
Enabling 5G QoS configuration capabilities for IoT
applications on container orchestration platform

1st Yu Liu
Ericsson Research

Stockholm, Sweden
yu.a.liu@ericsson.com

2nd Aitor Hernandez Herranz
Ericsson Research

Stockholm, Sweden
aitor.hernandez.herranz@ericsson.com

Abstract—Container orchestration platform is the foundation
of modern cloud infrastructure. In recent years, container or-
chestration platform has been evolving to cross the boundary
of device, edge, and cloud. More and more Internet of Things
(IoT) applications such as robotics and eXtended Reality (XR)
have been deployed across the device-cloud continuum through
the container orchestration platform, e.g., the Kubernetes (K8s)
framework. Meanwhile, the rapid expansion of advanced com-
munication technologies like 5G has endorsed the revolution
in IoT applications as more network resource is available for
critical IoT use cases. This paper aims to integrate network
configuration capabilities provided by a 5G Network Exposure
Function (NEF) into the K8s framework which is used to
simplify application deployment in an orchestration in the device-
cloud continuum. Specifically, a Linux fwmark-based network
Quality of Service (QoS) configuration method is proposed to
expose the QoS information from an overlay network that is
used by the container orchestration platform to the underlay
network. A Container Networking Interface (CNI) plugin-based
implementation is demonstrated to perform QoS configuration
for the 5G network. The proposed solution is validated with
an existing localization and mapping application to verify the
feasibility. The proposed solution has the following benefits: (1)
The solution is a Kubernetes-native approach which adopts the
CNI plugin mechanism. (2) The solution can expose the QoS
information from an overlay network to an underlay network in
a non-intrusive manner. (3) No packet manipulation is required to
greatly reduce the overhead for packet processing. (4) It extends
the K8s bandwidth limit feature from on-node to the access
network. (5) It is compatible with the 5G infrastructure without
any alteration or adding extra complexity.

Index Terms—5G, QoS, container orchestration platform, con-
tainer network interface, device-cloud continuum

I. INTRODUCTION

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

A container orchestration platform such as Kubernetes (K8s)
or K3s usually manages a cluster of nodes that span different
networks. Considering the network heterogeneity and to sim-
plify communication within the cluster, an overlay network
is usually established to enable communication among appli-
cation pods. Typical networking addons such as flannel and
calico can create overlay networks using Virtual Extensible
LAN (VXLAN), IP in IP protocols or secured channels using
IPSec or WireGuard.

The integration of cloud computing and 5G technology has
given rise to the transformative concept of Multi-access Edge
Computing (MEC). The merge promises higher computing
capabilities and lower network latency at the network edge,

which largely enables applications such as Augmented Real-
ity (AR)/Virtual Reality (VR) and leads to new deployment
paradigm such as cloud robotics [1]. One of the key enablers
lies in that an access network (e.g., 5G, and WiFi, etc.) can
provide different Quality of Service (QoS) to applications
catering to different network traffic priority demands to sat-
isfy application performance requirements while distributing
network resource in an efficient manner. For instance, a User
Equipment (UE) can establish multiple QoS flows in the same
Protocol Data Unit (PDU) session to a 5G network.

The integration of 5G QoS configuration capabilities to the
existing K8s ecosystem becomes a fundamental and demand-
ing feature that can benefit Internet of Things (IoT) applica-
tions but remains challenging. Due to the use of an overlay
network in K8s, application-specific QoS information that are
hidden in the overlay network packets can hardly be extracted
in the underlay network without extra overhead. Therefore,
the goals for this study is to investigate options of integrating
network exposure Application Programming Interface (API)s
provided by a 5G network (e.g. Network Exposure Function
(NEF) or Service Enabler Architecture Layer (SEAL)) into the
lightweight Kubernetes which is used to simplify application
deployment in an orchestration in the device-cloud continuum,
to implement a bridge between container-orchestration and
network QoS configuration. The platform-network interaction
is validated with an existing IoT application as well as the
potential impact on the application.

This paper is organized as follows. In Section II the
background of QoS configuration in cellular networks and
in the container orchestration platform is introduced and the
pitfalls in existing solutions are pointed out. In Section III, we
introduce the Container Networking Interface (CNI) plugin-
based solution to enable QoS configuration for container
orchestration platform as well as theoretical fundamentals.
In Section IV, an experimental implementation of the traffic
priority CNI plugin is detailed and verified by applying to an
Simultaneous Localization and Mapping (SLAM) application.
Section V concludes the paper.

II. STATE OF THE ART

A. QoS configuration on cellular networks

The advent of new cellular access networks has enabled a
host of use cases that enhance quality of life and sustainability.

ar
X

iv
:2

40
3.

05
68

6v
1

 [
cs

.N
I]

 8
 M

ar
 2

02
4

These networks, particularly 5G, offer a reliable solution for
interconnecting machines and humans, eliminating the need
for wired connections.

In many of the use cases, it is desirable to allow the devices,
i.e., UE, to be able to control the traffic and apply different
QoS to different applications or flows running locally in the
UE. This control allows the network to treat different types of
traffic differently and provide specific resources as required.
For example, in a 5G network, service data from the UE
can be classified into different flows marked by different QoS
Flow Identifier (QFI) [2], which allows the UE traffic to have
different QoS configurations and receive different treatments
when traversing the 5G network. 5G QoS Identifiers (5QIs) [2]
are used to define a set of characteristics of the flow in terms of
flow bit rate resource type, priority levels, packet delay budget
and packet error rate, averaging window, and maximum data
burst volume, among others.

There are several methods to configure QoS in a Radio
Access Network (RAN) such as 5G. The most common means
is to configure the QoS through NEF. NEF allows applications
either running on a UE or external data networks to request a
QoS for a PDU session that is to be established or request a
QoS change for a given PDU session, via the APIs exposed
by NEF. Alternatively, a UE can also actively initiate a QoS
configuration or modification for a given PDU session through
interactions with Access and Mobility Management Function
(AMF). The technical details of QoS configuration in a 5G
network are out of the scope of this paper and can be found
in [2].

B. Network QoS on container orchestration

The K8s orchestration platform utilizes a CNI plugin mech-
anism to set up the network stack for containers. Existing
network QoS configuration in the CNI [3] is provided by the
bandwidth plugin [4], which configures a Token Bucket Filter
(TBF) queuing discipline (qdisc) on both ingress and egress
traffic which results in the traffic being shaped. However, the
bandwidth plugin can only shape local traffic that takes place
within a node.

Other mechanisms for traffic shaping and configuration
based on CNI plugins and network plugins for K8s have
been developed in relation to Software-Defined Networking
(SDN). Examples include OpenShift SDN plugins such as
Cisco ACI SDN, Flannel SDN, NSX-T SDN, Nuage SDN, and
Kuryr SDN [5]. Yet, these SDN based approaches are typically
enforced within nodes but not applied to the communication
network.

Another project serving the traffic differentiation purpose is
NBWguard [6], which is proposed by the research community.
It provides network QoS in the same way CPU or memory
are limited in K8s via the control groups (cgroups), a Linux
kernel feature to limit and prioritize resources [7]. The three
QoS modes defined in K8s, i.e., BestEffort, Burstable and
Guaranteed, are extended to network in this work. Internally,
NBWguard also uses Traffic Control (TC) and applies Hi-
erarchical Token Bucket (HTB) queuing discipline (qdisc).

Fig. 1. Anatomy of VXLAN network packet.
Source: https://projectcalico.docs.tigera.io/about/about-networking

Fig. 2. Architecture of the proposed solution. It depicts a UE application
running on a K8s pod is communicating with an edge/cloud service through
the 5G network. A traffic priority CNI plugin is implemented in the UE
to interact with the 5G network through either AMF or NEF to configure
the application pod’s QoS. Note that the network interface may represent a
physical interface or a 5G network modem stack or modem manager.

However, similar to the bandwidth plugin, NBWguard’s scope
is limited to local traffic shaping on the node.

Another approach to implement network functions is
through the native device plugin feature enabled by the K8s
framework. One example is the SR-IOV network device
plugin [8]. This approach enables a pod to interact with
physical network devices to add customized processing logic
to workloads. Nevertheless, this device plugin-based solution
is hardware-dependent and can hardly be regarded as a generic
solution.

C. Problems with existing solutions

To enable a seamless integration of 5G QoS configuration
into the container orchestration platform like K8s, the QoS
demanded by the application running on the K8s platform must
be delivered to the 5G network. However, many challenges
remain here.

1) Overlay networks: An overlay network can simplify ad-
dressing and routing between application pods within a cluster.
However, due to the nature of an overlay network that IP pack-
ets generated by an application pod are encapsulated inside an
underlay network packet, which indicates the QoS or Type of
Service (ToS) information that are hidden in the overlay IP
packets are invisible to underlay network interface or network
filters unless a decapsulation is performed on the packets,
as illustrated in Figure 1. Also, this would require manual
manipulation on the overlay packets including inserting QoS
information to the overlay packet header or payload. This
manipulation, decapsulation and re-encapsulation procedure
can greatly increase the overhead and reduce the network
communication performance.

2) Limitation of traffic prioritization in K8s: In K8s, the
network capability is enabled by a plethora of CNI plugins
which are highly environment-dependent to address the dy-
namic needs of networking in different scenarios. Therefore,
the CNI specification is well defined for a pluggable network
solution. Among existing CNI plugins, most are catering
to the connectivity challenges while the traffic prioritization
and characteristics are still with limited support. E.g., the
native bandwidth plugin provides an approach to limit ingress
and egress bandwidth, though the effect is restricted at the
node. Other plugins such as Calico features network policy
configurations which can be utilized to enable or disable an
application pod to communicate with various network entities.
However, more complicated configuration capabilities that can
expose pod-specific QoS to underlay networks and enable
QoS configuration in access networks are still missing. To
our knowledge, no existing solutions are available to provide a
similar QoS configuration capability as discussed in this paper.

III. PROPOSED SOLUTION

A. Architecture

Figure 2 illustrates the architecture of the proposed solution
that can expose the 5G network QoS configuration capability
to containers running on top of K8s at a UE through the
standard CNI plugin approach.

In this architecture, the network QoS requirements can be
inserted into the K8s control plane either by an end user
or by an external orchestrator through the kube-apiserver
component using the standard K8s API. Upon receiving the
configuration, K8s will extract the network QoS information
and schedule the pod creation procedure. This procedure is
initiated by the kubelet component that is residing in every
worker node, and handled by the container runtime. Among
multiple tasks, the container runtime would specifically call a
series of CNI plugins according to the predefined CNI network

Fig. 3. Linux packet fwmark visibility in a typical Kubernetes networking
stack.

configuration, to setup the network environment for the created
pod.

Our solution leverages the CNI plugin mechanism by adding
a traffic prioritization plugin in the CNI plugin chain to enable
K8s to interact with the 5G stack. Once invoked, this plugin
would setup an IP flow for all egress traffic from the pod and
then interact with the 5G stack to establish a unique 5G QoS
flow that can satisfy the demanded network QoS, either via the
NEF component which is through the data plane or the AMF
component that is directly requested through the control plane.
Upon successful establishment of the QoS flow, the plugin can
create a filter applied to the physical interface to redirect the
IP flow associated with the pod to the 5G QoS flow. In this
way can each pod be mapped to a unique 5G QoS flow in a
native manner that is supported by the K8s infrastructure.

B. Linux packet fwmark visibility and availability

To accomplish the 5G QoS configuration for a specific pod,
a key step is to distinguish the traffic from the pod from all the
other traffics to create a unique IP flow. Considering the nature
of a typical K8s networking architecture in which VXLAN is
utilized to enable pod-to-pod communication, one approach
is to label the packets at the VXLAN interface. After the
encapsulation of the overlay network packets, the encapsulated
packets can be labelled by inserting labeling information in the
packet header or the payload, which can be filtered to create
an IP flow thereafter. However, this approach would greatly
increase the overhead and inevitably add extra complexity to
the VXLAN implementation. Therefore, a solution that can
expose the pod QoS requirement that is hidden in the overlay
network to the underlay network in a transparent and low
footprint manner is in demand.

Among potential solutions, one promising approach is to
leverage the Linux firewall mark (fwmark). The fwmark is a 32
bits field that allows to tag a packet in the Linux kernel, which
doesn’t need to manipulate the packet itself. The fwmark field
can be set by iptables and be used to classify packets into
different IP flows using a TC filter, which is a Linux-native

approach and does not introduce extra overhead to packet
processing.

1) Fwmark visibility: Figure 3 shows the Linux fwmark
visibility in a typical K8s networking environment where
flannel is used to create the VXLAN network. When a packet
is generated by a pod, it is sent out through the eth0 interface
and then immediately received by the veth interface that is
a veth pair device. Since all veth devices are connected to a
bridge device, i.e., cni0 in the example, the packet is forwarded
to all devices connected to the bridge. Until now, the fwmark
is not tagged. When the packet is sent from cni0 to the
VXLAN interface flannel.0, a routing is needed. Before the
routing procedure, a rule created in the iptables at the mangle
table and prerouting chain can be applied to mark the fwmark
field of the packet. When the packet is routed to flannel.0,
it is encapsulated into a UDP packet as any regular VXLAN
packets. After the encapsulation, the fwmark is still visible
in the kernel, and the visibility is maintained till the packet
is transmitted out of the host by the physical interface. This
observation verifies the assumption that the fwmark can be
utilized to expose QoS information from the overlay to the
underlay network.

2) Fwmark availability: Another critical aspect of the fw-
mark approach is the availability of the bits that can be utilized
in QoS mapping.

TABLE I
LINUX FWMARK REGISTRY FOR BITWISE USAGE [9]

Bits Mark mask Software
0-12,16-31 0xFFFF1FFF Cilium
7 0x00000080 AWS CNI
13 0x00002000 CNI Portmap
14-15 0x0000C000 Kubernetes
16-31 0xFFFF0000 Calico
17-18 0x60000 Weave Net
18-19 0xC0000 Tailscale

Table I demonstrates the bitwise usage of the fwmark by
a series of software. It is noticed that in a K8s environment
where popular network plugins such as CNI portmap, Calico
or Weave Net are installed, most bits from bit 13 to bit 31
are occupied. In an extreme case where the Cilium plugin is
used, there are only 3 bits left for other purpose. Therefore, to
adopt the fwmark for QoS mapping, potential conflicts with
existing software must be considered.

C. CNI plugin based QoS configuration

Figure 4 illustrates how a CNI plugin-based solution can
be used to accomplish the QoS configuration for a given pod.
Following the top-down order, the QoS information is passed
into K8s via kube-apiserver, which is then forwarded to kube-
controller-manager and delivered to kubelet at the worker
node where the pod is to be deployed. Through the container
runtime interface, the kubelet component is able to interact
with the container runtime to prepare necessary resource such
as sandbox and container namespace for container creation.
Among many tasks, the container runtime needs to create the
networking environment for the pod by invoking a chain of

Fig. 4. CNI plugin based QoS configuration. A traffic priority CNI plugin
is invoked by kubelet in the CNI plugin chain. It interacts with the external
access network, e.g., 5G network through a daemon to configure the QoS
demanded by an application pod.

CNI plugins, including the traffic priority CNI plugin that
implements the QoS based traffic prioritization.

According to CNI plugin specification [10], the CNI plug-
ins are invoked one after another by the container runtime.
During each call, the parameters are passed into the CNI
plugin via the STDIN and environment variables. The plugin
configuration information that is stored at the CNI NetConfig
file is periodically fetched by the container runtime and fed
into each CNI plugin through STDIN while container-specific
information such as container ID, namespace, and interface
name are passed through environment variables.

The CNI plugin and CNI daemon configure QoS flows
through interaction with the access network. Upon receipt of
the request from the CNI plugin, the CNI daemon program
will map the pod-demanded QoS requirement to the actual
QoS flow characteristics such as the 5G QoS identifier (5QI)
in particular. After that, the daemon program can either request
the QoS flow to be established through the NEF or through
the 5G modem interface, depending on implementation. Once
successful, the daemon program can proceed further to gen-
erate a fwmark/QoS pair, configure the iptables to mark the
packets sent from the pod, and create a TC filter to redirect
the marked packets to the established QoS flow.

D. Benefits and limitations of the solution

To summarize, the proposed solution has the following
advantages:

• The solution provides application pod the capability to
configure traffic priority in an access network and maps
the priority configuration to QoS of the access network
with a CNI plugin, which is a native approach to be

integrated into existing container orchestration platform
such as K8s.

• There is no need to change the packet header or payload
to embed QoS information.

• It allows to transparently expose traffic prioritization
tags/annotation from packets in the overlay network (pod)
to the underlay network (e.g., VXLAN and IPIP), or even
encrypted networks (e.g., IPSec).

• It enhances the bandwidth limit feature of K8s CNI
plugin by extending the bandwidth limit scope from the
network stack on the node to both the node and the access
network.

• The solution focuses on mapping pod QoS requirements
to QoS flows on cellular networks, between UE and Next
Generation NodeB (gNB) (assuming the connectivity
between gNB and the core network is perfect), which is
fully compatible with the existing 5G network infrastruc-
ture without introducing any alteration or adding extra
complexity to the 3GPP standard.

Meanwhile, the proposed solution is also limited to the
following aspects:

• It only considers the outgoing traffic, i.e., egress traffic
or uplink traffic from the pod running in the UE.

• The traffic differentiation or QoS is only considered in
the RAN, between the UE and the 5G core (User Plane
Function (UPF)). It does not guarantee packet QoS in
the data network, e.g., the Internet, which is usually not
under control.

IV. EXPERIMENTS AND VALIDATION

In this section, we demonstrate the implementation of the
proposed CNI plugin and validate the applicability of the
plugin.

A. Demonstrative implementation

1) Traffic priority CNI plugin: According to the CNI
specification [10], four commands must be implemented for
each CNI plugin, i.e., ADD, DEL, CHECK, and VERSION,
which are passed into the plugin with the CNI COMMAND
environment variable. The ADD command is executed when a
container is added to the network or modifications are applied.
The DEL command is used to remove a container from the
network or un-apply the modifications. The CHECK command
verifies the container’s networking is as expected while the
VERSION command returns a supported CNI version list.

In the implementation, the ADD and DEL commands are
emphasized to validate the feasibility. When the ADD com-
mand is called, the traffic priority CNI plugin would generate
new fwmark and insert iptables rules for the added POD,
request the 5G stack to create radio link, PDU session, and
QoS flow using the inferred 5QI value, and then add IP filter
to redirect marked packets to the QoS flow. When the DEL
command is called, the plugin would delete the created iptables
rules, the corresponding fwmark for the specific POD, the IP
filter, as well as the 5G QoS flow.

2) Interaction with 5G emulator: A 5G network emulator
built atop Linux TC is used to emulate the 5G stack. It
emulates the 5G network by configuring TC queuing disci-
plines, classes, and filters. Clients can interact with the 5G
network emulator via exposed RESTful HTTP APIs to mimic
the interaction with a real 5G network, which enables clients
to create radio links, PDU sessions, QoS flows and filters so
as to realize traffic prioritization. Figure 5 shows an example
of configured TC queuing disciplines, classes, and filters that
classify traffic into different QoS flows. Specifically, three
QoS flows corresponding to three different traffic priorities are
highlighted, which are represented by network delays. Three
filters are created to enqueue packets with unique fwmark
values into the three QoS flows, respectively. In this way, the
overlay network packets that are marked with a QoS fwmark
can be redirected into different QoS flows in the 5G network.

In the implementation, the CNI plugin can interact with the
emulated 5G network and request the creation and deletion of a
QoS flow through the provided HTTP API. QoS configurations
requested by the CNI plugin are translated by the emulator
into TC commands which are applied to the physical network
interface of the host node. In this way it emulates a UE pod
to edge/cloud communication through the 5G network while
different network QoS configurations can be requested.

B. Validation: network QoS configuration for SLAM

The proposed QoS configuration approach based on the CNI
plugin is further validated in a real SLAM application to verify
the feasibility.

1) SLAM testbed introduction: The testbed used in the
validation is built on top of the K3s framework. The underlying
hardware include an Nvidia Jetson NX board (arm64) acting
as a device node, an Nvidia Jetson AGX board (arm64) acting
as an edge node, and other blade servers (amd64) acting as
the cloud. The platform features multi-architecture support
and low footprint, which enables applications to be deployed
across device, edge, and cloud according to specific needs.
Observability of application, platform, and hardware metrics
is supported and visualized through Prometheus and Grafana
that are deployed to the platform.

A SLAM application, maplab [11], has been chosen for the
case study as a distributed application. Execution of maplab
consists of localization, mapping, and map optimization three
phases, which can be run either in a centralized mode or
distributed mode. The maplab application has been container-
ized with multi-architecture support and deployed on the K3s
platform. The machine hall dataset [12] are utilized to run the
SLAM application.

2) QoS configuration for SLAM: Many researches have
been conducted around the SLAM application, e.g., in [13] the
authors investigated the network condition’s impact to SLAM
in distributed mode. As network latency increases, the SLAM
localization error also increases proportionally, which has been
observed in all experimental datasets.

In the validation, the containerized SLAM application is
deployed to the aforementioned platform and configured to

Fig. 5. An example of the TC qdisc, class, and filter configurations after the QoS requirement is enforced by the 5G network emulator.

run in the high-offload distributed mode, i.e., the device node
transmits both camera and inertial measurement unit data to
the edge node and all computation tasks such as localization,
mapping, and optimization take place at the edge.

Experiments are conducted in two categories namely QoS-
unlimited and QoS-limited to compare the performance in
respect of the Absolute Position Error (APE) metric. For the
QoS-unlimited case, no QoS is configured for the application
pod while for the QoS-limited case, the pod running the device
application is configured to use a QoS flow that has a 10
ms latency using the developed traffic priority CNI plugin.
According to [13], the localization error at 10 ms latency
starts to be significant. The results are shown in Table II,
which shows the SLAM application’s performance of the
QoS-limited category is slightly degraded in both the RMSE
and Mean of APE metrics compared to the QoS-unlimited
category, which is in line with the expected results as shown
in [13]. It also demonstrates the traffic priority CNI plugin is
able to perform traffic prioritization of the network QoS for a
given application deployed to the K8s platform so as to verify
the feasibility.

TABLE II
COMPARISON OF ABSOLUTE POSITION ERROR (APE) BETWEEN

QOS-UNLIMITED AND QOS-LIMITED SLAM EXPERIMENTS. THE HIGHER
THE WORSE.

Category RMSE (cm) Mean (cm)
QoS-unlimited 9.24± 0.14 8.13± 0.16
QoS-limited 10.08± 0.12 8.85± 0.11

V. CONCLUDING REMARKS

As an effort to facilitate the synergy of the cloud and the
telecommunication domains, this study aims to expose the
cellular network QoS configuration capability to applications
running on a container orchestration platform such as K8s. A
low footprint QoS mapping approach is proposed and imple-
mented by leveraging the Linux fwmark feature and the K8s
CNI plugin mechanism. The experimental validation shows the
proposed approach can be applied to real SLAM applications
and perform prioritization of traffics that are configured with
distinguished access network QoS. A quantitative performance
evaluation of the solution can be conducted as a future study.

In particular, the proposed solution addresses the challenge
to expose overlay network packet’s QoS information to the un-
derlay network in a non-intrusive manner, which is significant
to the container orchestration environment such as K8s where
an overlay network is commonly used. The core essence of the
solution can also be regarded as a complement to the existing
5G IP filter set-based approach that is used to configured 5G
QoS flows defined in the 3GPP standard.

REFERENCES

[1] M. Afrin, J. Jin, A. Rahman, A. Rahman, J. Wan, and E. Hossain,
“Resource allocation and service provisioning in multi-agent cloud
robotics: A comprehensive survey,” IEEE Communications Surveys &
Tutorials, vol. 23, no. 2, pp. 842–870, 2021.

[2] 3GPP, 3GPP TS 23.501 - System architecture for the 5G system (5GS).
[3] “Container network interface.” [Online]. Available: https://www.cni.

dev/plugins/current
[4] “Bandwidth plugin.” [Online]. Available: https://www.cni.dev/plugins/

current/meta/bandwidth/
[5] “Openshift network plugins.” [Online]. Available:

https://docs.openshift.com/container-platform/3.11/architecture/
networking/network plugins.html

[6] C. Xu, K. Rajamani, and W. Felter, “Nbwguard: Realizing network qos
for kubernetes,” in Proceedings of the 19th International Middleware
Conference Industry, ser. Middleware ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 32–38. [Online].
Available: https://doi.org/10.1145/3284028.3284033

[7] “Linux programmer’s manual.” [Online]. Available: https://www.man7.
org/linux/man-pages/man7/cgroups.7.html

[8] “Sr-iov network device plugin for kubernetes.” [Online]. Available:
https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin

[9] “firewall mark registry,” https://github.com/fwmark/registry, 2020.
[10] “Container network interface (cni) specification.” [Online]. Available:

https://www.cni.dev/docs/spec/
[11] T. Schneider, M. T. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschen-

ski, and R. Siegwart, “maplab: An open framework for research in
visual-inertial mapping and localization,” IEEE Robotics and Automa-
tion Letters, 2018.

[12] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, “The euroc micro aerial
vehicle datasets,” The International Journal of Robotics Research,
2016. [Online]. Available: http://ijr.sagepub.com/content/early/2016/01/
21/0278364915620033.abstract

[13] A. Rensfelt, A. C. Hernandez, B. P. Gerö, C. G. Blázquez, P. C. Cubero,
Y. Nezami, and M. Dohler, “Network performance and the metaverse:
Can 5g deliver what’s needed?” https://www.ericsson.com/en/blog/2022/
11/network-performance-metaverse-5g, 2022.

https://www.cni.dev/plugins/current
https://www.cni.dev/plugins/current
https://www.cni.dev/plugins/current/meta/bandwidth/
https://www.cni.dev/plugins/current/meta/bandwidth/
https://docs.openshift.com/container-platform/3.11/architecture/networking/network_plugins.html
https://docs.openshift.com/container-platform/3.11/architecture/networking/network_plugins.html
https://doi.org/10.1145/3284028.3284033
https://www.man7.org/linux/man-pages/man7/cgroups.7.html
https://www.man7.org/linux/man-pages/man7/cgroups.7.html
https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin
https://github.com/fwmark/registry
https://www.cni.dev/docs/spec/
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
https://www.ericsson.com/en/blog/2022/11/network-performance-metaverse-5g
https://www.ericsson.com/en/blog/2022/11/network-performance-metaverse-5g

	Introduction
	State of the art
	QoS configuration on cellular networks
	Network QoS on container orchestration
	Problems with existing solutions
	Overlay networks
	Limitation of traffic prioritization in K8s

	Proposed solution
	Architecture
	Linux packet fwmark visibility and availability
	Fwmark visibility
	Fwmark availability

	CNI plugin based QoS configuration
	Benefits and limitations of the solution

	Experiments and Validation
	Demonstrative implementation
	Traffic priority CNI plugin
	Interaction with 5G emulator

	Validation: network QoS configuration for SLAM
	SLAM testbed introduction
	QoS configuration for SLAM

	Concluding remarks
	References

