− β
∑

all current files AAT

Number of current files

Here, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and α + β = 1. Both terms
of which α and β are coefficients, are dependent on each
other. The term involving access time depends not only on
the spatial distribution of files but also the average size of
current files which affects recovery of other files. It also affects
recovery because in many spatial distributions the meta-data
is erased which makes a partially recoverable file (i.e. some
blocks of data exist) have RR = 0. The other term that involves
recovery ratio depends on how many blocks of deleted files
are present and also on which of them are present (meta-data
or data). Different values of α and β are applicable to different
scenarios. If we want to optimize recovery only, then α = 1
and β = 0, for example, where edge devices store critical data
like video surveillance footage or health monitoring data. Such
applications do not require high I/O bandwidth but critically
require recoverability. If we want to optimize I/O only then
α = 0 and β = 1. This case would arise in edge configurations
with high bandwidth data streams and all data being stored in
a separate database node or cloud which requires fast I/O.

C. Disk Simulator

The disk block size for simulation model is kept the same as
the real value = 4KB. Total disk space is kept as 256MB and
a file can vary from 16KB (4 blocks) to 1024KB/1MB (256
blocks). Based on the rules for parameter update, the parameter
maps are created for each state, i.e, a hyper-parameter set. This
simulator model also allocates the blocks (based on ranking
on PF ) whenever there is a call from OS simulator (explained
next). It also keeps track of the MRPF (Most Recent Parent
File) for each block, which is a pair of the filename that a
specific block belongs to (or did before logical deletion) and
the set of blocks that were allocated to this particular file.

D. OS / File IO Simulator

This simulator does the file level/ OS level disk manage-
ment. This introduces random file operations which belong to
one of these categories: (1) Read/write, (2) Create file, (3)
Delete file. The “Create file” operation updates the MRPF of
each block that belongs to that new file after the operation.

E. Learning Hyper Parameters

Based on the definition of the hyper-parameters and perfor-
mance function, the optimization problem is formulated as:

maximize
λ,σ,ρ,µ

P

subject to λ, σ, ρ, µ ∈ [1, 10]; λ, σ, ρ, µ ∈ N,
Blocks allocated to new files in decreasing

order of PF = λHF − σUF + ρSF + µLF



0 2 4 6 8
Model Iteration Number 107

0

50

100

150

200

250

300

350

P
er

fo
rm

an
ce

Performace
Moving Avg

Figure 3. Performance with Model Iteration Number (MIN)

The model has been simulated using two iteration counts:
1) Model Iteration Number (MIN): This increments by one

for each state change (action) in the learning model.
2) Operation Iteration Number (OIN): This increments by

one for each File I/O Operation performed by the OS
Simulator

The File I/O operations should be greater than the model
actions as it is not much useful to have a learning model that
analyses the state space after many operations. To learn the
optimal values of the hyper parameters, we set the MIN incre-
ment after 1000 OIN increments. This helps to reach a stable
configuration after many I/O operations and in evaluating the
disk performance based on the current set of hyper-parameter
values. The conditions kept for the learning stage are:

1) Disk Size: 16 × 16 = 256 blocks
2) Maximum file size = 20 blocks
3) Percentage of linked files = 20 (stochastically varying

around this value)
4) Minimum disk Utilization = 70%

As in general Q-Learning models, this learning model has an
“Exploration factor” depicted as ε. This factor drops down
from 1 exponentially. It decides with what probability a ran-
dom action takes place. The probability with which a random
action is chosen is ε and for an optimal action it is 1 − ε.
As ε decreases, the model chooses the action with the highest
∆P , which is the change in the performance function of the
learning model. Gradually, as the model explores, ε reduces
and model converges to the optimal state. For this experiment,
the learning model converges when ε is ≤ 3 × 10−5. For
the simulation setting at this convergence point: MIN reaches
9.01 × 107 and OIN reaches 9.01 × 1010. The performance
measure, as described earlier, starts from 44.00 (based on Ext4
prioritization factors). The value of P tends nearly 190 with
time, thus based on the equation of performance, there is an
approximately 280% improvement as shown in Figure 3. The
hyper-parameter values converge to (4, 7, 1, 9).

This set of hyper-parameter values are then used in a dy-
namic setting for block prioritization in the APEX framework.
The initial Priority Factor, which is updated on-the-fly based
on the learning model, used for the block allocation for new
files in APEX is:

PF = 4 ·HF − 7 · UF + SF + 9 · LF

V. IMPLEMENTATION OF APEX USING FUSE

To implement APEX, we used the FUSE framework [17].
FUSE (Filesystem in Userspace) is an interface for user
programs to export a file-system to the Linux kernel. FUSE
mainly consists of two components: the FUSE kernel module
and the lib-fuse library. Libfuse provides the reference imple-
mentation for communicating with the FUSE kernel module.
It is the most widely used library with active support that
allows users to develop, simulate and test their own file-system
without writing kernel-level code.

To implement APEX, we need the following structures: (1)
Disk, (2) Directory, (3) File, (4) Block. For the Disk simulation
system, we only required the Disk, File and Block structures
while modifying them according to FUSE format and include
a new Directory implementation for APEX. Instead of Disk
being a 2D array of Blocks, now its a large ByteBuffer which
is indexed by Blocks. Disk contains the optimal coefficient
values of the parameters (found from the RL model), current
and deleted file list a Heap of unused blocks and a HashSet
of used blocks. The File and Directory are derived from an
abstract class Path which has specifications required for a File
system structure. Directory can have several children Paths
(which can be a file or directory) recursively. File has several
children Blocks, file-type (FUSE & linking factor).

At the block level, main operations are:
1) Allocate: Sets the block’s state to used, initializes the

block’s parameters, updates the parent file pointer and
obtains the linking factor (found by the parent file’s
FUSEFILEINFO).

2) De-allocate: Sets the state to unused, updates the block’s
parameters and parent pointer.

3) Write: Writes the required content to the block. Includes
writing from a buffer and offset.

4) Read: Returns the block’s data.
5) Change: Updates the individual factors of the block.
6) Update: Updates the priority score of the block and

changes its position in the unused heap (if applicable).

VI. OVERWRITING VIDEO SURVEILLANCE USING CRYPY
MALWARE: A CASE STUDY

In order to compare APEX with other works, we use a
Fog environment built on FogBus [4] for video surveillance
on Raspberry Pi based Fog Nodes. As such nodes are usually
connected to cloud via the Internet, many viruses, trojans, etc.
are likely to creep into the network. We compare APEX with
other recovery specific systems that can be integrated in Edge
nodes: AFS [15], FFS [22], ShieldFS [14], ExtSFR [26].

A. Setup

The machine - Raspberry Pi 3: Model B, used for the
experiments has the following specifications:

1) SoC Broadcom BCM2837
2) CPU: 1.2 GHZ quad-core ARM Cortex A53
3) RAM: 1 GB LPDDR2-900 SDRAM
4) Storage: 100 GB WD Black HDD or Samsung T5 SSD
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Figure 4. Recovery ratio for different Secondary data size

B. Experiment 1: Recovery ratio performance

In order to compare the data recovery performance, similar
tests were executed on the APEX File System and the Base
(Ext4) File System, with other works and recovery ratios were
compared. For a simple analysis, we keep the file system size
for user data limited to 1GB. First, primary data was deleted
using the CryPy malware [18] after custom modifications, and
secondary data was written on the drive. After this, the primary
data was recovered. We perform tests for both HDD and SSD,
which give very similar results (difference of < 0.05 recovery
ratio) and hence report the average.

1) Test files: Primary Data was kept consistent throughout
the experiment to maintain consistency and consist of a set of 5
sample videos each of size = 95 MB. Secondary Data size was
increased in each iteration by predefined constants and only
written after soft deletion of primary data. Data recovered was
measured in terms of the size of recovered primary data. Also
measured in terms of recovered files that were view-able after
recovery

2) Recovery ratio: Data recovered /Primary Data size
3) Observations: Across different file systems as shown in

Figure 4(a) and Figure 4(b), for the Secondary data size =
414 MB and 794 MB respectively, we see that the APEX file
system has the highest recovery ratio. As there is no policy for
recovery in Ext4, it has the least (even 0 MB in second case)
recovery. As the surveillance footage was taken such that each
video accounts for 1 hour of data, AFS file system with 1 hour
of delayed deletion causes 4 out of 5 files to be permanently
deleted. This remains unchanged in both experiments. For
others including FFS, ShieldFS, and ExtSFR; as they use only
file identifiers in blocks and not which files were most recently
and frequently used (video files in our case), they overwrite
their data and hence lead to lower recovery. APEX on the
other hand allocates new files i.e. Secondary data to separate
locations preventing overwriting of Original data, is able to
recover maximum. APEX system improve the recovery ratio
by 678%, and 32% compared to the base Ext4 and ExtSFR
respectively for 414 MB secondary data and 31% compared
to ExtSFR for 794 MB secondary data.

C. Experiment 2: Read-write performance

As the APEX file system adds the block level - prioritized
file allocation implementation over Ext4, which leads to ad-
ditional overhead, thus the FUSE implementation of APEX
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Figure 5. Write, Read and Delete speed comparison

was compared to the Base file system, which in our case is
Ext4. To test the read, write and delete speed in both systems,
we used FileBench Filesystem benchmarking tool [30]. These
benchmarks provide read, write and delete speeds for n files,
each of size m (where n and m are given as inputs to the
benchmark code). For the current study, random files were
sequentially created, read, written and deleted where n varied
from 10 to 1000 and m varied from 1 MB to 1000 MB.

Figures 5(a)-5(c) show the results in bytes per second for
writing, reading and deleting for different frameworks using
HDD media (which has higher overhead so we report these
results). The graphs show that the delete operation speed
for all frameworks except AFS is close to Ext4. Read/write
speeds are lower than Ext4 but the overhead is minimum
in APEX. This is primarily because of identifier mapping
in blocks being updated periodically in FFS. In ShieldFS,
the detection algorithm has its overhead which continuously
monitors the disk footprint of filebench program and consumes
bandwidth. Overall, APEX has the least overhead among all
implementations.

D. Experiment 3: CPU and RAM overhead

Due to various complex background tasks of process I/O
detection in ShieldFS, file block identification in FFS and
backup of data in AFS, the CPU and RAM usage of such
frameworks is much higher compared to APEX. ShieldFS
uses many sophisticated cryptographic primitives to identify
if a program could be ‘potentially malicious’. This requires
constant overhead of computation and memory. ExtSFR has
a post-deletion inode tracing and journal checking protocol
which needs to check the whole file system for very small
changes. APEX maintains the state of the files, hence only
the files of interest can be checked. FFS maintains ‘forensic
file system identifier’ for each file and identifies the relevant
information needed for recovery using such identifiers. These
identifiers are stored in disk and are required to be fetched
when checking for recoverable files in the file system, which
makes it slow. APEX uses the disk cache information to update
the block parameters of the most used blocks more frequently
than others. This allows APEX to have a very small working
set at any instant of time (maximum 7% in current tests). It
integrates file allocation and energy management to maintain
least CPU and memory consumption as shown in Figure 6.
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Figure 6. CPU and RAM comparison

VII. CONCLUSIONS AND FUTURE WORK

APEX can successfully simulate and provide optimum
values of coefficients in the Priority Factor (PF) which can
rank the blocks to optimize recovery performance. The model
converges to give PF as given in Section IV. Using this factor
(dynamically optimized by Q-Learning), if we rank all blocks
in the disk then it can provide a file allocation system that has
a higher data recovery ratio. Thus, at any point if we want to
recover a file, it would be recovered to the maximum extent in
this file system design compared to existing implementations.
The current model gives a recovery performance improvement
of 280%, where performance is determined as mentioned in
Section IV. Experiments in Section VI-B show that the APEX
improves the recovery ratio by 678%, and 32% compared
to the base Ext4 file system and ExtSFR (best among the
prior work). Hence, APEX can improve the data recovery with
minimum read-write or compute overhead and hence is most
apt for resource-constrained edge devices vulnerable to attacks
using data stealing malware.

The proposed work only aims to enhance recover-ability of
deleted files. This can be extended to secure file-systems from
malicious transfer and corruption of files and to cover other
types of file-systems like Distributed file-systems. Further, the
model can optimize wear levelling in tandem with recovery
performance, especially for Flash and SSDs. It can also be ex-
tended for emerging Non-Volatile Memories like RRAMs (Re-
sistive Random Access Memory) [31], for upcoming energy
efficient edge devices. The codes developed and used for data
recovery and the Q-Learning Model with simulation results
can be found at: https://github.com/HS-Optimization-with-AI.
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