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Abstract—Financial crime detection using graph learning im-
proves financial safety and efficiency. However, criminals may
commit financial crimes across different institutions to avoid
detection, which increases the difficulty of detection for financial
institutions which use local data for graph learning. As most
financial institutions are subject to strict regulations in regards
to data privacy protection, the training data is often isolated
and conventional learning technology cannot handle the problem.
Federated learning (FL) allows multiple institutions to train
a model without revealing their datasets to each other, hence
ensuring data privacy protection. In this paper, we proposes a
novel two-stage approach to federated graph learning (2SFGL):
The first stage of 2SFGL involves the virtual fusion of multiparty
graphs, and the second involves model training and inference on
the virtual graph. We evaluate our framework on a conventional
fraud detection task based on the FraudAmazonDataset and
FraudYelpDataset. Experimental results show that integrating
and applying a GCN (Graph Convolutional Network) with our
2SFGL framework to the same task results in a 17.6%-30.2%
increase in performance on several typical metrics compared to
the case only using FedAvg, while integrating GraphSAGE with
2SFGL results in a 6%-16.2% increase in performance compared
to the case only using FedAvg. We conclude that our proposed
framework is a robust and simple protocol which can be simply
integrated to pre-existing graph-based fraud detection methods.

Index Terms—2SFGL, federated learning, graph learning,
financial crime identification

I. INTRODUCTION

Identifying financial fraud and money laundering and gen-
erating the corresponding blacklist is a common method of
risk management for financial institutions. Financial crime
costs the industry annually up to tens of billions of dollars
globally [1]], and its negative effects far exceed the monetary
value itself. In order to avoid greater financial losses, financial
institutions often spend a lot of human and financial resources
to build a robust and stable IT system to prevent fraudulent
activities. However, criminals could commit financial crimes
across different financial institutions. Conventional fraud de-
tection systems are usually hard-pressed to function well
in the presence of cross-institutional data, as they need to
integrate data originating from multiple sources and consisting
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of multiple modalities. From the point-of-view of financial
institutions, integrating and utilizing user and transaction data
distributed across different institutions to combat fraudulent
activities has become an important challenge.

Currently, these challenges are typically addressed by cen-
tralizing the data and employing traditional machine learn-
ing methods for identifying criminal behavior. However, the
increased difficulty of achieving data centralization across
institutions has led to a greatly elevated likelihood of false pos-
itives, against which an increasing amount of human resource
needs to be utilized. The main reason for false-positive alerts is
insufficient training data or insufficient variability in the train-
ing data structure [1]. In reality, graph structured data could be
found everywhere (e.g., social networks, financial transaction
networks, etc.). Graph learning uses various graph models to
mine valuable information from graph structured data, often
performing better than traditional machine learning methods,
for tasks such as fraud and community detection [2]. More
specifically, fraud detection methods that rely on anomaly
detection requires the ability to isolate and identify clusters of
nodes; these nodes could be of interest to banks due to their
interconnections and could potentially signal the existence
of a group of collaborating parties. Currently, most existing
graph learning is designed for centralized scenarios, where
graph data is stored centrally in the single graph database and
model training is centralized. For example, most banks share
common customers with other institutions. Hence a complete
credit assessment could only be completed in collaboration
with other institutions. One straightforward approach is to
collect graph data from various institutions and merge them
into a large graph, and then perform the relevant graph learning
algorithms on the large graph. However, in the financial
industry, graph data exist in form of islands [3]], and hence
it is unrealistic to collect these graph data in a centralized
manner because of privacy concerns, the independence of each
organization’s graph data, and competition with each other.
Therefore, to solve the problem of false-positive alerts, it
is crucial to organize graph data from different institutions



for combined calculations, while simultaneously ensuring data
privacy and security.

Two main challenges should be solved in research on
federated graph learning:

o Heterogeneity: In the process of federated graph learning,
the graph data of each client is likely to be highly Non-
Independent Identically Distributed (Non-IID), i.e. the
probability distribution of each data point is unlikely to
be the same and each point unlikely to be independent
from one another [4]; on the contrary, highly correlated
data is to be expected in large-scale structured data such
as those commonly found in graph data. In which case the
final trained global model is likely to be unsatisfactory
due to the large differences between the locally trained
models of the clients;

o Complementarity: There are a large number of duplicate
vertices in the graph data between clients, and the graph
structure (vertex, vertex-to-vertex connections) of each
client is not comprehensive due to the inability to share
and aggregate the original graph data of each party.

In this paper, we propose a novel two-stage approach to
federated graph learning (2SFGL) for further solving the
above-proposed problem. In the first stage of 2SFGL, each
client normalizes their respective edge values with respect to
local graph data and then virtually fuses them into each other,
thus alleviating the heterogeneity problem and leveraging
complementarity. The second stage of 2SFGL is to apply rel-
evant graph learning algorithms, such as the label propagation
algorithm (LPA), PageRank or Graph Neural Network(GNN)
on the fused graph. The 2SFGL procedure proposed avoids
the training of local models and hence greatly reduces the
problem of unsatisfactory learning results due to heterogeneity
and complementarity (e.g., instability of the trained global
model).

II. BACKGROUND
A. Privacy-preserving Strategies

Privacy is one of the most important goals of federated
learning. Data private collaborative learning introduces addi-
tional restrictions to the training process over that of data-
shared learning as the computational process is not identical.
In this section, we briefly review and compare different privacy
techniques, which can be combined with federated learning.
The methods of differential privacy [5] involve adding noise
to the data or using generalization methods to obscure certain
sensitive attributes until the third party cannot distinguish the
individual. Secure Multi-party Computation (SMPC) naturally
involves multiple parties, with each party knowing nothing ex-
cept its input and output. It is possible to build a security model
with SMPC under lower security requirements in exchange for
efficiency [6]]. Homomorphic Encryption has also been adapted
to protect user data privacy through parameter exchange under
the encryption mechanism during machine learning. Recent
works are widely used and polynomial approximations need
to be made to evaluate non-linear functions in machine learn
algorithms [7] [8].

B. Federated Learning

Federated learning [9]] is a novel technique used to train
models for machine learning based on datasets distributed
across different institutions, meanwhile ensuring that data
privacy is not compromised. Federated learning is classified
into horizontal and vertical federated learning, as well as
federated transfer learning. Horizontal FL. (HFL) is the case
of federated learning where all users across the network trains
their respective models with data having the same set of
features, while vertical FL (VFL) is the setting where each
user across the network trains a common model using different
datasets with varying features [10]. Up to now, many improve-
ment efforts have been devoted to addressing various problems
of federated learning, including reducing network bandwidth
traffic [[11]] and more effective protection of data privacy [12].
Federated learning is applicable in finance, healthcare, and
other fields. Recent research on federated learning on graph
data can be understood as either centralized or decentralized
federated graph learning. Centralized graph federated learning
implies the existence of multiple clients and a central server,
which combines multiple clients for model training and shares
the global model with the clients, while in decentralized
federated graph learning, multiple participants collaborate to
train the same model without a centralized server to control
the entire model update. In Fig. [I] the left side of the figure
represents the centralized federated graph learning process
with K clients and one central server. Each client trains a
graph model based on local graph data, and the server receives
the local model parameters or gradients sent by all clients to
update the global model and then distributes the global model
to each client for the next batch of training. However, deciding
who should be the central server is a difficult process. The right
side of the figure represents the decentralized federated graph
learning process. Lalitha et al. [[13|] formally describes the fully
decentralized federated learning problem and proposed an
efficient distributed training method. Zhao et al. [14]] removed
the centralized server and updated the parameters for federated
learning between clients. FedAvg [9] uses a federated learning
approach that aggregates the average of the respective local
models. The ultimate goal of federated learning is to obtain
a more generalized global framework that is suitable for all
clients, while at the same time preserving clients’ privacy.
However, in some recent studies [[15]], [[16] when the local data
of each client is Non-IID, existing federated learning methods
are difficult to obtain a better global generalization model by
training.

C. Graph-based Machine Learning

Graph learning is a machine learning method that uses graph
data for classification, clustering, and feature extraction. A
range of graph learning is used to determine graph features,
such as connectivity, centrality, and community discovery.
Graph features can be combined with non-graph features
and training data labels are provided to define as supervised
machine learning. If training data is not provided with la-
bels, then the problem is an unsupervised machine learning
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Fig. 1. The left figure represents centralized federated graph learning, and
the right figure represents decentralized federated graph learning.

problem, we can apply machine learning algorithms such as
clustering, dimensionality reduction, or PageRank. Recently,
there have been many advances in scalable graph computation
for billion-scale or even trillion-scale graphs [[17] [[18]], so it is
reasonable to expect that this approach would remain practical,
even for large graphs. Akoglu et al. [19] studied graph-based
anomaly detection. Moloy et al. [20] used PageRank algorithm
for fraud detection. Liu et al. [21] used graph embedding
methods to detect financial criminal activities, such as anti-
money laundering (AML). Recently, some works [22[ [23]]
have studied GNN-based fraud detection. Weber et al. [24]
used graph convolutional networks (GCN) to detect money
laundering. Pareja et al. [25] explored dynamic considerations
in graph networks, which is essential in fraud detection
applications. Dou et al. [26] proposed solutions to expose
camouflaged fraudsters via GNNs. We note that these previous
works focus more on local graph features, while our current
work concentrates on global graph features across multiple
institutions.

III. RELATED WORKS

In this part, we survey related work on SMPC on graphs,
federated learning on GNNs, and graph-based fraud detection.

A. Secure Multi-party Computations on Graphs

The importance of secure multi-party computations has
increased in the past decade [27]. It allows several parties
to build a model on their pooled data to increase utility
while not explicitly sharing data with each other. Secure
two-party computation was first investigated by Yao and
was later generalized to multiparty computation [28]]. Secure
multi party computation based privacy preserving techniques
are usually adopted to privacy through secret sharing and
homomorphic encryption scheme for the original graph data.
On the other hand, secure multi-party computations on graphs,
such as breath-first-search, leader election, secure sum on
graphs, secure minimum and maximum search of all inputs on
graphs, and secure vertex coloring, as all much more rarely
studied. Currently, there is little research on SMPC-based
graph computation. We applied SMPC to the virtual fusion
process of the graph.

B. Federated Learning on Graph Neural Networks

Recently, some works have trained graph-data models in
federated learning settings, mainly by combining federated
learning with graph neural networks, and several federated
graph neural networks have been proposed. For example,
Zheng et al. [29] designed a new federated learning frame-
work for graph convolutional neural networks, Wu et al. [30]
designed a federated GNN framework for privacy-preserving
recommendations, Jiang et al. [31] proposed a dynamic rep-
resentation method for learning objects from multi-user graph
sequences. We train the model on the respective party-based
virtual fusion graphs by FL and hence leveraging heterogeneity
and complementarity.

C. Graph-based Fraud Detection

Financial fraud detection is based on behavioral data from
financial platforms to detect malicious accounts, defaulting
users, and fraudulent transactions. GEM et al. [32]] adap-
tively learns discriminative embeddings from heterogeneous
account-device graphs for malicious account detection. Semi-
GNN [33] is a semi-supervised GNN model with a hierarchical
attention mechanism for explainable fraud prediction. FdGars
[34] is a graph convolutional network approach for fraudster
detection in an online app review system. GraphConsis [34]]
investigates the context, feature, and relation inconsistency
problem in graph-based fraud detection. CARE [35] enhances
the GNN aggregation process against camouflage for opin-
ion fraud detection. These works are based on the FL-on-
GNN approach to fraud detection; we also employ a similar
approach in this paper. However, in our case we perform a
graph virtual fusion algorithm before graph federal learning
for model training, thus promoting fast convergence of models.

IV. TWO-STAGE APPROACH TO FEDERATED GRAPH
LEARNING FOR FRAUD DETECTION

In this part, we present a new federated learning framework
that combines graph data across different clients for a fast
virtual fusion approach to enrich graph data from different
clients. And then using the FedAvg method on the virtual
fusion graphs to train GNN model. An overview of the
framework is shown in Fig. [2]

A. The First Stage of 2SFGL

In the first step of 2SFGL, we apply Private Set Intersection
(PSI) [36] to ensure the privacy and security of graph data.
PSI is a cryptographic technique in SMPC that allows each
party involved in the computation to compute the intersection
of their data without obtaining additional information from the
other party. The PSI technique allows multiple participants to
compute the common vertices of graph data without revealing
local source information. Specifically, PSI acquires two or
even more parties of customers with common vertices. Each
client separately finds the edge relations of vertices common
to their respective graphs. We cannot directly send edge
information between common vertices to other participants,
so we first normalize edge values as follows:
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Fig. 2. Overview of 2SFGL. The first stage of the 2SFGL is virtual fusion
by the respective client, and the second stage is FedAvg on the virtual fusion
graph of the respective client
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differential privacy is applied to N;;, to avoid the exposure of
sensitive individual information.

Each specific client sends the normalized results of all
common vertices to the other clients, and the updated common
vertex edge value is calculated using information from PSI:
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where E;7 is the updated value of the edge relationship
between vertices V; and Vj, N;; denotes the normalized result

of the value of the edge relationship between vertices V; and V
n
sent from other clients. Y Ej denotes the sum of the values

of the vertex V; neighbcicrfrig edges, and A is the threshold to
be set by user of the federated graph learning framework. The
threshold value indicates the importance of the edge relation-
ship of the client’s graph data. In this paper, the threshold
value of 0.5 is used, which indicates that the client-side edge
relationship values of two graphs from separate parties are at
least of equal importance. We call the augmented virtual graph
obtained after performing the computations detailed above
a virtual fusion graph, and the process is a decentralized one.
Under our framework, we can perform multiple hop virtual
fusion. Multiple hop virtual fusion can be chosen from one,
two, or three hop virtual fusion, where one hop virtual fusion

is a virtual fusion of edges with one hop, and two hop virtual
fusion is a virtual fusion of edges with one hop and two hops
respectively. Fig. 3] shows a one hop virtual fusing process,
and Fig. ] shows a two hop virtual fusing process.
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B. The Second Stage of 2SFGL

After the first stage of 2SFGL, the relevant algorithms are
performed on the virtual fusion graph. In addition, the stage is
a centralized process. In this paper, we use conventional graph
neural network algorithms such as GCN and GraphSAGE,
to verify the performance of our federated graph learning
framework on the FraudAmazonDataset. In brief, the GCN
is defined as:

H=D2AD 2 XW 3)

where X € RV*F is the input matrix, H € RNXF' is the
convolved matrix, and W € RF*¥ is the parameter. F' and
F’ are the dimensions of the input and the output, respectively.
GraphSAGE is a general inductive framework which generates



embeddings by sampling and aggregating features from a
node’s local neighborhood [37]]:

AGGyi1({ht,Vu € N, 1),
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where AGGyy; is an aggregation function [37]], and o is an
activation function, such as the sigmoid function.

In the second stage, we follow the FedAvg algorithm.
FedAvg has become the de facto FL algorithm where clients
communicate with the central server at each epoch. The second
stage of the 2SFGL is shown in Fig. 2} In the T-th epoch,
a client sends local model parameters W (*T) to the central
server, where k is the kth client, and T is the T-th epoch.
The central server averages all the updates from the clients
to obtain the global update W (7+1) which is broadcast to all
clients in the (7+1)-th epoch. In addition, the full second phase
is a centralized process.
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V. EXPERIMENTS
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A. Dateset and Settings

We use FraudAmazonDataset [38]] and FraudYelpDataset
[39] to establish the efficacy of 2SFGL on the fraud de-
tection task. The FraudAmazonDataset includes product re-
views under the Musical Instrument category. The vertices
in the constructed graph for the FraudAmazonDataset are
users with 100-dimension features and contains three types
of connections: 1) U — P — U, connecting users reviewing
at least one common product; 2) U — S — U, connecting
users having at least one same star rating within one week,
and 3) U — V — U, connecting users with top 5% common
review texts (as measured by TF-IDF) among all users. The
FraudAmazonDataset can be used for the common fraud
detection task, which is to find spam comments on online
platforms. The FraudYelpDataset includes hotel and restaurant
reviews filtered (spam) and recommended (legitimate) by Yelp.
A spam review detection task can be conducted, which is a
binary classification task. The nodes in the graph of YelpChi
dataset are reviews with 100-dimension features and have three
relations: 1) R—U — R denotes the reviews posted by the same
user; 2) R—S — R denotes the reviews under the same product
with the same star rating; 3) R — T — R denotes the reviews
under the same product posted in the same month.

In dataset sampling, we ensure that the ratio of positive to
negative samples is in the range of 1:2 to 2:1, while ensuring
that the train, test ratio are set to be 60%, 40% respectively.
The parameters of GCN and GraphSAGE are optimized with
Adam optimizer, the learning rate is set to be 0.005, and add
only one hidden layer, the number of neurons in its hidden
layer is 64. Specifically, the neighborhood size is set to 5 in
GraphSAGE.

B. Baseline Performance Analysis

In the first stage of 2SFGL, we apply virtual fusion on
FraudAmazonDataset’s three graph connections (U — P — U,

U—-S—-U, U-V —U) within one hop relationship.
Likewise we virtual fusion FraudYelpDataset’s thre graph
connections (R —U — R, R— S — R, R—T — R). In the
second stage of 2SFGL, We use FedAvg method for model
training of GCN and GraghSage on virtual fusion of multi-
party graphs. For a fair comparison, we compare 2SFGL with
a Federated Learning approach using only FedAvg. Also to
demonstrate the effect of 2SFGL, GCN and GraphSAGE were
also used separately on the three relational single local graph.
We measure the performance using generic metrics, namely
Accuracy, Macro-F1, AUC, and GMean [40] [41].
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Fig. 5. Sensitivity analysis result of GCN with respect to epochs using
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using FraudAmazonDataset.

Fig. [3] shows the performance of using the FraudAma-
zonDataset on virtual fusion graphs, FedAvg only, and three
relational single local graphs using GCN, respectively. From
Fig. 3] the solid black line represents results using the virtual
fused graph on the 2SFGL. The green dotted solid line repre-
sents results using FedAvg. The black dashed line represents
result using the dataset of U-P-U relationship. The red dotted
line represents metrics result using U-S-U relationship. The red



dash dot represents metrics result using U-V-U relationship.
Fig. [6] shows the performance of using GraphSAGE, differing
from Fig. [§] in that the metrics are performed using GCN.
We can observe that the model obtained from the GCN and
GraphSAGE of metrics using 2SFGL are better than using
FedAvg and performing GNN inference on the single local
graphs. We provide a brief analysis of the different metrics,
Fig. [5] shows that when the model is trained using only U-P-U
graph data, the prediction results predict almost all negative
samples as positive samples, and the True Positive (TP) hardly
increases, which leads to almost zero GMean and almost a
constant Macro-F1 metric for the GCN algorithm. The sharp
increase in AUC when training using only U-P-U data is
shown in Figure 6 because the model training has not yet
converged. In addition, GraphSAGE is trained using random
sampling and aggregation methods, while GCN utilizes the
adjacency matrix of the graph, also because this difference
leads to different results, which are also reflected in some
other studies [42].
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Similarly, using the FraudYelpDataset for comparison.
Fig. [/ shows the performance of using the FraudYelpDataset
on virtual fusion graphs, FedAvg only, and three relational
single local graphs using GCN, respectively. Differing from
Fig. [Bin that the metrics are performed using GCN. Overall,
the metrics results using 2SFGL are higher than only using
the FedAvg method.

In Table I, we provide the statistical averages of the different
metrics for Fig.[5]and Fig. [6] from the 60th epochs to the 100th
epochs of training using FraudAmazonDataset. The results
from the metrics of 2SFGL with using virtual fusion in the
First stage and using GCN-based FedAvg in the second stage is
6%-30.2% higher than that of using only GCN-based FedAvg.
In Table II, The only difference from Table I is that the dataset
used is the FraudYelpDataset. Similar results, using 2SFGL is
12%-28.4% higher than using only GCN-based FedAvg.

TABLE I
THE STATISTICAL AVERAGE OF THE METRICS USING
FRAUDAMAZONDATASET
GNN Relationships | Macro-FI | AUC | GMean | Accuray
2SFGL 0.99 1.0 0.99 0.99
FedAvg 0.76 0.81 0.78 0.77
GCN U-P-U 0.41 0.60 0.04 0.66
U-S-U 0.64 0.70 0.59 0.72
U-V-U 0.77 0.86 0.77 0.79
2SFGL 0.97 0.99 0.96 0.97
FedAvg 0.90 0.93 0.88 0.91
GraphSAGE U-P-U 0.83 0.93 0.86 0.84
U-S-U 0.82 0.94 0.85 0.83
U-V-U 0.83 0.94 0.85 0.84
TABLE II

THE STATISTICAL AVERAGE OF THE METRICS USING FRAUDYELPDATASET

GNN Relationships | Macro-F1 | AUC | GMean | Accuray
2SFGL 0.96 1.0 0.95 0.96
FedAvg 0.75 0.85 0.74 0.78
GCN R-U-R 0.75 0.86 0.74 0.78
R-T-R 0.32 0.58 0.26 0.37
R-S-R 0.33 0.55 0.27 0.38
2SFGL 0.86 0.93 0.83 0.88
FedAvg 0.74 0.83 0.73 0.77
GraphSAGE R-U-R 0.75 0.84 0.75 0.78
R-T-R 0.65 0.76 0.68 0.66
R-S-R 0.65 0.76 0.68 0.66

VI. CONCLUSION

In this paper, we propose 2SFGL, a novel two-stage ap-
proach (the first stage is the virtual fusion of multiparty
graphs, the second is model training and inference in the
virtual graph using FedAvg) for increasing the accuracy of
financial crime identification. The 2SFGL is implemented by
combining graph-based learning and federated learning. Using
FraudAmazonDataset to GCN on 2SFGL, metrics are 23.5%-
30.2% better than GCN on only using FedAvg. While to
GraphSAGE, improve the metrics by 6%-9.1%. Similar, Using



FraudYelpDataset to GCN on 2SFGL, metrics are 17.6%-
28.4% better than GCN on only using FedAvg. While to
GraphSAGE, improve the metrics by 12%-16.2%.

we are actively working on pilots, especially in banking
institutions in the financial system. We will organize multiple
financial institutions (e.g., banks) and communications depart-
ment (e.g., operators) to participate in leveraging the federated
graph learning framework for accurate detection of financial
crimes.
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