
This is a repository copy of Efficient UDP-Based Congestion Aware Transport for Data
Center Traffic.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/89456/

Version: Accepted Version

Proceedings Paper:
Lisha, Y, Mhamdi, L and Hamdi, M (2014) Efficient UDP-Based Congestion Aware
Transport for Data Center Traffic. In: Proceedings of 2014 IEEE 3rd International
Conference on Cloud Networking (CloudNet). 2014 IEEE 3rd International Conference on
Cloud Networking, CloudNet 2014, 08-10 Oct 2014, Luxembourg. IEEE , 46 - 51. ISBN
978-1-4799-2730-2

https://doi.org/10.1109/CloudNet.2014.6968967

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Efficient UDP-Based Congestion Aware Transport

for Data Center Traffic

Lisha Ye∗, Lotfi Mhamdi§ and Mounir Hamdi∗

∗Department of Computer Science and Engineering Hong Kong University of Science and Technology, Hong Kong

Email: {lisaye, hamdi}@cse.ust.hk
§School of Electronic and Electrical Engineering, University of Leeds, UK

Email: l.mhamdi@leeds.ac.uk

Abstract—Modern Data Centers (DCs) host hundreds of thou-
sands of servers running diverse applications and services. The
variety of these applications mandates distinct requirements such
as latency and throughput. The state-of-the-art TCP protocol
fails to meet these requirements, rendering the design of efficient
DC transport protocols an urgent need. Since UDP is the most
popular protocol besides TCP, it is a potential alternative to
address this challenging problem. In this paper, we propose
DCUDP, a UDP-like protocol for DCs which provides excellent
congestion control using Explicit Congestion Notification (ECN).
DCUDP achieves excellent throughput both for normal and short
flows through simulations. Furthermore, DCUDP guarantees fair-
ness and convergence during periodic congestions (burstiness).
Our experiments show that DCUDP outperforms many TCP-
like protocols for data centers in terms of throughput, fairness
and convergence.

Index Terms—Data center, UDP, Active Queue Management,
Throughput, Fairness.

I. INTRODUCTION

The exponential growth in cloud computing is stressing the

need for the design of scalable and efficient Data Centers

(DCs) capable of sustaining the current and projected increase

in cloud services and applications. Modern DCs host diverse

applications with various stringent performance requirements

in terms of latency, throughput, Quality of Services (QoS), etc.

In order to meet the distinct requirements of these applications,

careful design considerations have to be given to the Date

Center Network (DCN) infrastructure and its transport layer

protocol. Unfortunately, the standard TCP falls short in satisfy-

ing current DCN traffic in many aspects including bandwidth

utilization, congestion as well as fairness, all of which greatly

affect the performance and scalability of the DCN. Meanwhile,

for data centers, cost is also a critical problem faced with large-

scale hardware upgrade and deployment. To strike balance in

both performance and cost, how to optimize current traffic

protocols for future DCNs at a reasonable price has become

a challenging issue.

Due to the nature of TCP, current TCP including TCP-like

protocols in data centers cannot suit the data center traffic

characteristics especially in aspects like utilization, latency and

fairness. Faced with RTT as small as 100µs to 300µs in data

centers [2], the “slow-start” phase and the RTT-driven nature

of TCP may delay flows especially short and emergent ones,

resulting in missing deadlines. During a “slow-start” phase,

Application

DCUDP Socket

DCUDP

OS Socket Interface

UDP

M
e
m
o
ry
C
o
p
y

Fig. 1. DCUDP Architecture. DCUDP builds a middle layer between
application and OS socket interfaces and the core DCUDP transmits through
UDP

it was shown [3] that many flows finish transmission even

before the “slow-start” phase ends although the bandwidth

is under-utilized. Also, as most edge switches are shallow-

buffered, TCP is too dumb for congestions with limited buffer

space, leading to TCP time-out and therefore to the ”incast”

problem [4][5], mainly due its coarse-grained Minimum Re-

transmission Timeout (RTOmin) [6]. As a result and because

of the shortcomings of TCP, various other protocols are

being studied and proposed for better transmission in DCs.

A potential candidate of these protocols is UDP as a viable

alternative to current TCP.

In this paper, we describe DCUDP, an ECN-capable UDP-

like protocol for data center that guarantees optimal throughput

and congestion avoidance. Inspired by previous research in

UDP [7][8][9], DCUDP supports reliable transmission and do

not require modifications on traditional UDP. When the band-

width is underutilized, it sends packets as much as possible

(UDP Mode) which greatly improves work-flow sending rate

compared to TCP. On the other hand, when the bandwidth is

not enough and switch queue becomes growing (Congestion

Mode), DCUDP react much faster than other UDPs faced

with sudden burstiness. Additionally, DCUDP is designed to

provide better fairness than other TCP-like protocols for data

centers during concurrent Map-Reduce flow transmissions,

each of which has various RTT.

The rest of this article is structured as follows: Section II

briefly reviews the related work on existing protocols designed

for data centers. We then describe the design and algorithm of

DCUDP in Section III and IV. In Section V, we test DCUDP

and existing TCP-like protocols for data centers using the NS-

2 simulator [10] under Map-Reduce like traffic settings with

various RTTs. We show the superior performance of DCUDP

compared with other protocols in terms of throughput, fairness

and convergence. Finally, we conclude our work in Section VI.

II. RELATED WORK

The transport layer design for DCNs evolved from the

traditional TCP protocol. Unfortunately, standard TCP fails in

DCN contexts due to its fundamental drawbacks in such envi-

ronment. Because of the shortcomings of TCP, numerous DCN

protocols have been proposed. Various proposals employ im-

plicit rate control mechanisms, such as congestion control and

notification algorithms. Examples of these protocols include

DCTCP [2], D2TCP [11] and HULL [12]. These approaches

rely on carefully estimated flow rates while maintaining high

network utilisation. This is fundamentally challenging due to

the highly dynamic DCN workloads and network continuous

utilization. Other protocols such as RCP [13], QCN [14] and

D3 [3] aimed at providing much adequate and fair bandwidth

allocation for workloads, thus providing better performance

both in presence of congestion and idleness. However, the

expense on device upgrade on edge switches and end servers is

too high for current networks. Other researchers have proposed

UDP-like protocols for high-bandwidth low-latency networks,

such as UDT [8], DCCP [15] and RBUDP [7]. However, most

of these proposals aim at providing unreliable traffic, which is

unacceptable for most DCN applications. More recent research

work focused on proposing more reliable DCN transport

design, such as DeTail [16], PDQ [17] and pFabric [18].

Despite the high potential of these proposals, they have

ignored the DCN node (switches and routers) architectural

impact on their design by just assuming traditional switch

design proposed for earlier communications Networks, which

may prove challenging in a DCN environment.

DCTCP is the most closely related work to our proposal.

DCTCP is the best AQM-enabled TCP-like protocol proposed

that can control queue size to a small threshold while main-

taining throughput. Unfortunately, DCTCP still fails in some

aspects. First, as has been stated before, DCTCP inherits

the nature of TCP which sometimes greatly affect bandwidth

utilization. Secondly, the unfairness problem is even worse for

DCTCP than traditional TCP or ECN-enabled TCP. DCTCP

drops and marks packets with full probability based on the

instantaneous queue size rather than the average queue size,

and it calculates the cut of congestion window level based

on the portion of ECN-echo ACK received during the last

window of packet number transmitted (roughly the number of

ECN-echo ACK packets/last congestion window size). This

mechanism is sensitive to sense congestion but also sometimes

too radical in congestion control, resulting in severe unfairness

towards flows that have just started when the queue size has ex-

ceeded the threshold. Combined with RTT-unfairness problems

induced by TCP nature, DCTCP suffers from sort of unfairness

problems which may delay application completion time at the

price of better queue management. As we shall demonstrate

later in this article, although our proposed DCUDP also uses

ECN marking, it guarantees better fairness than DCTCP.

III. DCUDP DESIGN

A. Background of UDT

The proposed DCUDP is inspired by UDP-based Data

Transfer (UDT) [8] in reliable transmission. Here we introduce

UDT first.

1) Architecture: UDT adapts into the layered network

protocol architecture and uses UDP through socket commu-

nication provided by the operating systems. Applications pass

data through a UDT socket which uses UDP for sending and

receiving data. DCUDP inherits this architecture (Figure 1).

2) Reliable Transmission: UDT is a connection-oriented

duplex so each UDT entity has a pair of sender and receiver,

with data flows sent from the sender to the receiver and control

flow exchanged between two receivers. There are two types

of packets in UDT: data packets and control packets. UDT

uses control packets to support reliable transmission. Here

we introduce the three critical control packets that serve for

reliability.

• ACK & ACK2: UDT does not use ACK at the sender

side, but uses a pair of ACK and ACK2. The receiver of

UDT periodically sends ACK and the sender side sends

back ACK2 for RTT calculation. Based on the RTT, UDT

executes congestion control.

• NAK: UDT uses NAK for packet loss signalling. As

long as the receiver gets inconsequent sequence numbers

in data packets, it sends NAK at once to the sender.

NAK contains “control information” to notify the senders

which packets are lost for retransmission.

Other control packet types include: Hand-shake, keep-alive,

shutdown and so on. DCUDP inherits all control packet types.

B. Packet Structure of DCUDP

For DCUDP (Figure2), similar to UDT, the first bit helps

distinguish data and control packets. Data packets contain a

sequence number, a message sequence number and a relative

timestamp. For the control packets, the type of information is

put in the bit field. Each control packet is assigned a unique

31-bit sequence number, independent of data packets. Both

data packets and control packets have an Observe (OBS) bit

for observing which of the transmission modes is being used.

To support ECN, the Congestion Window Reduced (CWR)

and ECN-Echo (ECE) bits are added.

• OBS bit: DCUDP has two modes for transmission. The

OBS is set to 0 during UDP Mode and if the receiver

receives CE code point, the OBS bit is set to 1 to notify

the senders entering Congestion Mode for congestion

control. To synchronize the OBS bit change, an OBS-

change control packet is used.

• CWR and ECE bits: The ECE and CWR bits work in

the same way as TCP-ECN [19]. The process of this is

that: If the receiver gets a data packet with CE code point

set on the IP layer, the receiver sends ACK with ECE bit

0 1 2 3

31

0 OBS CWR Sequence Number

FF 0 Message Number

Time Stamp

Data Packet

0 1 2 3

15

31

1 OBS ECE Type Extended Type

X ACK Sequence Number

Time Stamp

Control Information

Control Packet

Fig. 2. The DCUDP Packet Header.

Handshake Connection

Setup

UDP

Mode

CE=1 on IP layer

(ECN Marking)

ACK (OBS=1,ECE =1)
ACK2

Data(OBS= 0)

Congestion

Mode

Data(OBS= 1,CWR=1)

ACK(OBS=1)
ACK2

Slow Down

Speed Up

Not receiving CE=1

for a period of time

ACK(OBS=0)
ACK2&obs - change

Data(OBS=0)
UDP

Mode

CE=0 on IP layer

Stop sending ACK

(Quit Congestion Mode)

Sender Receiver

Fig. 3. The DCUDP Transmission Procedure.

set. When the sender finds ECE bit set, the sender slows

down and sets CWR bit to notify that the last ECN echo

is already received.

C. Tansmission Procedure of DCUDP

1) Connection Setup: The setup of connection is a clien-

t/server mode handshake process which is the same as that of

UDT.

2) Transmission Mode Switch: As can be seen from Fig-

ure 3, the default mode is UDP Mode. In this mode, the sender

sends out data packets within a UDP way. The receiver does

not send ACK, but keep-alive packets from time to time. The

sender enters Congestion Mode when the OBS bit is set and

then ACK packets are sent every RTT. Once the sender gets

ACK, it replies with an ACK2 and reacts as follows:

• If the ECE bit is not set, it speeds up the sending rate.

• If the ECE bit is set, it slows down the sending rate. If

the sender gets NAK, it also slows down.

If the receiver does not sense congestions for a relatively

long time, the receiver sends ACK packet with OBS = 0 to

notify the sender to quit the Congestion Mode.

3) Tear Down: When one of the peers is closed, it sends

a shutdown message for notification. This also works similar

to UDT.

IV. DCUDP ALGORITHM

In this section, we introduce the algorithms of DCUDP

during congestions. We assume the bottleneck link capacity

as C (Gbps) and the average packet size as PktSize (KB).

A. Congestion Mode

DCUDP enters the Congestion Mode using an OBS bit

change, which is triggered by the following logic:

1) Switch Side: The CE code marking at the IP layer is

based on two threshold th min and th max, same as TCP-

ECN. For DCUDP we set th min as 1 (Queue in packets).

As the queue size grows to th max, the switch marks with

uniform probability. For the queue size observation, we use

instantaneous size rather than average size, so that DCUDP can

be sensitive to burstiness. When the queue size grows larger

than th max, we do not drop packets, in order to prevent

huge packet loss during UDP Mode.

The choice of th max is important because it needs time

to control the queue caused by a greedy UDP transmission

before entering the Congestion Mode. So th max cannot be

too large or it will be not be suitable for congestions. Assume:

• The maximum switch buffer size as Max qsize,

• The average sending interval during UDP Mode as

Interval,
• The average link delay as Delay,

• The RTT during the idle times as RTTidle,

• The expected maximum number of senders as N .

Choose th max as long as the following equation stands:

th max + N × (
RTTidle + th max×Delay

Interval
)

−
RTTidle + th max×Delay

Delay
≤ Maxqsize

Note that, with N servers sending concurrently in a bot-

tleneck link and even if the queue length exceeds th max
and all servers are under the UDP Mode, the equation above

ensures tolerable packet loss.

2) Receiver Side: During UDP Mode, the receiver side does

not send ACK but watches the CE bit of data packets. If the

receiver gets the CE bit set, it immediately sends an ACK
to the sender with the OBS bit set. As the receiver gets the

ACK2 reply, it calculates recent RTT based on the peers.

The ACK2 reply is set with the same sequence number as its

ACK peer:











RTTcurrent = T imestampACK2 − T imestampACK

RTT = (1− α)×RTT + α×RTTcurrent; (α = 0.125)

IntervalACK = RTT

After that the receiver starts sending ACK packets every RTT
and the initial value is RTTidle. The receiver side updates

RTT each time it receives ACK2.

3) Sender Side: When the sender receives the first ACK,

it enters the Congestion Mode and replies by ACK2. For the

mode switch:

• Step 1: Set OBS bit to 1 in the following data packets.

• Step 2: Slow down the current sending interval to

Intervaldata. Here we have two rates for Intervaldata
calculation: Ratedata and Ratemax. The latter one is the

maximum Ratedata a sender is allowed to achieve during

Assume

 Integer nack :Number of ACK packet received;

 Integer necn :Number of ACK with ECN echo ;

 Bool freeze :Rate adjustment lock;

Initialization: nack=necn=0; freeze = false;

/*At the sender side, upon receiving a control packet :*/
 If (ACK) {
 nack++;

 If (ECE= =1) { /*Slow down rate due to ECN echo. */

 necn++;

 If (!freeze){

 If (Ratemax<1/RTT) Ratemax=1/RTT;

 If (Ratedata<1/RTT) Ratedata=1/RTT;

 freeze = true;

 }

 Else If (ECE bit = =0) { /*No ECN echo, speed up.*/

 If (Ratedata>=Ratemax) {

 Ratedata++;

 Ratemax= Ratedata;

 }

 Else Ratedata= Ratedata*2;
 }

 }

 If (NAK) { /*Slow down rate due to packet loss.*/

 nack++;

 necn++; /*Both nack and necn grows.*/

 If (!freeze){

 Ratedata=1/RTT;

 Ratemax= Ratemax/2;

 If (Ratemax<1/RTT) Ratemax=1/RTT;

 freeze = true;

 }

 }
 Intervaldata = 1/Ratedata; /*Next data sending interval*/

Fig. 4. The Congestion Control Algorithm of DCUDP.

the Congestion Mode.










Ratedata = C×10
6

8×PktSize
(Packet/sec)

Intervaldata = 1

Ratedata

(sec)

Ratemax = Ratedata

Notice that both Ratedata and Ratemax are each at least one

data packet per RTT for fairness concern.

B. Congestion Control during Congestion Mode

In the Congestion Mode, the congestion control algorithm is

applied on the sender through the adjustment of Intervaldata.

Here we introduce the algorithm (Figure 4) at the sender.

There are three types of control packets received at the sender

during the Congestion Mode with the corresponding reactions.

For the Congestion Control Algorithm, note that:

• On receiving ECN-echo (ECE), unlike TCP, we do not

halve Ratemax and Ratedata but cut in a smoother way

(see Equations (1) and (2) in Figure 4). It is because the

sending interval of ACK is now RTT . In a high-speed

environment, definitely more than one data packet is

received during an RTT, so the likelihood of rate increase

in DCUDP is less than in TCP.

• We use necn

nack

for congestion level signal, which is the

portion of ECN-echo ACK received during a Congestion

Mode period.

• We use freeze as a rate adjustment lock. We do not want

senders that receive huge ECN-echo packets to slow down

too much at once. Each time the sender sends out a data

packet after Intervaldata, it sets freeze as false.

C. Quit Congestion Mode

The receiver side observes the end of the congestion period

and senders reenter the UDP Mode after the congestions.
1) Receiver Side: The receiver uses functions

getDelayTrend() and getEcnTrend() every time an

ACK2 is received. We use several windows of size K
for recent control message storage (recent RTT and the

percentage of data packets with CE set). The oldest message

is replaced after the windows are full. K is chosen by the

average congestion length and RTT in real practice.

• getDelayTrend(): Each latest RTT calculated is stored

in rttWindow. Among all recent RTTs recorded,

the function calculates and returns the percentage (P)

of the RTT that is smaller than the previous one

(rttWindow(i%K) ≤ rttWindow((i− 1)%K)):

PRTT≤RTT ′ =
Number of RTT ≤ RTT ′

Number of RTT
(3)

• getEcnTrend(): For every data packet received, the re-

ceiver checks the CE bit and determines whether to

return ECN-echo. Therefore, for every K recent data

packets received, the receiver records the portion (pecn)

of the packets with the CE bit set in a pecn Window

of size K. When K portions are stored, calculate the

percentage of the pecn that is smaller than the previous

one (pecnWindow(i%K) ≤ pecnWindow((i−1)%K)).
The window stores the ECN trends of at most K2 recent

packets received.

Ppenc≤p′

enc
=

Number of penc ≤ p′enc
Number of penc

(4)

Equations (3) and (4) cope to sense congestion ending. The

logic is described as follows:

• Condition 1: If the following condition is satisfied, the

ACK sending interval is enlarged to a fixed interval as

β ×RTTidle.

If











Ppenc≤p′

enc
< θecn AND

PRTT≤RTT ′ < θRTT AND

latestPecn = 0

Then IntervalACK = β ×RTTidle (β ≥ 1)1

• Condition 2: If Condition 1 is satisfied, then quit the

congestion Mode if the following condition is satisfied.

If











Ppenc≤p′

enc
= 1 AND

PRTT≤RTT ′ = 1 AND

latestPecn = 0

Then set OBS bit = 0 for the following ACK sent.

If Condition 2 is satisfied, the receiver sends ACK with

OBS = 0. Once the receiver gets an OBS-change signal from

the sender, it stops sending ACK. If condition 2 is not satisfied

but new ECN arrives again, IntervalACK is reset to RTT .

1In our simulation, we set as θecn to 0.5, β to 2 and θRTT to 0.2.

Receiver

Server

S

S

S

S

E R

Single Link

10 Gbps

Sender Servers

Edge Switch

(4MB)

Bottleneck Link

1 Gbps

Fig. 5. The Topology of Experiments

2) Sender Side: If the sender gets control packets with

OBS = 0, it first sends an OBS-change signal, then changes

OBS bit to 0 for the following data packets and quits the

Congestion Mode.

V. SIMULATION RESULTS

In this section, we use the NS-2 simulator to compare

DCUDP with other protocols for data centers in terms of

throughput during and after congestion periods.

A. Throughput under highly congested scenarios

In this experiment, we measure the throughput during both

regular (1s) and short (10ms) flows during congested concur-

rent traffic flows. We use several sender machines connected to

an edge switch (4 MB buffer size [2]) with 10 Gbps capacity as

depicted in Figure 5). A receiver machine is connected to the

switch with 1 Gbps capacity. Each sender sends constant bit

rate traffic (CBR) at 1.6 Gbps to the receiver lasting for 1s and

10ms respectively. The RTTidle for each link is 100 µs. We

use DCUDP (thmax = 15), DCTCP (g = 0.3, K = 10 which

is a recommended choice) and TCP Reno for comparison.

For TCP, the queue is drop-tail while the others are RED

(gentle = false) with ecnbit = true. UDT causes intolerable

packet loss in the experiment so we do not discuss it.

We find that, for the case of normal-sized flows (1s) as in

Figure 6(a) and with servers from 1 to 20, both DCTCP and

DCUDP achieve a throughput as high as 0.98 Gbps, while

TCP falls behind a lot. It again proves that traditional TCP

produces enormous RTO (compared to RTTidle) under highly

congested situations [20][4].

For a short flow case in Figure 6(b), DCUDP achieves better

throughput than the other two since it does not have a “slow-

start” phase. Interestingly, DCTCP performs even worse than

traditional TCP here due to its overreacting congestion control.

For short and emergent flows, this is intolerable.

To observe the congestion control performance, we com-

pared the queue length of TCP, DCTCP and DCUDP under

normal sized flows of 1s using 20 servers as illustrated in

Figure 7(a). Note that similar experiments on TCP-ECN have

been done in [2], we therefore do not plot its throughput

and queue size for simplicity. We find that traditional TCP

is poor in both throughput and queue length. DCUDP gets

heavy queue burden at the beginning of congestion, and then

quickly drops to a stable small value, as can be seen from

Figure 7(b). DCTCP is the best in queue length control

among all including TCP-ECN, although the cost of effective

queue control is overreaching at times, especially for short

2 4 6 8 10 12 14 16 18 20
600

650

700

750

800

850

900

950

1000

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Number of Servers

(a) Normal Flows

DCUDP

TCP

DCTCP

2 4 6 8 10 12 14 16 18 20
750

800

850

900

950

1000

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Number of Servers

(b) Short Flows (10 ms)

DCUDP

TCP

DCTCP

Fig. 6. Throughput under congestions: (a) Norml Flows (1s). (b) Short Flows
(10 ms)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

Q
u
e
u
e
 L

e
n
g
th

 (
B

y
te

s
)

Time (Seconds)

(a) Queue Length Comparison

DCUDP

TCP

TCP ECN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Q
u

e
u

e
 L

e
n

g
th

 (
B

y
te

s
)

Time (Seconds)

(b) Detailed look at DCUDP Queue Length

DCUDP

Fig. 7. Queue Length Variation: (a) Queue length variation. (b) DCUDP
Queue length variation.

flows. This proves DCTCP effective in queue control during

burstiness with similar throughput.

B. Immediate Throughput after Congestion

Here we use the previous topology but this time we use only

two senders. One sender sends CBR traffic at 1 Gbps, and the

other sends File Transfer Protocol (FTP) traffic. Both senders

start at Time (0s), but the FTP traffic finishes at 0.5s and

the CBR traffic stops at 1s. We test whether the CBR traffic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10
x 10

5

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (s)

DCUDP

TCP

DCTCP(k=10)

DCTCP(k=50)

Fig. 8. Throughput changes when one flow ceases at Time (s) = 0.5.

can quickly take advantage of the free available bandwidth

after the FTP traffic ceases. We use TCP, DCTCP (K = 10),

DCTCP (K = 50) and DCUDP (th max = 15) to test

the throughput variation during 1s and we plot the results in

Figure 8.

We find that both DCTCP (K = 50) and DCUDP quickly

use the free bandwidth after one flow ceases, while TCP and

DCTCP (K = 10) do not profit from the available bandwidth.

The reason is that TCP packet retransmission mechanisms

during the previous congestion period make the congestion

window grow linearly even if it senses idleness afterwards.

Also, for DCTCP with small K (e.g. 10) is similar to TCP.

DCUDP does not have this problem because it is not TCP

based and it has its own algorithm for sensing the switching

from congestion to idleness (Section IV). Figure 9 illustrates

the difference in DCTCP congestion window growth with

K = 10 and K = 50 after 0.5s. The congestion window

of K = 50 gains a sharp growth but K = 10 does not.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

C
W

N
D

Time (Seconds)

Congestion Window of DCTCP with varying values of k

k=50

k=10

 Sharp Growth

0.5 s

Fig. 9. Congestion window Comparison for DCTCP with varying K values.

VI. CONCLUSION

In this paper, we have introduced DCUDP, a UDP-like pro-

tocol for reliable transmission in DCNs. We first listed current

findings in traffic characteristics in DCNs and pointed out the

unsuitability of standard TCP in modern DCN environments.

We then described the design and structure of DCUDP as

well as its algorithms during congestion and idle periods.

Finally, we used NS-2 to simulate DCUDP and conduct several

experiments which are similar to bursty data center Map-

Reduce traffic. With ECN-capability, DCUDP has been proved

a viable solution and can not only provide high throughput in

data centers, but also strong congestion control during peak

periods. Although UDP is not the most prevalent protocol in

data center reliable transmission, we show that there is a strong

need (and reason) to adopt UDP-like protocols for transport

since short flows frequently appear in most current Map-

Reduce applications, and sometimes tight deadlines are re-

quired but the slow-start phase and congestion control method

in traditional TCP cannot fully utilize bandwidth efficiently.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in ACM

SIGCOMM’10, (New York, NY, USA), pp. 63–74, ACM, 2010.
[3] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never

than late: meeting deadlines in datacenter networks,” in ACM SIG-

COMM’11, (New York, NY, USA), pp. 50–61, ACM, 2011.
[4] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,

G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe and effective fine-
grained tcp retransmissions for datacenter communication,” in ACM

SIGCOMM’09, (New York, NY, USA), pp. 303–314, ACM, 2009.
[5] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Un-

derstanding tcp incast throughput collapse in datacenter networks,”
in Proceedings of the 1st ACM workshop on Research on enterprise

networking, WREN ’09, (New York, NY, USA), pp. 73–82, ACM, 2009.
[6] V. Paxson and A. M., “Computing tcps retransmission timer.,” IETF

RFC 2988, November 2000.
[7] E. He, J. Leigh, O. Yu, and T. A. DeFanti, “Reliable blast udp:

Predictable high performance bulk data transfer,” in Proceedings of the

IEEE International Conference on Cluster Computing, CLUSTER ’02,
(Washington, DC, USA), pp. 317–, IEEE Computer Society, 2002.

[8] Y. Gu and R. L. Grossman, “Udt: Udp-based data transfer for high-speed
wide area networks,” Comput. Netw., vol. 51, pp. 1777–1799, May 2007.

[9] P. Saab, “Qcn: Quantized congestion notification,” Dec. 2008.
[10] “The network simulator - ns-2.”
[11] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter

tcp (d2tcp),” in ACM SIGCOMM’12, pp. 115–126, 2012.
[12] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and

M. Yasuda, “Less is more: trading a little bandwidth for ultra-low latency
in the data center,” in The 9th USENIX conference on Networked Systems

Design and Implementation, NSDI’12, pp. 19–19, 2012.
[13] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown, “Pro-

cessor sharing flows in the internet,” in IWQoS’05, (Berlin, Heidelberg),
pp. 271–285, Springer-Verlag, 2005.

[14] R. Pan, B. Prabhakar, and A. Laxmikantha, “Qcn: Quantized congestion
notification,” 2007.

[15] E. Kohler, M. Handley, and S. Floyd, “Designing dccp: congestion
control without reliability,” (NY, USA), pp. 27–38, ACM, 2006.

[16] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “Detail:
reducing the flow completion time tail in datacenter networks,” in ACM

SIGCOMM’12, pp. 139–150, 2012.
[17] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with

preemptive scheduling,” in ACM SIGCOMM’12, pp. 127–138, 2012.
[18] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,

and S. Shenker, “pfabric: minimal near-optimal datacenter transport,” in
ACM SIGCOMM’13, pp. 435–446, 2013.

[19] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit
congestion notification (ecn) to ip,” IETF RFC 3168, september 2001.

[20] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and S. Seshan, “Measurement and analysis of tcp
throughput collapse in cluster-based storage systems,” in Proceedings of

the 6th USENIX Conference on File and Storage Technologies, FAST’08,
(Berkeley, CA, USA), pp. 12:1–12:14, 2008.

